summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/bigint.cc
blob: 458aa7c1eb2533a2fb91a3b3cce10caf21f892c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Parts of the implementation below:

// Copyright (c) 2014 the Dart project authors.  Please see the AUTHORS file [1]
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file [2].
//
// [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS
// [2] https://github.com/dart-lang/sdk/blob/master/LICENSE

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file [3].
//
// [3] https://golang.org/LICENSE

#include "src/objects/bigint.h"

#include "src/double.h"
#include "src/objects-inl.h"

namespace v8 {
namespace internal {

// The MutableBigInt class is an implementation detail designed to prevent
// accidental mutation of a BigInt after its construction. Step-by-step
// construction of a BigInt must happen in terms of MutableBigInt, the
// final result is then passed through MutableBigInt::MakeImmutable and not
// modified further afterwards.
// Many of the functions in this class use arguments of type {BigIntBase},
// indicating that they will be used in a read-only capacity, and both
// {BigInt} and {MutableBigInt} objects can be passed in.
class MutableBigInt : public FreshlyAllocatedBigInt,
                      public NeverReadOnlySpaceObject {
 public:
  using NeverReadOnlySpaceObject::GetHeap;
  using NeverReadOnlySpaceObject::GetIsolate;

  // Bottleneck for converting MutableBigInts to BigInts.
  static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe);
  static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result);

  // Allocation helpers.
  static MaybeHandle<MutableBigInt> New(Isolate* isolate, int length,
                                        PretenureFlag pretenure = NOT_TENURED);
  static Handle<BigInt> NewFromInt(Isolate* isolate, int value);
  static Handle<BigInt> NewFromDouble(Isolate* isolate, double value);
  void InitializeDigits(int length, byte value = 0);
  static Handle<MutableBigInt> Copy(Isolate* isolate,
                                    Handle<BigIntBase> source);
  static Handle<BigInt> Zero(Isolate* isolate) {
    // TODO(jkummerow): Consider caching a canonical zero-BigInt.
    return MakeImmutable(New(isolate, 0)).ToHandleChecked();
  }

  static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) {
    SLOW_DCHECK(bigint->IsBigInt());
    return Handle<MutableBigInt>::cast(bigint);
  }

  // Internal helpers.
  static MaybeHandle<MutableBigInt> BitwiseAnd(Isolate* isolate,
                                               Handle<BigInt> x,
                                               Handle<BigInt> y);
  static MaybeHandle<MutableBigInt> BitwiseXor(Isolate* isolate,
                                               Handle<BigInt> x,
                                               Handle<BigInt> y);
  static MaybeHandle<MutableBigInt> BitwiseOr(Isolate* isolate,
                                              Handle<BigInt> x,
                                              Handle<BigInt> y);

  static Handle<BigInt> TruncateToNBits(Isolate* isolate, int n,
                                        Handle<BigInt> x);
  static Handle<BigInt> TruncateAndSubFromPowerOfTwo(Isolate* isolate, int n,
                                                     Handle<BigInt> x,
                                                     bool result_sign);

  static MaybeHandle<BigInt> AbsoluteAdd(Isolate* isolate, Handle<BigInt> x,
                                         Handle<BigInt> y, bool result_sign);
  static Handle<BigInt> AbsoluteSub(Isolate* isolate, Handle<BigInt> x,
                                    Handle<BigInt> y, bool result_sign);
  static MaybeHandle<MutableBigInt> AbsoluteAddOne(
      Isolate* isolate, Handle<BigIntBase> x, bool sign,
      MutableBigInt* result_storage = nullptr);
  static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
                                              Handle<BigIntBase> x);
  static MaybeHandle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
                                                   Handle<BigIntBase> x,
                                                   int result_length);

  enum ExtraDigitsHandling { kCopy, kSkip };
  enum SymmetricOp { kSymmetric, kNotSymmetric };
  static inline Handle<MutableBigInt> AbsoluteBitwiseOp(
      Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
      MutableBigInt* result_storage, ExtraDigitsHandling extra_digits,
      SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op);
  static Handle<MutableBigInt> AbsoluteAnd(
      Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
      MutableBigInt* result_storage = nullptr);
  static Handle<MutableBigInt> AbsoluteAndNot(
      Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
      MutableBigInt* result_storage = nullptr);
  static Handle<MutableBigInt> AbsoluteOr(
      Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
      MutableBigInt* result_storage = nullptr);
  static Handle<MutableBigInt> AbsoluteXor(
      Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
      MutableBigInt* result_storage = nullptr);

  static int AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y);

  static void MultiplyAccumulate(Handle<BigIntBase> multiplicand,
                                 digit_t multiplier,
                                 Handle<MutableBigInt> accumulator,
                                 int accumulator_index);
  static void InternalMultiplyAdd(BigIntBase* source, digit_t factor,
                                  digit_t summand, int n,
                                  MutableBigInt* result);
  void InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand);

  // Specialized helpers for Divide/Remainder.
  static void AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x,
                               digit_t divisor, Handle<MutableBigInt>* quotient,
                               digit_t* remainder);
  static bool AbsoluteDivLarge(Isolate* isolate, Handle<BigIntBase> dividend,
                               Handle<BigIntBase> divisor,
                               Handle<MutableBigInt>* quotient,
                               Handle<MutableBigInt>* remainder);
  static bool ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high,
                                 digit_t low);
  digit_t InplaceAdd(Handle<BigIntBase> summand, int start_index);
  digit_t InplaceSub(Handle<BigIntBase> subtrahend, int start_index);
  void InplaceRightShift(int shift);
  enum SpecialLeftShiftMode {
    kSameSizeResult,
    kAlwaysAddOneDigit,
  };
  static MaybeHandle<MutableBigInt> SpecialLeftShift(Isolate* isolate,
                                                     Handle<BigIntBase> x,
                                                     int shift,
                                                     SpecialLeftShiftMode mode);

  // Specialized helpers for shift operations.
  static MaybeHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate,
                                                 Handle<BigIntBase> x,
                                                 Handle<BigIntBase> y);
  static Handle<BigInt> RightShiftByAbsolute(Isolate* isolate,
                                             Handle<BigIntBase> x,
                                             Handle<BigIntBase> y);
  static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign);
  static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x);

  static MaybeHandle<String> ToStringBasePowerOfTwo(Isolate* isolate,
                                                    Handle<BigIntBase> x,
                                                    int radix);
  static MaybeHandle<String> ToStringGeneric(Isolate* isolate,
                                             Handle<BigIntBase> x, int radix);

  static double ToDouble(Handle<BigIntBase> x);
  enum Rounding { kRoundDown, kTie, kRoundUp };
  static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset,
                                 int digit_index, uint64_t current_digit);

  // Returns the least significant 64 bits, simulating two's complement
  // representation.
  static uint64_t GetRawBits(BigIntBase* x, bool* lossless);

  // Digit arithmetic helpers.
  static inline digit_t digit_add(digit_t a, digit_t b, digit_t* carry);
  static inline digit_t digit_sub(digit_t a, digit_t b, digit_t* borrow);
  static inline digit_t digit_mul(digit_t a, digit_t b, digit_t* high);
  static inline digit_t digit_div(digit_t high, digit_t low, digit_t divisor,
                                  digit_t* remainder);
  static digit_t digit_pow(digit_t base, digit_t exponent);
  static inline bool digit_ismax(digit_t x) {
    return static_cast<digit_t>(~x) == 0;
  }

// Internal field setters. Non-mutable BigInts don't have these.
#include "src/objects/object-macros.h"
  inline void set_sign(bool new_sign) {
    intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset);
    bitfield = SignBits::update(static_cast<uint32_t>(bitfield), new_sign);
    WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
  }
  inline void set_length(int new_length) {
    intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset);
    bitfield = LengthBits::update(static_cast<uint32_t>(bitfield), new_length);
    WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
  }
  inline void initialize_bitfield(bool sign, int length) {
    intptr_t bitfield = LengthBits::encode(length) | SignBits::encode(sign);
    WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
  }
  inline void set_digit(int n, digit_t value) {
    SLOW_DCHECK(0 <= n && n < length());
    Address address = FIELD_ADDR(this, kDigitsOffset + n * kDigitSize);
    (*reinterpret_cast<digit_t*>(address)) = value;
  }
#include "src/objects/object-macros-undef.h"

  void set_64_bits(uint64_t bits);
};

MaybeHandle<MutableBigInt> MutableBigInt::New(Isolate* isolate, int length,
                                              PretenureFlag pretenure) {
  if (length > BigInt::kMaxLength) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    MutableBigInt);
  }
  Handle<MutableBigInt> result =
      Cast(isolate->factory()->NewBigInt(length, pretenure));
  result->initialize_bitfield(false, length);
#if DEBUG
  result->InitializeDigits(length, 0xBF);
#endif
  return result;
}

Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) {
  if (value == 0) return Zero(isolate);
  Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1));
  bool sign = value < 0;
  result->initialize_bitfield(sign, 1);
  if (!sign) {
    result->set_digit(0, value);
  } else {
    if (value == kMinInt) {
      STATIC_ASSERT(kMinInt == -kMaxInt - 1);
      result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1);
    } else {
      result->set_digit(0, -value);
    }
  }
  return MakeImmutable(result);
}

Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
  DCHECK_EQ(value, std::floor(value));
  if (value == 0) return Zero(isolate);

  bool sign = value < 0;  // -0 was already handled above.
  uint64_t double_bits = bit_cast<uint64_t>(value);
  int raw_exponent =
      static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
  DCHECK_NE(raw_exponent, 0x7FF);
  DCHECK_GE(raw_exponent, 0x3FF);
  int exponent = raw_exponent - 0x3FF;
  int digits = exponent / kDigitBits + 1;
  Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(digits));
  result->initialize_bitfield(sign, digits);

  // We construct a BigInt from the double {value} by shifting its mantissa
  // according to its exponent and mapping the bit pattern onto digits.
  //
  //               <----------- bitlength = exponent + 1 ----------->
  //                <----- 52 ------> <------ trailing zeroes ------>
  // mantissa:     1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
  // digits:    0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
  //                <-->          <------>
  //          msd_topbit         kDigitBits
  //
  uint64_t mantissa =
      (double_bits & Double::kSignificandMask) | Double::kHiddenBit;
  const int kMantissaTopBit = Double::kSignificandSize - 1;  // 0-indexed.
  // 0-indexed position of most significant bit in the most significant digit.
  int msd_topbit = exponent % kDigitBits;
  // Number of unused bits in {mantissa}. We'll keep them shifted to the
  // left (i.e. most significant part) of the underlying uint64_t.
  int remaining_mantissa_bits = 0;
  // Next digit under construction.
  digit_t digit;

  // First, build the MSD by shifting the mantissa appropriately.
  if (msd_topbit < kMantissaTopBit) {
    remaining_mantissa_bits = kMantissaTopBit - msd_topbit;
    digit = mantissa >> remaining_mantissa_bits;
    mantissa = mantissa << (64 - remaining_mantissa_bits);
  } else {
    DCHECK_GE(msd_topbit, kMantissaTopBit);
    digit = mantissa << (msd_topbit - kMantissaTopBit);
    mantissa = 0;
  }
  result->set_digit(digits - 1, digit);
  // Then fill in the rest of the digits.
  for (int digit_index = digits - 2; digit_index >= 0; digit_index--) {
    if (remaining_mantissa_bits > 0) {
      remaining_mantissa_bits -= kDigitBits;
      if (sizeof(digit) == 4) {
        digit = mantissa >> 32;
        mantissa = mantissa << 32;
      } else {
        DCHECK_EQ(sizeof(digit), 8);
        digit = mantissa;
        mantissa = 0;
      }
    } else {
      digit = 0;
    }
    result->set_digit(digit_index, digit);
  }
  return MakeImmutable(result);
}

Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate,
                                          Handle<BigIntBase> source) {
  int length = source->length();
  // Allocating a BigInt of the same length as an existing BigInt cannot throw.
  Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
  memcpy(reinterpret_cast<void*>(result->address() + BigIntBase::kHeaderSize),
         reinterpret_cast<void*>(source->address() + BigIntBase::kHeaderSize),
         BigInt::SizeFor(length) - BigIntBase::kHeaderSize);
  return result;
}

void MutableBigInt::InitializeDigits(int length, byte value) {
  memset(reinterpret_cast<void*>(reinterpret_cast<Address>(this) +
                                 kDigitsOffset - kHeapObjectTag),
         value, length * kDigitSize);
}

MaybeHandle<BigInt> MutableBigInt::MakeImmutable(
    MaybeHandle<MutableBigInt> maybe) {
  Handle<MutableBigInt> result;
  if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>();
  return MakeImmutable(result);
}

Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) {
  // Check if we need to right-trim any leading zero-digits.
  int old_length = result->length();
  int new_length = old_length;
  while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--;
  int to_trim = old_length - new_length;
  if (to_trim != 0) {
    int size_delta = to_trim * kDigitSize;
    Address new_end = result->address() + BigInt::SizeFor(new_length);
    Heap* heap = result->GetHeap();
    heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo);
    result->set_length(new_length);

    // Canonicalize -0n.
    if (new_length == 0) {
      result->set_sign(false);
      // TODO(jkummerow): If we cache a canonical 0n, return that here.
    }
  }
  DCHECK_IMPLIES(result->length() > 0,
                 result->digit(result->length() - 1) != 0);  // MSD is non-zero.
  return Handle<BigInt>(reinterpret_cast<BigInt**>(result.location()));
}

Handle<BigInt> BigInt::Zero(Isolate* isolate) {
  return MutableBigInt::Zero(isolate);
}

Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, Handle<BigInt> x) {
  // Special case: There is no -0n.
  if (x->is_zero()) {
    return x;
  }
  Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x);
  result->set_sign(!x->sign());
  return MutableBigInt::MakeImmutable(result);
}

MaybeHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, Handle<BigInt> x) {
  MaybeHandle<MutableBigInt> result;
  if (x->sign()) {
    // ~(-x) == ~(~(x-1)) == x-1
    result = MutableBigInt::AbsoluteSubOne(isolate, x, x->length());
  } else {
    // ~x == -x-1 == -(x+1)
    result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
  }
  return MutableBigInt::MakeImmutable(result);
}

MaybeHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, Handle<BigInt> base,
                                         Handle<BigInt> exponent) {
  // 1. If exponent is < 0, throw a RangeError exception.
  if (exponent->sign()) {
    THROW_NEW_ERROR(isolate,
                    NewRangeError(MessageTemplate::kBigIntNegativeExponent),
                    BigInt);
  }
  // 2. If base is 0n and exponent is 0n, return 1n.
  if (exponent->is_zero()) {
    return MutableBigInt::NewFromInt(isolate, 1);
  }
  // 3. Return a BigInt representing the mathematical value of base raised
  //    to the power exponent.
  if (base->is_zero()) return base;
  if (base->length() == 1 && base->digit(0) == 1) {
    // (-1) ** even_number == 1.
    if (base->sign() && (exponent->digit(0) & 1) == 0) {
      return UnaryMinus(isolate, base);
    }
    // (-1) ** odd_number == -1; 1 ** anything == 1.
    return base;
  }
  // For all bases >= 2, very large exponents would lead to unrepresentable
  // results.
  STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
  if (exponent->length() > 1) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    BigInt);
  }
  digit_t exp_value = exponent->digit(0);
  if (exp_value == 1) return base;
  if (exp_value >= kMaxLengthBits) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    BigInt);
  }
  STATIC_ASSERT(kMaxLengthBits <= kMaxInt);
  int n = static_cast<int>(exp_value);
  if (base->length() == 1 && base->digit(0) == 2) {
    // Fast path for 2^n.
    int needed_digits = 1 + (n / kDigitBits);
    Handle<MutableBigInt> result;
    if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) {
      return MaybeHandle<BigInt>();
    }
    result->InitializeDigits(needed_digits);
    // All bits are zero. Now set the n-th bit.
    digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits);
    result->set_digit(needed_digits - 1, msd);
    // Result is negative for odd powers of -2n.
    if (base->sign()) result->set_sign((n & 1) != 0);
    return MutableBigInt::MakeImmutable(result);
  }
  Handle<BigInt> result;
  Handle<BigInt> running_square = base;
  // This implicitly sets the result's sign correctly.
  if (n & 1) result = base;
  n >>= 1;
  for (; n != 0; n >>= 1) {
    MaybeHandle<BigInt> maybe_result =
        Multiply(isolate, running_square, running_square);
    if (!maybe_result.ToHandle(&running_square)) return maybe_result;
    if (n & 1) {
      if (result.is_null()) {
        result = running_square;
      } else {
        maybe_result = Multiply(isolate, result, running_square);
        if (!maybe_result.ToHandle(&result)) return maybe_result;
      }
    }
  }
  return result;
}

MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, Handle<BigInt> x,
                                     Handle<BigInt> y) {
  if (x->is_zero()) return x;
  if (y->is_zero()) return y;
  int result_length = x->length() + y->length();
  Handle<MutableBigInt> result;
  if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
    return MaybeHandle<BigInt>();
  }
  result->InitializeDigits(result_length);
  for (int i = 0; i < x->length(); i++) {
    MutableBigInt::MultiplyAccumulate(y, x->digit(i), result, i);
  }
  result->set_sign(x->sign() != y->sign());
  return MutableBigInt::MakeImmutable(result);
}

MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, Handle<BigInt> x,
                                   Handle<BigInt> y) {
  // 1. If y is 0n, throw a RangeError exception.
  if (y->is_zero()) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
                    BigInt);
  }
  // 2. Let quotient be the mathematical value of x divided by y.
  // 3. Return a BigInt representing quotient rounded towards 0 to the next
  //    integral value.
  if (MutableBigInt::AbsoluteCompare(x, y) < 0) {
    return Zero(isolate);
  }
  Handle<MutableBigInt> quotient;
  bool result_sign = x->sign() != y->sign();
  if (y->length() == 1) {
    digit_t divisor = y->digit(0);
    if (divisor == 1) {
      return result_sign == x->sign() ? x : UnaryMinus(isolate, x);
    }
    digit_t remainder;
    MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, &quotient, &remainder);
  } else {
    if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, &quotient, nullptr)) {
      return MaybeHandle<BigInt>();
    }
  }
  quotient->set_sign(x->sign() != y->sign());
  return MutableBigInt::MakeImmutable(quotient);
}

MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, Handle<BigInt> x,
                                      Handle<BigInt> y) {
  // 1. If y is 0n, throw a RangeError exception.
  if (y->is_zero()) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
                    BigInt);
  }
  // 2. Return the BigInt representing x modulo y.
  // See https://github.com/tc39/proposal-bigint/issues/84 though.
  if (MutableBigInt::AbsoluteCompare(x, y) < 0) return x;
  Handle<MutableBigInt> remainder;
  if (y->length() == 1) {
    digit_t divisor = y->digit(0);
    if (divisor == 1) return Zero(isolate);
    digit_t remainder_digit;
    MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, nullptr,
                                    &remainder_digit);
    if (remainder_digit == 0) {
      return Zero(isolate);
    }
    remainder = MutableBigInt::New(isolate, 1).ToHandleChecked();
    remainder->set_digit(0, remainder_digit);
  } else {
    if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, nullptr, &remainder)) {
      return MaybeHandle<BigInt>();
    }
  }
  remainder->set_sign(x->sign());
  return MutableBigInt::MakeImmutable(remainder);
}

MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, Handle<BigInt> x,
                                Handle<BigInt> y) {
  bool xsign = x->sign();
  if (xsign == y->sign()) {
    // x + y == x + y
    // -x + -y == -(x + y)
    return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign);
  }
  // x + -y == x - y == -(y - x)
  // -x + y == y - x == -(x - y)
  if (MutableBigInt::AbsoluteCompare(x, y) >= 0) {
    return MutableBigInt::AbsoluteSub(isolate, x, y, xsign);
  }
  return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign);
}

MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, Handle<BigInt> x,
                                     Handle<BigInt> y) {
  bool xsign = x->sign();
  if (xsign != y->sign()) {
    // x - (-y) == x + y
    // (-x) - y == -(x + y)
    return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign);
  }
  // x - y == -(y - x)
  // (-x) - (-y) == y - x == -(x - y)
  if (MutableBigInt::AbsoluteCompare(x, y) >= 0) {
    return MutableBigInt::AbsoluteSub(isolate, x, y, xsign);
  }
  return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign);
}

MaybeHandle<BigInt> BigInt::LeftShift(Isolate* isolate, Handle<BigInt> x,
                                      Handle<BigInt> y) {
  if (y->is_zero() || x->is_zero()) return x;
  if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
  return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
}

MaybeHandle<BigInt> BigInt::SignedRightShift(Isolate* isolate, Handle<BigInt> x,
                                             Handle<BigInt> y) {
  if (y->is_zero() || x->is_zero()) return x;
  if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
  return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
}

MaybeHandle<BigInt> BigInt::UnsignedRightShift(Isolate* isolate,
                                               Handle<BigInt> x,
                                               Handle<BigInt> y) {
  THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt);
}

namespace {

// Produces comparison result for {left_negative} == sign(x) != sign(y).
ComparisonResult UnequalSign(bool left_negative) {
  return left_negative ? ComparisonResult::kLessThan
                       : ComparisonResult::kGreaterThan;
}

// Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y);
ComparisonResult AbsoluteGreater(bool both_negative) {
  return both_negative ? ComparisonResult::kLessThan
                       : ComparisonResult::kGreaterThan;
}

// Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y).
ComparisonResult AbsoluteLess(bool both_negative) {
  return both_negative ? ComparisonResult::kGreaterThan
                       : ComparisonResult::kLessThan;
}

}  // namespace

// (Never returns kUndefined.)
ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) {
  bool x_sign = x->sign();
  if (x_sign != y->sign()) return UnequalSign(x_sign);

  int result = MutableBigInt::AbsoluteCompare(x, y);
  if (result > 0) return AbsoluteGreater(x_sign);
  if (result < 0) return AbsoluteLess(x_sign);
  return ComparisonResult::kEqual;
}

bool BigInt::EqualToBigInt(BigInt* x, BigInt* y) {
  if (x->sign() != y->sign()) return false;
  if (x->length() != y->length()) return false;
  for (int i = 0; i < x->length(); i++) {
    if (x->digit(i) != y->digit(i)) return false;
  }
  return true;
}

MaybeHandle<BigInt> BigInt::BitwiseAnd(Isolate* isolate, Handle<BigInt> x,
                                       Handle<BigInt> y) {
  return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseAnd(isolate, x, y));
}

MaybeHandle<MutableBigInt> MutableBigInt::BitwiseAnd(Isolate* isolate,
                                                     Handle<BigInt> x,
                                                     Handle<BigInt> y) {
  if (!x->sign() && !y->sign()) {
    return AbsoluteAnd(isolate, x, y);
  } else if (x->sign() && y->sign()) {
    int result_length = Max(x->length(), y->length()) + 1;
    // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1))
    // == -(((x-1) | (y-1)) + 1)
    Handle<MutableBigInt> result;
    if (!AbsoluteSubOne(isolate, x, result_length).ToHandle(&result)) {
      return MaybeHandle<MutableBigInt>();
    }
    Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
    result = AbsoluteOr(isolate, result, y_1, *result);
    return AbsoluteAddOne(isolate, result, true, *result);
  } else {
    DCHECK(x->sign() != y->sign());
    // Assume that x is the positive BigInt.
    if (x->sign()) std::swap(x, y);
    // x & (-y) == x & ~(y-1) == x &~ (y-1)
    return AbsoluteAndNot(isolate, x, AbsoluteSubOne(isolate, y));
  }
}

MaybeHandle<BigInt> BigInt::BitwiseXor(Isolate* isolate, Handle<BigInt> x,
                                       Handle<BigInt> y) {
  return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseXor(isolate, x, y));
}

MaybeHandle<MutableBigInt> MutableBigInt::BitwiseXor(Isolate* isolate,
                                                     Handle<BigInt> x,
                                                     Handle<BigInt> y) {
  if (!x->sign() && !y->sign()) {
    return AbsoluteXor(isolate, x, y);
  } else if (x->sign() && y->sign()) {
    int result_length = Max(x->length(), y->length());
    // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1)
    Handle<MutableBigInt> result =
        AbsoluteSubOne(isolate, x, result_length).ToHandleChecked();
    Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
    return AbsoluteXor(isolate, result, y_1, *result);
  } else {
    DCHECK(x->sign() != y->sign());
    int result_length = Max(x->length(), y->length()) + 1;
    // Assume that x is the positive BigInt.
    if (x->sign()) std::swap(x, y);
    // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1)
    Handle<MutableBigInt> result;
    if (!AbsoluteSubOne(isolate, y, result_length).ToHandle(&result)) {
      return MaybeHandle<MutableBigInt>();
    }
    result = AbsoluteXor(isolate, result, x, *result);
    return AbsoluteAddOne(isolate, result, true, *result);
  }
}

MaybeHandle<BigInt> BigInt::BitwiseOr(Isolate* isolate, Handle<BigInt> x,
                                      Handle<BigInt> y) {
  return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseOr(isolate, x, y));
}

MaybeHandle<MutableBigInt> MutableBigInt::BitwiseOr(Isolate* isolate,
                                                    Handle<BigInt> x,
                                                    Handle<BigInt> y) {
  int result_length = Max(x->length(), y->length());
  if (!x->sign() && !y->sign()) {
    return AbsoluteOr(isolate, x, y);
  } else if (x->sign() && y->sign()) {
    // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1))
    // == -(((x-1) & (y-1)) + 1)
    Handle<MutableBigInt> result =
        AbsoluteSubOne(isolate, x, result_length).ToHandleChecked();
    Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
    result = AbsoluteAnd(isolate, result, y_1, *result);
    return AbsoluteAddOne(isolate, result, true, *result);
  } else {
    DCHECK(x->sign() != y->sign());
    // Assume that x is the positive BigInt.
    if (x->sign()) std::swap(x, y);
    // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1)
    Handle<MutableBigInt> result =
        AbsoluteSubOne(isolate, y, result_length).ToHandleChecked();
    result = AbsoluteAndNot(isolate, result, x, *result);
    return AbsoluteAddOne(isolate, result, true, *result);
  }
}

MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, Handle<BigInt> x) {
  if (x->sign()) {
    Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x);
    result->set_sign(true);
    return MutableBigInt::MakeImmutable(result);
  } else {
    return MutableBigInt::MakeImmutable(
        MutableBigInt::AbsoluteAddOne(isolate, x, false));
  }
}

MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, Handle<BigInt> x) {
  MaybeHandle<MutableBigInt> result;
  if (x->sign()) {
    result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
  } else if (x->is_zero()) {
    // TODO(jkummerow): Consider caching a canonical -1n BigInt.
    return MutableBigInt::NewFromInt(isolate, -1);
  } else {
    result = MutableBigInt::AbsoluteSubOne(isolate, x);
  }
  return MutableBigInt::MakeImmutable(result);
}

ComparisonResult BigInt::CompareToString(Isolate* isolate, Handle<BigInt> x,
                                         Handle<String> y) {
  // a. Let ny be StringToBigInt(y);
  MaybeHandle<BigInt> maybe_ny = StringToBigInt(isolate, y);
  // b. If ny is NaN, return undefined.
  Handle<BigInt> ny;
  if (!maybe_ny.ToHandle(&ny)) {
    DCHECK(!isolate->has_pending_exception());
    return ComparisonResult::kUndefined;
  }
  // c. Return BigInt::lessThan(x, ny).
  return CompareToBigInt(x, ny);
}

bool BigInt::EqualToString(Isolate* isolate, Handle<BigInt> x,
                           Handle<String> y) {
  // a. Let n be StringToBigInt(y).
  MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y);
  // b. If n is NaN, return false.
  Handle<BigInt> n;
  if (!maybe_n.ToHandle(&n)) {
    DCHECK(!isolate->has_pending_exception());
    return false;
  }
  // c. Return the result of x == n.
  return EqualToBigInt(*x, *n);
}

bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) {
  DCHECK(y->IsNumber());
  // a. If x or y are any of NaN, +∞, or -∞, return false.
  // b. If the mathematical value of x is equal to the mathematical value of y,
  //    return true, otherwise return false.
  if (y->IsSmi()) {
    int value = Smi::ToInt(*y);
    if (value == 0) return x->is_zero();
    // Any multi-digit BigInt is bigger than a Smi.
    STATIC_ASSERT(sizeof(digit_t) >= sizeof(value));
    return (x->length() == 1) && (x->sign() == (value < 0)) &&
           (x->digit(0) ==
            static_cast<digit_t>(std::abs(static_cast<int64_t>(value))));
  }
  DCHECK(y->IsHeapNumber());
  double value = Handle<HeapNumber>::cast(y)->value();
  return CompareToDouble(x, value) == ComparisonResult::kEqual;
}

ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) {
  DCHECK(y->IsNumber());
  if (y->IsSmi()) {
    bool x_sign = x->sign();
    int y_value = Smi::ToInt(*y);
    bool y_sign = (y_value < 0);
    if (x_sign != y_sign) return UnequalSign(x_sign);

    if (x->is_zero()) {
      DCHECK(!y_sign);
      return y_value == 0 ? ComparisonResult::kEqual
                          : ComparisonResult::kLessThan;
    }
    // Any multi-digit BigInt is bigger than a Smi.
    STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value));
    if (x->length() > 1) return AbsoluteGreater(x_sign);

    digit_t abs_value = std::abs(static_cast<int64_t>(y_value));
    digit_t x_digit = x->digit(0);
    if (x_digit > abs_value) return AbsoluteGreater(x_sign);
    if (x_digit < abs_value) return AbsoluteLess(x_sign);
    return ComparisonResult::kEqual;
  }
  DCHECK(y->IsHeapNumber());
  double value = Handle<HeapNumber>::cast(y)->value();
  return CompareToDouble(x, value);
}

ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
  if (std::isnan(y)) return ComparisonResult::kUndefined;
  if (y == V8_INFINITY) return ComparisonResult::kLessThan;
  if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan;
  bool x_sign = x->sign();
  // Note that this is different from the double's sign bit for -0. That's
  // intentional because -0 must be treated like 0.
  bool y_sign = (y < 0);
  if (x_sign != y_sign) return UnequalSign(x_sign);
  if (y == 0) {
    DCHECK(!x_sign);
    return x->is_zero() ? ComparisonResult::kEqual
                        : ComparisonResult::kGreaterThan;
  }
  if (x->is_zero()) {
    DCHECK(!y_sign);
    return ComparisonResult::kLessThan;
  }
  uint64_t double_bits = bit_cast<uint64_t>(y);
  int raw_exponent =
      static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
  uint64_t mantissa = double_bits & Double::kSignificandMask;
  // Non-finite doubles are handled above.
  DCHECK_NE(raw_exponent, 0x7FF);
  int exponent = raw_exponent - 0x3FF;
  if (exponent < 0) {
    // The absolute value of the double is less than 1. Only 0n has an
    // absolute value smaller than that, but we've already covered that case.
    DCHECK(!x->is_zero());
    return AbsoluteGreater(x_sign);
  }
  int x_length = x->length();
  digit_t x_msd = x->digit(x_length - 1);
  int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
  int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
  int y_bitlength = exponent + 1;
  if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign);
  if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign);

  // At this point, we know that signs and bit lengths (i.e. position of
  // the most significant bit in exponent-free representation) are identical.
  // {x} is not zero, {y} is finite and not denormal.
  // Now we virtually convert the double to an integer by shifting its
  // mantissa according to its exponent, so it will align with the BigInt {x},
  // and then we compare them bit for bit until we find a difference or the
  // least significant bit.
  //                    <----- 52 ------> <-- virtual trailing zeroes -->
  // y / mantissa:     1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
  // x / digits:    0001xxxx xxxxxxxx xxxxxxxx ...
  //                    <-->          <------>
  //              msd_topbit         kDigitBits
  //
  mantissa |= Double::kHiddenBit;
  const int kMantissaTopBit = 52;  // 0-indexed.
  // 0-indexed position of {x}'s most significant bit within the {msd}.
  int msd_topbit = kDigitBits - 1 - msd_leading_zeros;
  DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits);
  // Shifted chunk of {mantissa} for comparing with {digit}.
  digit_t compare_mantissa;
  // Number of unprocessed bits in {mantissa}. We'll keep them shifted to
  // the left (i.e. most significant part) of the underlying uint64_t.
  int remaining_mantissa_bits = 0;

  // First, compare the most significant digit against the beginning of
  // the mantissa.
  if (msd_topbit < kMantissaTopBit) {
    remaining_mantissa_bits = (kMantissaTopBit - msd_topbit);
    compare_mantissa = mantissa >> remaining_mantissa_bits;
    mantissa = mantissa << (64 - remaining_mantissa_bits);
  } else {
    DCHECK_GE(msd_topbit, kMantissaTopBit);
    compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit);
    mantissa = 0;
  }
  if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign);
  if (x_msd < compare_mantissa) return AbsoluteLess(x_sign);

  // Then, compare additional digits against any remaining mantissa bits.
  for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) {
    if (remaining_mantissa_bits > 0) {
      remaining_mantissa_bits -= kDigitBits;
      if (sizeof(mantissa) != sizeof(x_msd)) {
        compare_mantissa = mantissa >> (64 - kDigitBits);
        // "& 63" to appease compilers. kDigitBits is 32 here anyway.
        mantissa = mantissa << (kDigitBits & 63);
      } else {
        compare_mantissa = mantissa;
        mantissa = 0;
      }
    } else {
      compare_mantissa = 0;
    }
    digit_t digit = x->digit(digit_index);
    if (digit > compare_mantissa) return AbsoluteGreater(x_sign);
    if (digit < compare_mantissa) return AbsoluteLess(x_sign);
  }

  // Integer parts are equal; check whether {y} has a fractional part.
  if (mantissa != 0) {
    DCHECK_GT(remaining_mantissa_bits, 0);
    return AbsoluteLess(x_sign);
  }
  return ComparisonResult::kEqual;
}

MaybeHandle<String> BigInt::ToString(Isolate* isolate, Handle<BigInt> bigint,
                                     int radix) {
  if (bigint->is_zero()) {
    return isolate->factory()->NewStringFromStaticChars("0");
  }
  if (base::bits::IsPowerOfTwo(radix)) {
    return MutableBigInt::ToStringBasePowerOfTwo(isolate, bigint, radix);
  }
  return MutableBigInt::ToStringGeneric(isolate, bigint, radix);
}

MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate,
                                       Handle<Object> number) {
  DCHECK(number->IsNumber());
  if (number->IsSmi()) {
    return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number));
  }
  double value = HeapNumber::cast(*number)->value();
  if (!std::isfinite(value) || (DoubleToInteger(value) != value)) {
    THROW_NEW_ERROR(isolate,
                    NewRangeError(MessageTemplate::kBigIntFromNumber, number),
                    BigInt);
  }
  return MutableBigInt::NewFromDouble(isolate, value);
}

MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) {
  if (obj->IsJSReceiver()) {
    ASSIGN_RETURN_ON_EXCEPTION(
        isolate, obj,
        JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(obj),
                                ToPrimitiveHint::kNumber),
        BigInt);
  }

  if (obj->IsBoolean()) {
    return MutableBigInt::NewFromInt(isolate, obj->BooleanValue(isolate));
  }
  if (obj->IsBigInt()) {
    return Handle<BigInt>::cast(obj);
  }
  if (obj->IsString()) {
    Handle<BigInt> n;
    if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) {
      THROW_NEW_ERROR(isolate,
                      NewSyntaxError(MessageTemplate::kBigIntFromObject, obj),
                      BigInt);
    }
    return n;
  }

  THROW_NEW_ERROR(
      isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt);
}

Handle<Object> BigInt::ToNumber(Isolate* isolate, Handle<BigInt> x) {
  if (x->is_zero()) return Handle<Smi>(Smi::kZero, isolate);
  if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) {
    int value = static_cast<int>(x->digit(0));
    if (x->sign()) value = -value;
    return Handle<Smi>(Smi::FromInt(value), isolate);
  }
  double result = MutableBigInt::ToDouble(x);
  return isolate->factory()->NewHeapNumber(result);
}

double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
  if (x->is_zero()) return 0.0;
  int x_length = x->length();
  digit_t x_msd = x->digit(x_length - 1);
  int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
  int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
  if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY;
  uint64_t exponent = x_bitlength - 1;
  // We need the most significant bit shifted to the position of a double's
  // "hidden bit". We also need to hide that MSB, so we shift it out.
  uint64_t current_digit = x_msd;
  int digit_index = x_length - 1;
  int shift = msd_leading_zeros + 1 + (64 - kDigitBits);
  DCHECK_LE(1, shift);
  DCHECK_LE(shift, 64);
  uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift;
  mantissa >>= 12;
  int mantissa_bits_unset = shift - 12;
  // If not all mantissa bits are defined yet, get more digits as needed.
  if (mantissa_bits_unset >= kDigitBits && digit_index > 0) {
    digit_index--;
    current_digit = static_cast<uint64_t>(x->digit(digit_index));
    mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits));
    mantissa_bits_unset -= kDigitBits;
  }
  if (mantissa_bits_unset > 0 && digit_index > 0) {
    DCHECK_LT(mantissa_bits_unset, kDigitBits);
    digit_index--;
    current_digit = static_cast<uint64_t>(x->digit(digit_index));
    mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset));
    mantissa_bits_unset -= kDigitBits;
  }
  // If there are unconsumed digits left, we may have to round.
  Rounding rounding =
      DecideRounding(x, mantissa_bits_unset, digit_index, current_digit);
  if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) {
    mantissa++;
    // Incrementing the mantissa can overflow the mantissa bits. In that case
    // the new mantissa will be all zero (plus hidden bit).
    if ((mantissa >> Double::kPhysicalSignificandSize) != 0) {
      mantissa = 0;
      exponent++;
      // Incrementing the exponent can overflow too.
      if (exponent > 1023) {
        return x->sign() ? -V8_INFINITY : V8_INFINITY;
      }
    }
  }
  // Assemble the result.
  uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0;
  exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize;
  uint64_t double_bits = sign_bit | exponent | mantissa;
  return bit_cast<double>(double_bits);
}

