summaryrefslogtreecommitdiff
path: root/tools/node_modules/eslint/node_modules/acorn-jsx/node_modules/acorn/src/walk/index.js
blob: 68604a88abeed2af6954cf6b6356deeb7bcd1730 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// AST walker module for Mozilla Parser API compatible trees

// A simple walk is one where you simply specify callbacks to be
// called on specific nodes. The last two arguments are optional. A
// simple use would be
//
//     walk.simple(myTree, {
//         Expression: function(node) { ... }
//     });
//
// to do something with all expressions. All Parser API node types
// can be used to identify node types, as well as Expression,
// Statement, and ScopeBody, which denote categories of nodes.
//
// The base argument can be used to pass a custom (recursive)
// walker, and state can be used to give this walked an initial
// state.

export function simple(node, visitors, base, state, override) {
  if (!base) base = exports.base
  ;(function c(node, st, override) {
    let type = override || node.type, found = visitors[type]
    base[type](node, st, c)
    if (found) found(node, st)
  })(node, state, override)
}

// An ancestor walk keeps an array of ancestor nodes (including the
// current node) and passes them to the callback as third parameter
// (and also as state parameter when no other state is present).
export function ancestor(node, visitors, base, state) {
  if (!base) base = exports.base
  let ancestors = []
  ;(function c(node, st, override) {
    let type = override || node.type, found = visitors[type]
    let isNew = node != ancestors[ancestors.length - 1]
    if (isNew) ancestors.push(node)
    base[type](node, st, c)
    if (found) found(node, st || ancestors, ancestors)
    if (isNew) ancestors.pop()
  })(node, state)
}

// A recursive walk is one where your functions override the default
// walkers. They can modify and replace the state parameter that's
// threaded through the walk, and can opt how and whether to walk
// their child nodes (by calling their third argument on these
// nodes).
export function recursive(node, state, funcs, base, override) {
  let visitor = funcs ? exports.make(funcs, base) : base
  ;(function c(node, st, override) {
    visitor[override || node.type](node, st, c)
  })(node, state, override)
}

function makeTest(test) {
  if (typeof test == "string")
    return type => type == test
  else if (!test)
    return () => true
  else
    return test
}

class Found {
  constructor(node, state) { this.node = node; this.state = state }
}

// Find a node with a given start, end, and type (all are optional,
// null can be used as wildcard). Returns a {node, state} object, or
// undefined when it doesn't find a matching node.
export function findNodeAt(node, start, end, test, base, state) {
  test = makeTest(test)
  if (!base) base = exports.base
  try {
    ;(function c(node, st, override) {
      let type = override || node.type
      if ((start == null || node.start <= start) &&
          (end == null || node.end >= end))
        base[type](node, st, c)
      if ((start == null || node.start == start) &&
          (end == null || node.end == end) &&
          test(type, node))
        throw new Found(node, st)
    })(node, state)
  } catch (e) {
    if (e instanceof Found) return e
    throw e
  }
}

// Find the innermost node of a given type that contains the given
// position. Interface similar to findNodeAt.
export function findNodeAround(node, pos, test, base, state) {
  test = makeTest(test)
  if (!base) base = exports.base
  try {
    ;(function c(node, st, override) {
      let type = override || node.type
      if (node.start > pos || node.end < pos) return
      base[type](node, st, c)
      if (test(type, node)) throw new Found(node, st)
    })(node, state)
  } catch (e) {
    if (e instanceof Found) return e
    throw e
  }
}

// Find the outermost matching node after a given position.
export function findNodeAfter(node, pos, test, base, state) {
  test = makeTest(test)
  if (!base) base = exports.base
  try {
    ;(function c(node, st, override) {
      if (node.end < pos) return
      let type = override || node.type
      if (node.start >= pos && test(type, node)) throw new Found(node, st)
      base[type](node, st, c)
    })(node, state)
  } catch (e) {
    if (e instanceof Found) return e
    throw e
  }
}