// This is its own function to keep control flow sane. The meaning of the
// parameters is defined by {ToDouble}'s local variable usage.
MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x,
                                                      int mantissa_bits_unset,
                                                      int digit_index,
                                                      uint64_t current_digit) {
  if (mantissa_bits_unset > 0) return kRoundDown;
  int top_unconsumed_bit;
  if (mantissa_bits_unset < 0) {
    // There are unconsumed bits in {current_digit}.
    top_unconsumed_bit = -mantissa_bits_unset - 1;
  } else {
    DCHECK_EQ(mantissa_bits_unset, 0);
    // {current_digit} fit the mantissa exactly; look at the next digit.
    if (digit_index == 0) return kRoundDown;
    digit_index--;
    current_digit = static_cast<uint64_t>(x->digit(digit_index));
    top_unconsumed_bit = kDigitBits - 1;
  }
  // If the most significant remaining bit is 0, round down.
  uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit;
  if ((current_digit & bitmask) == 0) {
    return kRoundDown;
  }
  // If any other remaining bit is set, round up.
  bitmask -= 1;
  if ((current_digit & bitmask) != 0) return kRoundUp;
  while (digit_index > 0) {
    digit_index--;
    if (x->digit(digit_index) != 0) return kRoundUp;
  }
  return kTie;
}

void BigInt::BigIntShortPrint(std::ostream& os) {
  if (sign()) os << "-";
  int len = length();
  if (len == 0) {
    os << "0";
    return;
  }
  if (len > 1) os << "...";
  os << digit(0);
}

// Internal helpers.

MaybeHandle<BigInt> MutableBigInt::AbsoluteAdd(Isolate* isolate,
                                               Handle<BigInt> x,
                                               Handle<BigInt> y,
                                               bool result_sign) {
  if (x->length() < y->length()) return AbsoluteAdd(isolate, y, x, result_sign);
  if (x->is_zero()) {
    DCHECK(y->is_zero());
    return x;
  }
  if (y->is_zero()) {
    return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x);
  }
  Handle<MutableBigInt> result;
  if (!New(isolate, x->length() + 1).ToHandle(&result)) {
    return MaybeHandle<BigInt>();
  }
  digit_t carry = 0;
  int i = 0;
  for (; i < y->length(); i++) {
    digit_t new_carry = 0;
    digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry);
    sum = digit_add(sum, carry, &new_carry);
    result->set_digit(i, sum);
    carry = new_carry;
  }
  for (; i < x->length(); i++) {
    digit_t new_carry = 0;
    digit_t sum = digit_add(x->digit(i), carry, &new_carry);
    result->set_digit(i, sum);
    carry = new_carry;
  }
  result->set_digit(i, carry);
  result->set_sign(result_sign);
  return MakeImmutable(result);
}

Handle<BigInt> MutableBigInt::AbsoluteSub(Isolate* isolate, Handle<BigInt> x,
                                          Handle<BigInt> y, bool result_sign) {
  DCHECK(x->length() >= y->length());
  SLOW_DCHECK(AbsoluteCompare(x, y) >= 0);
  if (x->is_zero()) {
    DCHECK(y->is_zero());
    return x;
  }
  if (y->is_zero()) {
    return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x);
  }
  Handle<MutableBigInt> result = New(isolate, x->length()).ToHandleChecked();
  digit_t borrow = 0;
  int i = 0;
  for (; i < y->length(); i++) {
    digit_t new_borrow = 0;
    digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow);
    difference = digit_sub(difference, borrow, &new_borrow);
    result->set_digit(i, difference);
    borrow = new_borrow;
  }
  for (; i < x->length(); i++) {
    digit_t new_borrow = 0;
    digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow);
    result->set_digit(i, difference);
    borrow = new_borrow;
  }
  DCHECK_EQ(0, borrow);
  result->set_sign(result_sign);
  return MakeImmutable(result);
}

// Adds 1 to the absolute value of {x} and sets the result's sign to {sign}.
// {result_storage} is optional; if present, it will be used to store the
// result, otherwise a new BigInt will be allocated for the result.
// {result_storage} and {x} may refer to the same BigInt for in-place
// modification.
MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne(
    Isolate* isolate, Handle<BigIntBase> x, bool sign,
    MutableBigInt* result_storage) {
  int input_length = x->length();
  // The addition will overflow into a new digit if all existing digits are
  // at maximum.
  bool will_overflow = true;
  for (int i = 0; i < input_length; i++) {
    if (!digit_ismax(x->digit(i))) {
      will_overflow = false;
      break;
    }
  }
  int result_length = input_length + will_overflow;
  Handle<MutableBigInt> result(result_storage, isolate);
  if (result_storage == nullptr) {
    if (!New(isolate, result_length).ToHandle(&result)) {
      return MaybeHandle<MutableBigInt>();
    }
  } else {
    DCHECK(result->length() == result_length);
  }
  digit_t carry = 1;
  for (int i = 0; i < input_length; i++) {
    digit_t new_carry = 0;
    result->set_digit(i, digit_add(x->digit(i), carry, &new_carry));
    carry = new_carry;
  }
  if (result_length > input_length) {
    result->set_digit(input_length, carry);
  } else {
    DCHECK_EQ(carry, 0);
  }
  result->set_sign(sign);
  return result;
}

// Subtracts 1 from the absolute value of {x}. {x} must not be zero.
Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
                                                    Handle<BigIntBase> x) {
  DCHECK(!x->is_zero());
  // Requesting a result length identical to an existing BigInt's length
  // cannot overflow the limit.
  return AbsoluteSubOne(isolate, x, x->length()).ToHandleChecked();
}

// Like the above, but you can specify that the allocated result should have
// length {result_length}, which must be at least as large as {x->length()}.
MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
                                                         Handle<BigIntBase> x,
                                                         int result_length) {
  DCHECK(!x->is_zero());
  DCHECK(result_length >= x->length());
  Handle<MutableBigInt> result;
  if (!New(isolate, result_length).ToHandle(&result)) {
    return MaybeHandle<MutableBigInt>();
  }
  int length = x->length();
  digit_t borrow = 1;
  for (int i = 0; i < length; i++) {
    digit_t new_borrow = 0;
    result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow));
    borrow = new_borrow;
  }
  DCHECK_EQ(borrow, 0);
  for (int i = length; i < result_length; i++) {
    result->set_digit(i, borrow);
  }
  return result;
}

// Helper for Absolute{And,AndNot,Or,Xor}.
// Performs the given binary {op} on digit pairs of {x} and {y}; when the
// end of the shorter of the two is reached, {extra_digits} configures how
// remaining digits in the longer input (if {symmetric} == kSymmetric, in
// {x} otherwise) are handled: copied to the result or ignored.
// If {result_storage} is non-nullptr, it will be used for the result and
// any extra digits in it will be zeroed out, otherwise a new BigInt (with
// the same length as the longer input) will be allocated.
// {result_storage} may alias {x} or {y} for in-place modification.
// Example:
//              y:             [ y2 ][ y1 ][ y0 ]
//              x:       [ x3 ][ x2 ][ x1 ][ x0 ]
//                          |     |     |     |
//                      (kCopy)  (op)  (op)  (op)
//                          |     |     |     |
//                          v     v     v     v
// result_storage: [  0 ][ x3 ][ r2 ][ r1 ][ r0 ]
inline Handle<MutableBigInt> MutableBigInt::AbsoluteBitwiseOp(
    Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
    MutableBigInt* result_storage, ExtraDigitsHandling extra_digits,
    SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op) {
  int x_length = x->length();
  int y_length = y->length();
  int num_pairs = y_length;
  if (x_length < y_length) {
    num_pairs = x_length;
    if (symmetric == kSymmetric) {
      std::swap(x, y);
      std::swap(x_length, y_length);
    }
  }
  DCHECK(num_pairs == Min(x_length, y_length));
  Handle<MutableBigInt> result(result_storage, isolate);
  int result_length = extra_digits == kCopy ? x_length : num_pairs;
  if (result_storage == nullptr) {
    result = New(isolate, result_length).ToHandleChecked();
  } else {
    DCHECK(result_storage->length() >= result_length);
    result_length = result_storage->length();
  }
  int i = 0;
  for (; i < num_pairs; i++) {
    result->set_digit(i, op(x->digit(i), y->digit(i)));
  }
  if (extra_digits == kCopy) {
    for (; i < x_length; i++) {
      result->set_digit(i, x->digit(i));
    }
  }
  for (; i < result_length; i++) {
    result->set_digit(i, 0);
  }
  return result;
}

// If {result_storage} is non-nullptr, it will be used for the result,
// otherwise a new BigInt of appropriate length will be allocated.
// {result_storage} may alias {x} or {y} for in-place modification.
Handle<MutableBigInt> MutableBigInt::AbsoluteAnd(
    Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
    MutableBigInt* result_storage) {
  return AbsoluteBitwiseOp(isolate, x, y, result_storage, kSkip, kSymmetric,
                           [](digit_t a, digit_t b) { return a & b; });
}

// If {result_storage} is non-nullptr, it will be used for the result,
// otherwise a new BigInt of appropriate length will be allocated.
// {result_storage} may alias {x} or {y} for in-place modification.
Handle<MutableBigInt> MutableBigInt::AbsoluteAndNot(
    Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
    MutableBigInt* result_storage) {
  return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kNotSymmetric,
                           [](digit_t a, digit_t b) { return a & ~b; });
}

// If {result_storage} is non-nullptr, it will be used for the result,
// otherwise a new BigInt of appropriate length will be allocated.
// {result_storage} may alias {x} or {y} for in-place modification.
Handle<MutableBigInt> MutableBigInt::AbsoluteOr(Isolate* isolate,
                                                Handle<BigIntBase> x,
                                                Handle<BigIntBase> y,
                                                MutableBigInt* result_storage) {
  return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric,
                           [](digit_t a, digit_t b) { return a | b; });
}

// If {result_storage} is non-nullptr, it will be used for the result,
// otherwise a new BigInt of appropriate length will be allocated.
// {result_storage} may alias {x} or {y} for in-place modification.
Handle<MutableBigInt> MutableBigInt::AbsoluteXor(
    Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
    MutableBigInt* result_storage) {
  return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric,
                           [](digit_t a, digit_t b) { return a ^ b; });
}

// Returns a positive value if abs(x) > abs(y), a negative value if
// abs(x) < abs(y), or zero if abs(x) == abs(y).
int MutableBigInt::AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y) {
  int diff = x->length() - y->length();
  if (diff != 0) return diff;
  int i = x->length() - 1;
  while (i >= 0 && x->digit(i) == y->digit(i)) i--;
  if (i < 0) return 0;
  return x->digit(i) > y->digit(i) ? 1 : -1;
}

// Multiplies {multiplicand} with {multiplier} and adds the result to
// {accumulator}, starting at {accumulator_index} for the least-significant
// digit.
// Callers must ensure that {accumulator} is big enough to hold the result.
void MutableBigInt::MultiplyAccumulate(Handle<BigIntBase> multiplicand,
                                       digit_t multiplier,
                                       Handle<MutableBigInt> accumulator,
                                       int accumulator_index) {
  // This is a minimum requirement; the DCHECK in the second loop below
  // will enforce more as needed.
  DCHECK(accumulator->length() > multiplicand->length() + accumulator_index);
  if (multiplier == 0L) return;
  digit_t carry = 0;
  digit_t high = 0;
  for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) {
    digit_t acc = accumulator->digit(accumulator_index);
    digit_t new_carry = 0;
    // Add last round's carryovers.
    acc = digit_add(acc, high, &new_carry);
    acc = digit_add(acc, carry, &new_carry);
    // Compute this round's multiplication.
    digit_t m_digit = multiplicand->digit(i);
    digit_t low = digit_mul(multiplier, m_digit, &high);
    acc = digit_add(acc, low, &new_carry);
    // Store result and prepare for next round.
    accumulator->set_digit(accumulator_index, acc);
    carry = new_carry;
  }
  for (; carry != 0 || high != 0; accumulator_index++) {
    DCHECK(accumulator_index < accumulator->length());
    digit_t acc = accumulator->digit(accumulator_index);
    digit_t new_carry = 0;
    acc = digit_add(acc, high, &new_carry);
    high = 0;
    acc = digit_add(acc, carry, &new_carry);
    accumulator->set_digit(accumulator_index, acc);
    carry = new_carry;
  }
}

// Multiplies {source} with {factor} and adds {summand} to the result.
// {result} and {source} may be the same BigInt for inplace modification.
void MutableBigInt::InternalMultiplyAdd(BigIntBase* source, digit_t factor,
                                        digit_t summand, int n,
                                        MutableBigInt* result) {
  DCHECK(source->length() >= n);
  DCHECK(result->length() >= n);
  digit_t carry = summand;
  digit_t high = 0;
  for (int i = 0; i < n; i++) {
    digit_t current = source->digit(i);
    digit_t new_carry = 0;
    // Compute this round's multiplication.
    digit_t new_high = 0;
    current = digit_mul(current, factor, &new_high);
    // Add last round's carryovers.
    current = digit_add(current, high, &new_carry);
    current = digit_add(current, carry, &new_carry);
    // Store result and prepare for next round.
    result->set_digit(i, current);
    carry = new_carry;
    high = new_high;
  }
  if (result->length() > n) {
    result->set_digit(n++, carry + high);
    // Current callers don't pass in such large results, but let's be robust.
    while (n < result->length()) {
      result->set_digit(n++, 0);
    }
  } else {
    CHECK_EQ(carry + high, 0);
  }
}

// Multiplies {x} with {factor} and then adds {summand} to it.
void BigInt::InplaceMultiplyAdd(Handle<FreshlyAllocatedBigInt> x,
                                uintptr_t factor, uintptr_t summand) {
  STATIC_ASSERT(sizeof(factor) == sizeof(digit_t));
  STATIC_ASSERT(sizeof(summand) == sizeof(digit_t));
  Handle<MutableBigInt> bigint = MutableBigInt::Cast(x);
  MutableBigInt::InternalMultiplyAdd(*bigint, factor, summand, bigint->length(),
                                     *bigint);
}

// Divides {x} by {divisor}, returning the result in {quotient} and {remainder}.
// Mathematically, the contract is:
// quotient = (x - remainder) / divisor, with 0 <= remainder < divisor.
// If {quotient} is an empty handle, an appropriately sized BigInt will be
// allocated for it; otherwise the caller must ensure that it is big enough.
// {quotient} can be the same as {x} for an in-place division. {quotient} can
// also be nullptr if the caller is only interested in the remainder.
void MutableBigInt::AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x,
                                     digit_t divisor,
                                     Handle<MutableBigInt>* quotient,
                                     digit_t* remainder) {
  DCHECK_NE(divisor, 0);
  DCHECK(!x->is_zero());  // Callers check anyway, no need to handle this.
  *remainder = 0;
  int length = x->length();
  if (quotient != nullptr) {
    if ((*quotient).is_null()) {
      *quotient = New(isolate, length).ToHandleChecked();
    }
    for (int i = length - 1; i >= 0; i--) {
      digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder);
      (*quotient)->set_digit(i, q);
    }
  } else {
    for (int i = length - 1; i >= 0; i--) {
      digit_div(*remainder, x->digit(i), divisor, remainder);
    }
  }
}

// Divides {dividend} by {divisor}, returning the result in {quotient} and
// {remainder}. Mathematically, the contract is:
// quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor.
// Both {quotient} and {remainder} are optional, for callers that are only
// interested in one of them.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
bool MutableBigInt::AbsoluteDivLarge(Isolate* isolate,
                                     Handle<BigIntBase> dividend,
                                     Handle<BigIntBase> divisor,
                                     Handle<MutableBigInt>* quotient,
                                     Handle<MutableBigInt>* remainder) {
  DCHECK_GE(divisor->length(), 2);
  DCHECK(dividend->length() >= divisor->length());
  // The unusual variable names inside this function are consistent with
  // Knuth's book, as well as with Go's implementation of this algorithm.
  // Maintaining this consistency is probably more useful than trying to
  // come up with more descriptive names for them.
  int n = divisor->length();
  int m = dividend->length() - n;

  // The quotient to be computed.
  Handle<MutableBigInt> q;
  if (quotient != nullptr) q = New(isolate, m + 1).ToHandleChecked();
  // In each iteration, {qhatv} holds {divisor} * {current quotient digit}.
  // "v" is the book's name for {divisor}, "qhat" the current quotient digit.
  Handle<MutableBigInt> qhatv;
  if (!New(isolate, n + 1).ToHandle(&qhatv)) return false;

  // D1.
  // Left-shift inputs so that the divisor's MSB is set. This is necessary
  // to prevent the digit-wise divisions (see digit_div call below) from
  // overflowing (they take a two digits wide input, and return a one digit
  // result).
  int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1));
  if (shift > 0) {
    divisor = SpecialLeftShift(isolate, divisor, shift, kSameSizeResult)
                  .ToHandleChecked();
  }
  // Holds the (continuously updated) remaining part of the dividend, which
  // eventually becomes the remainder.
  Handle<MutableBigInt> u;
  if (!SpecialLeftShift(isolate, dividend, shift, kAlwaysAddOneDigit)
           .ToHandle(&u)) {
    return false;
  }

  // D2.
  // Iterate over the dividend's digit (like the "grad school" algorithm).
  // {vn1} is the divisor's most significant digit.
  digit_t vn1 = divisor->digit(n - 1);
  for (int j = m; j >= 0; j--) {
    // D3.
    // Estimate the current iteration's quotient digit (see Knuth for details).
    // {qhat} is the current quotient digit.
    digit_t qhat = std::numeric_limits<digit_t>::max();
    // {ujn} is the dividend's most significant remaining digit.
    digit_t ujn = u->digit(j + n);
    if (ujn != vn1) {
      // {rhat} is the current iteration's remainder.
      digit_t rhat = 0;
      // Estimate the current quotient digit by dividing the most significant
      // digits of dividend and divisor. The result will not be too small,
      // but could be a bit too large.
      qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat);