// Find the outermost matching node before a given position.
export function findNodeBefore(node, pos, test, base, state) {
  test = makeTest(test)
  if (!base) base = exports.base
  let max
  ;(function c(node, st, override) {
    if (node.start > pos) return
    let type = override || node.type
    if (node.end <= pos && (!max || max.node.end < node.end) && test(type, node))
      max = new Found(node, st)
    base[type](node, st, c)
  })(node, state)
  return max
}

// Fallback to an Object.create polyfill for older environments.
const create = Object.create || function(proto) {
  function Ctor() {}
  Ctor.prototype = proto
  return new Ctor
}

// Used to create a custom walker. Will fill in all missing node
// type properties with the defaults.
export function make(funcs, base) {
  if (!base) base = exports.base
  let visitor = create(base)
  for (var type in funcs) visitor[type] = funcs[type]
  return visitor
}

function skipThrough(node, st, c) { c(node, st) }
function ignore(_node, _st, _c) {}

// Node walkers.

export const base = {}

base.Program = base.BlockStatement = (node, st, c) => {
  for (let i = 0; i < node.body.length; ++i)
    c(node.body[i], st, "Statement")
}
base.Statement = skipThrough
base.EmptyStatement = ignore
base.ExpressionStatement = base.ParenthesizedExpression =
  (node, st, c) => c(node.expression, st, "Expression")
base.IfStatement = (node, st, c) => {
  c(node.test, st, "Expression")
  c(node.consequent, st, "Statement")
  if (node.alternate) c(node.alternate, st, "Statement")
}
base.LabeledStatement = (node, st, c) => c(node.body, st, "Statement")
base.BreakStatement = base.ContinueStatement = ignore
base.WithStatement = (node, st, c) => {
  c(node.object, st, "Expression")
  c(node.body, st, "Statement")
}
base.SwitchStatement = (node, st, c) => {
  c(node.discriminant, st, "Expression")
  for (let i = 0; i < node.cases.length; ++i) {
    let cs = node.cases[i]
    if (cs.test) c(cs.test, st, "Expression")
    for (let j = 0; j < cs.consequent.length; ++j)
      c(cs.consequent[j], st, "Statement")
  }
}
base.ReturnStatement = base.YieldExpression = (node, st, c) => {
  if (node.argument) c(node.argument, st, "Expression")
}
base.ThrowStatement = base.SpreadElement =
  (node, st, c) => c(node.argument, st, "Expression")
base.TryStatement = (node, st, c) => {
  c(node.block, st, "Statement")
  if (node.handler) c(node.handler, st)
  if (node.finalizer) c(node.finalizer, st, "Statement")
}
base.CatchClause = (node, st, c) => {
  c(node.param, st, "Pattern")
  c(node.body, st, "ScopeBody")
}
base.WhileStatement = base.DoWhileStatement = (node, st, c) => {
  c(node.test, st, "Expression")
  c(node.body, st, "Statement")
}
base.ForStatement = (node, st, c) => {
  if (node.init) c(node.init, st, "ForInit")
  if (node.test) c(node.test, st, "Expression")
  if (node.update) c(node.update, st, "Expression")
  c(node.body, st, "Statement")
}
base.ForInStatement = base.ForOfStatement = (node, st, c) => {
  c(node.left, st, "ForInit")
  c(node.right, st, "Expression")
  c(node.body, st, "Statement")
}
base.ForInit = (node, st, c) => {
  if (node.type == "VariableDeclaration") c(node, st)
  else c(node, st, "Expression")
}
base.DebuggerStatement = ignore

base.FunctionDeclaration = (node, st, c) => c(node, st, "Function")
base.VariableDeclaration = (node, st, c) => {
  for (let i = 0; i < node.declarations.length; ++i)
    c(node.declarations[i], st)
}
base.VariableDeclarator = (node, st, c) => {
  c(node.id, st, "Pattern")
  if (node.init) c(node.init, st, "Expression")
}

base.Function = (node, st, c) => {
  if (node.id) c(node.id, st, "Pattern")
  for (let i = 0; i < node.params.length; i++)
    c(node.params[i], st, "Pattern")
  c(node.body, st, node.expression ? "ScopeExpression" : "ScopeBody")
}
// FIXME drop these node types in next major version
// (They are awkward, and in ES6 every block can be a scope.)
base.ScopeBody = (node, st, c) => c(node, st, "Statement")
base.ScopeExpression = (node, st, c) => c(node, st, "Expression")