      // Decrement the quotient estimate as needed by looking at the next
      // digit, i.e. by testing whether
      // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}.
      digit_t vn2 = divisor->digit(n - 2);
      digit_t ujn2 = u->digit(j + n - 2);
      while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) {
        qhat--;
        digit_t prev_rhat = rhat;
        rhat += vn1;
        // v[n-1] >= 0, so this tests for overflow.
        if (rhat < prev_rhat) break;
      }
    }

    // D4.
    // Multiply the divisor with the current quotient digit, and subtract
    // it from the dividend. If there was "borrow", then the quotient digit
    // was one too high, so we must correct it and undo one subtraction of
    // the (shifted) divisor.
    InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv);
    digit_t c = u->InplaceSub(qhatv, j);
    if (c != 0) {
      c = u->InplaceAdd(divisor, j);
      u->set_digit(j + n, u->digit(j + n) + c);
      qhat--;
    }

    if (quotient != nullptr) q->set_digit(j, qhat);
  }
  if (quotient != nullptr) {
    *quotient = q;  // Caller will right-trim.
  }
  if (remainder != nullptr) {
    u->InplaceRightShift(shift);
    *remainder = u;
  }
  return true;
}

// Returns whether (factor1 * factor2) > (high << kDigitBits) + low.
bool MutableBigInt::ProductGreaterThan(digit_t factor1, digit_t factor2,
                                       digit_t high, digit_t low) {
  digit_t result_high;
  digit_t result_low = digit_mul(factor1, factor2, &result_high);
  return result_high > high || (result_high == high && result_low > low);
}

// Adds {summand} onto {this}, starting with {summand}'s 0th digit
// at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1).
BigInt::digit_t MutableBigInt::InplaceAdd(Handle<BigIntBase> summand,
                                          int start_index) {
  digit_t carry = 0;
  int n = summand->length();
  DCHECK(length() >= start_index + n);
  for (int i = 0; i < n; i++) {
    digit_t new_carry = 0;
    digit_t sum =
        digit_add(digit(start_index + i), summand->digit(i), &new_carry);
    sum = digit_add(sum, carry, &new_carry);
    set_digit(start_index + i, sum);
    carry = new_carry;
  }
  return carry;
}

// Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit
// at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1).
BigInt::digit_t MutableBigInt::InplaceSub(Handle<BigIntBase> subtrahend,
                                          int start_index) {
  digit_t borrow = 0;
  int n = subtrahend->length();
  DCHECK(length() >= start_index + n);
  for (int i = 0; i < n; i++) {
    digit_t new_borrow = 0;
    digit_t difference =
        digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow);
    difference = digit_sub(difference, borrow, &new_borrow);
    set_digit(start_index + i, difference);
    borrow = new_borrow;
  }
  return borrow;
}

void MutableBigInt::InplaceRightShift(int shift) {
  DCHECK_GE(shift, 0);
  DCHECK_LT(shift, kDigitBits);
  DCHECK_GT(length(), 0);
  DCHECK_EQ(digit(0) & ((static_cast<digit_t>(1) << shift) - 1), 0);
  if (shift == 0) return;
  digit_t carry = digit(0) >> shift;
  int last = length() - 1;
  for (int i = 0; i < last; i++) {
    digit_t d = digit(i + 1);
    set_digit(i, (d << (kDigitBits - shift)) | carry);
    carry = d >> shift;
  }
  set_digit(last, carry);
}

// Always copies the input, even when {shift} == 0.
// {shift} must be less than kDigitBits, {x} must be non-zero.
MaybeHandle<MutableBigInt> MutableBigInt::SpecialLeftShift(
    Isolate* isolate, Handle<BigIntBase> x, int shift,
    SpecialLeftShiftMode mode) {
  DCHECK_GE(shift, 0);
  DCHECK_LT(shift, kDigitBits);
  DCHECK_GT(x->length(), 0);
  int n = x->length();
  int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n;
  Handle<MutableBigInt> result;
  if (!New(isolate, result_length).ToHandle(&result)) {
    return MaybeHandle<MutableBigInt>();
  }
  if (shift == 0) {
    for (int i = 0; i < n; i++) result->set_digit(i, x->digit(i));
    if (mode == kAlwaysAddOneDigit) result->set_digit(n, 0);
    return result;
  }
  DCHECK_GT(shift, 0);
  digit_t carry = 0;
  for (int i = 0; i < n; i++) {
    digit_t d = x->digit(i);
    result->set_digit(i, (d << shift) | carry);
    carry = d >> (kDigitBits - shift);
  }
  if (mode == kAlwaysAddOneDigit) {
    result->set_digit(n, carry);
  } else {
    DCHECK_EQ(mode, kSameSizeResult);
    DCHECK_EQ(carry, 0);
  }
  return result;
}

MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Isolate* isolate,
                                                       Handle<BigIntBase> x,
                                                       Handle<BigIntBase> y) {
  Maybe<digit_t> maybe_shift = ToShiftAmount(y);
  if (maybe_shift.IsNothing()) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    BigInt);
  }
  digit_t shift = maybe_shift.FromJust();
  int digit_shift = static_cast<int>(shift / kDigitBits);
  int bits_shift = static_cast<int>(shift % kDigitBits);
  int length = x->length();
  bool grow = bits_shift != 0 &&
              (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0;
  int result_length = length + digit_shift + grow;
  if (result_length > kMaxLength) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    BigInt);
  }
  Handle<MutableBigInt> result;
  if (!New(isolate, result_length).ToHandle(&result)) {
    return MaybeHandle<BigInt>();
  }
  if (bits_shift == 0) {
    int i = 0;
    for (; i < digit_shift; i++) result->set_digit(i, 0ul);
    for (; i < result_length; i++) {
      result->set_digit(i, x->digit(i - digit_shift));
    }
  } else {
    digit_t carry = 0;
    for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul);
    for (int i = 0; i < length; i++) {
      digit_t d = x->digit(i);
      result->set_digit(i + digit_shift, (d << bits_shift) | carry);
      carry = d >> (kDigitBits - bits_shift);
    }
    if (grow) {
      result->set_digit(length + digit_shift, carry);
    } else {
      DCHECK_EQ(carry, 0);
    }
  }
  result->set_sign(x->sign());
  return MakeImmutable(result);
}

Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Isolate* isolate,
                                                   Handle<BigIntBase> x,
                                                   Handle<BigIntBase> y) {
  int length = x->length();
  bool sign = x->sign();
  Maybe<digit_t> maybe_shift = ToShiftAmount(y);
  if (maybe_shift.IsNothing()) {
    return RightShiftByMaximum(isolate, sign);
  }
  digit_t shift = maybe_shift.FromJust();
  int digit_shift = static_cast<int>(shift / kDigitBits);
  int bits_shift = static_cast<int>(shift % kDigitBits);
  int result_length = length - digit_shift;
  if (result_length <= 0) {
    return RightShiftByMaximum(isolate, sign);
  }
  // For negative numbers, round down if any bit was shifted out (so that e.g.
  // -5n >> 1n == -3n and not -2n). Check now whether this will happen and
  // whether it can cause overflow into a new digit. If we allocate the result
  // large enough up front, it avoids having to do a second allocation later.
  bool must_round_down = false;
  if (sign) {
    const digit_t mask = (static_cast<digit_t>(1) << bits_shift) - 1;
    if ((x->digit(digit_shift) & mask) != 0) {
      must_round_down = true;
    } else {
      for (int i = 0; i < digit_shift; i++) {
        if (x->digit(i) != 0) {
          must_round_down = true;
          break;
        }
      }
    }
  }
  // If bits_shift is non-zero, it frees up bits, preventing overflow.
  if (must_round_down && bits_shift == 0) {
    // Overflow cannot happen if the most significant digit has unset bits.
    digit_t msd = x->digit(length - 1);
    bool rounding_can_overflow = digit_ismax(msd);
    if (rounding_can_overflow) result_length++;
  }

  DCHECK_LE(result_length, length);
  Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked();
  if (bits_shift == 0) {
    for (int i = digit_shift; i < length; i++) {
      result->set_digit(i - digit_shift, x->digit(i));
    }
  } else {
    digit_t carry = x->digit(digit_shift) >> bits_shift;
    int last = length - digit_shift - 1;
    for (int i = 0; i < last; i++) {
      digit_t d = x->digit(i + digit_shift + 1);
      result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry);
      carry = d >> bits_shift;
    }
    result->set_digit(last, carry);
  }

  if (sign) {
    result->set_sign(true);
    if (must_round_down) {
      // Since the result is negative, rounding down means adding one to
      // its absolute value. This cannot overflow.
      result = AbsoluteAddOne(isolate, result, true, *result).ToHandleChecked();
    }
  }
  return MakeImmutable(result);
}

Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) {
  if (sign) {
    // TODO(jkummerow): Consider caching a canonical -1n BigInt.
    return NewFromInt(isolate, -1);
  } else {
    return Zero(isolate);
  }
}

// Returns the value of {x} if it is less than the maximum bit length of
// a BigInt, or Nothing otherwise.
Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) {
  if (x->length() > 1) return Nothing<digit_t>();
  digit_t value = x->digit(0);
  STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
  if (value > kMaxLengthBits) return Nothing<digit_t>();
  return Just(value);
}