base.Pattern = (node, st, c) => {
  if (node.type == "Identifier")
    c(node, st, "VariablePattern")
  else if (node.type == "MemberExpression")
    c(node, st, "MemberPattern")
  else
    c(node, st)
}
base.VariablePattern = ignore
base.MemberPattern = skipThrough
base.RestElement = (node, st, c) => c(node.argument, st, "Pattern")
base.ArrayPattern =  (node, st, c) => {
  for (let i = 0; i < node.elements.length; ++i) {
    let elt = node.elements[i]
    if (elt) c(elt, st, "Pattern")
  }
}
base.ObjectPattern = (node, st, c) => {
  for (let i = 0; i < node.properties.length; ++i)
    c(node.properties[i].value, st, "Pattern")
}

base.Expression = skipThrough
base.ThisExpression = base.Super = base.MetaProperty = ignore
base.ArrayExpression = (node, st, c) => {
  for (let i = 0; i < node.elements.length; ++i) {
    let elt = node.elements[i]
    if (elt) c(elt, st, "Expression")
  }
}
base.ObjectExpression = (node, st, c) => {
  for (let i = 0; i < node.properties.length; ++i)
    c(node.properties[i], st)
}
base.FunctionExpression = base.ArrowFunctionExpression = base.FunctionDeclaration
base.SequenceExpression = base.TemplateLiteral = (node, st, c) => {
  for (let i = 0; i < node.expressions.length; ++i)
    c(node.expressions[i], st, "Expression")
}
base.UnaryExpression = base.UpdateExpression = (node, st, c) => {
  c(node.argument, st, "Expression")
}
base.BinaryExpression = base.LogicalExpression = (node, st, c) => {
  c(node.left, st, "Expression")
  c(node.right, st, "Expression")
}
base.AssignmentExpression = base.AssignmentPattern = (node, st, c) => {
  c(node.left, st, "Pattern")
  c(node.right, st, "Expression")
}
base.ConditionalExpression = (node, st, c) => {
  c(node.test, st, "Expression")
  c(node.consequent, st, "Expression")
  c(node.alternate, st, "Expression")
}
base.NewExpression = base.CallExpression = (node, st, c) => {
  c(node.callee, st, "Expression")
  if (node.arguments) for (let i = 0; i < node.arguments.length; ++i)
    c(node.arguments[i], st, "Expression")
}
base.MemberExpression = (node, st, c) => {
  c(node.object, st, "Expression")
  if (node.computed) c(node.property, st, "Expression")
}
base.ExportNamedDeclaration = base.ExportDefaultDeclaration = (node, st, c) => {
  if (node.declaration)
    c(node.declaration, st, node.type == "ExportNamedDeclaration" || node.declaration.id ? "Statement" : "Expression")
  if (node.source) c(node.source, st, "Expression")
}
base.ExportAllDeclaration = (node, st, c) => {
  c(node.source, st, "Expression")
}
base.ImportDeclaration = (node, st, c) => {
  for (let i = 0; i < node.specifiers.length; i++)
    c(node.specifiers[i], st)
  c(node.source, st, "Expression")
}
base.ImportSpecifier = base.ImportDefaultSpecifier = base.ImportNamespaceSpecifier = base.Identifier = base.Literal = ignore

base.TaggedTemplateExpression = (node, st, c) => {
  c(node.tag, st, "Expression")
  c(node.quasi, st)
}
base.ClassDeclaration = base.ClassExpression = (node, st, c) => c(node, st, "Class")
base.Class = (node, st, c) => {
  if (node.id) c(node.id, st, "Pattern")
  if (node.superClass) c(node.superClass, st, "Expression")
  for (let i = 0; i < node.body.body.length; i++)
    c(node.body.body[i], st)
}
base.MethodDefinition = base.Property = (node, st, c) => {
  if (node.computed) c(node.key, st, "Expression")
  c(node.value, st, "Expression")
}