// Lookup table for the maximum number of bits required per character of a
// base-N string representation of a number. To increase accuracy, the array
// value is the actual value multiplied by 32. To generate this table:
// for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
constexpr uint8_t kMaxBitsPerChar[] = {
    0,   0,   32,  51,  64,  75,  83,  90,  96,  // 0..8
    102, 107, 111, 115, 119, 122, 126, 128,      // 9..16
    131, 134, 136, 139, 141, 143, 145, 147,      // 17..24
    149, 151, 153, 154, 156, 158, 159, 160,      // 25..32
    162, 163, 165, 166,                          // 33..36
};

static const int kBitsPerCharTableShift = 5;
static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift;

MaybeHandle<FreshlyAllocatedBigInt> BigInt::AllocateFor(
    Isolate* isolate, int radix, int charcount, ShouldThrow should_throw,
    PretenureFlag pretenure) {
  DCHECK(2 <= radix && radix <= 36);
  DCHECK_GE(charcount, 0);
  size_t bits_per_char = kMaxBitsPerChar[radix];
  size_t chars = static_cast<size_t>(charcount);
  const int roundup = kBitsPerCharTableMultiplier - 1;
  if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bits_per_char) {
    size_t bits_min = bits_per_char * chars;
    // Divide by 32 (see table), rounding up.
    bits_min = (bits_min + roundup) >> kBitsPerCharTableShift;
    if (bits_min <= static_cast<size_t>(kMaxInt)) {
      // Divide by kDigitsBits, rounding up.
      int length = (static_cast<int>(bits_min) + kDigitBits - 1) / kDigitBits;
      if (length <= kMaxLength) {
        Handle<MutableBigInt> result =
            MutableBigInt::New(isolate, length, pretenure).ToHandleChecked();
        result->InitializeDigits(length);
        return result;
      }
    }
  }
  // All the overflow/maximum checks above fall through to here.
  if (should_throw == kThrowOnError) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    FreshlyAllocatedBigInt);
  } else {
    return MaybeHandle<FreshlyAllocatedBigInt>();
  }
}

Handle<BigInt> BigInt::Finalize(Handle<FreshlyAllocatedBigInt> x, bool sign) {
  Handle<MutableBigInt> bigint = MutableBigInt::Cast(x);
  bigint->set_sign(sign);
  return MutableBigInt::MakeImmutable(bigint);
}

// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
uint32_t BigInt::GetBitfieldForSerialization() const {
  // In order to make the serialization format the same on 32/64 bit builds,
  // we convert the length-in-digits to length-in-bytes for serialization.
  // Being able to do this depends on having enough LengthBits:
  STATIC_ASSERT(kMaxLength * kDigitSize <= LengthBits::kMax);
  int bytelength = length() * kDigitSize;
  return SignBits::encode(sign()) | LengthBits::encode(bytelength);
}

int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) {
  return LengthBits::decode(bitfield);
}

// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
void BigInt::SerializeDigits(uint8_t* storage) {
  void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(this) +
                                         kDigitsOffset - kHeapObjectTag);
#if defined(V8_TARGET_LITTLE_ENDIAN)
  int bytelength = length() * kDigitSize;
  memcpy(storage, digits, bytelength);
#elif defined(V8_TARGET_BIG_ENDIAN)
  digit_t* digit_storage = reinterpret_cast<digit_t*>(storage);
  const digit_t* digit = reinterpret_cast<const digit_t*>(digits);
  for (int i = 0; i < length(); i++) {
    *digit_storage = ByteReverse(*digit);
    digit_storage++;
    digit++;
  }
#endif  // V8_TARGET_BIG_ENDIAN
}

// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
MaybeHandle<BigInt> BigInt::FromSerializedDigits(
    Isolate* isolate, uint32_t bitfield, Vector<const uint8_t> digits_storage,
    PretenureFlag pretenure) {
  int bytelength = LengthBits::decode(bitfield);
  DCHECK(digits_storage.length() == bytelength);
  bool sign = SignBits::decode(bitfield);
  int length = (bytelength + kDigitSize - 1) / kDigitSize;  // Round up.
  Handle<MutableBigInt> result =
      MutableBigInt::Cast(isolate->factory()->NewBigInt(length, pretenure));
  result->initialize_bitfield(sign, length);
  void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(*result) +
                                         kDigitsOffset - kHeapObjectTag);
#if defined(V8_TARGET_LITTLE_ENDIAN)
  memcpy(digits, digits_storage.start(), bytelength);
  void* padding_start =
      reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength);
  memset(padding_start, 0, length * kDigitSize - bytelength);
#elif defined(V8_TARGET_BIG_ENDIAN)
  digit_t* digit = reinterpret_cast<digit_t*>(digits);
  const digit_t* digit_storage =
      reinterpret_cast<const digit_t*>(digits_storage.start());
  for (int i = 0; i < bytelength / kDigitSize; i++) {
    *digit = ByteReverse(*digit_storage);
    digit_storage++;
    digit++;
  }
  if (bytelength % kDigitSize) {
    *digit = 0;
    byte* digit_byte = reinterpret_cast<byte*>(digit);
    digit_byte += sizeof(*digit) - 1;
    const byte* digit_storage_byte =
        reinterpret_cast<const byte*>(digit_storage);
    for (int i = 0; i < bytelength % kDigitSize; i++) {
      *digit_byte = *digit_storage_byte;
      digit_byte--;
      digit_storage_byte++;
    }
  }
#endif  // V8_TARGET_BIG_ENDIAN
  return MutableBigInt::MakeImmutable(result);
}

static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

MaybeHandle<String> MutableBigInt::ToStringBasePowerOfTwo(Isolate* isolate,
                                                          Handle<BigIntBase> x,
                                                          int radix) {
  STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits));
  DCHECK(base::bits::IsPowerOfTwo(radix));
  DCHECK(radix >= 2 && radix <= 32);
  DCHECK(!x->is_zero());

  const int length = x->length();
  const bool sign = x->sign();
  const int bits_per_char = base::bits::CountTrailingZeros(radix);
  const int char_mask = radix - 1;
  // Compute the length of the resulting string: divide the bit length of the
  // BigInt by the number of bits representable per character (rounding up).
  const digit_t msd = x->digit(length - 1);
  const int msd_leading_zeros = base::bits::CountLeadingZeros(msd);
  const size_t bit_length = length * kDigitBits - msd_leading_zeros;
  const size_t chars_required =
      (bit_length + bits_per_char - 1) / bits_per_char + sign;

  if (chars_required > String::kMaxLength) {
    THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
  }

  Handle<SeqOneByteString> result =
      isolate->factory()
          ->NewRawOneByteString(static_cast<int>(chars_required))
          .ToHandleChecked();
  DisallowHeapAllocation no_gc;
  uint8_t* buffer = result->GetChars();
  // Print the number into the string, starting from the last position.
  int pos = static_cast<int>(chars_required - 1);
  digit_t digit = 0;
  // Keeps track of how many unprocessed bits there are in {digit}.
  int available_bits = 0;
  for (int i = 0; i < length - 1; i++) {
    digit_t new_digit = x->digit(i);
    // Take any leftover bits from the last iteration into account.
    int current = (digit | (new_digit << available_bits)) & char_mask;
    buffer[pos--] = kConversionChars[current];
    int consumed_bits = bits_per_char - available_bits;
    digit = new_digit >> consumed_bits;
    available_bits = kDigitBits - consumed_bits;
    while (available_bits >= bits_per_char) {
      buffer[pos--] = kConversionChars[digit & char_mask];
      digit >>= bits_per_char;
      available_bits -= bits_per_char;
    }
  }
  // Take any leftover bits from the last iteration into account.
  int current = (digit | (msd << available_bits)) & char_mask;
  buffer[pos--] = kConversionChars[current];
  digit = msd >> (bits_per_char - available_bits);
  while (digit != 0) {
    buffer[pos--] = kConversionChars[digit & char_mask];
    digit >>= bits_per_char;
  }
  if (sign) buffer[pos--] = '-';
  DCHECK_EQ(pos, -1);
  return result;
}

MaybeHandle<String> MutableBigInt::ToStringGeneric(Isolate* isolate,
                                                   Handle<BigIntBase> x,
                                                   int radix) {
  DCHECK(radix >= 2 && radix <= 36);
  DCHECK(!x->is_zero());
  Heap* heap = isolate->heap();

  const int length = x->length();
  const bool sign = x->sign();

  // Compute (an overapproximation of) the length of the resulting string:
  // Divide bit length of the BigInt by bits representable per character.
  const size_t bit_length =
      length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1));
  // Maximum number of bits we can represent with one character. We'll use this
  // to find an appropriate chunk size below.
  const uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
  // For estimating result length, we have to be pessimistic and work with
  // the minimum number of bits one character can represent.
  const uint8_t min_bits_per_char = max_bits_per_char - 1;
  // Perform the following computation with uint64_t to avoid overflows.
  uint64_t chars_required = bit_length;
  chars_required *= kBitsPerCharTableMultiplier;
  chars_required += min_bits_per_char - 1;  // Round up.
  chars_required /= min_bits_per_char;
  chars_required += sign;

  if (chars_required > String::kMaxLength) {
    THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
  }
  Handle<SeqOneByteString> result =
      isolate->factory()
          ->NewRawOneByteString(static_cast<int>(chars_required))
          .ToHandleChecked();

#if DEBUG
  // Zap the string first.
  {
    DisallowHeapAllocation no_gc;
    uint8_t* chars = result->GetChars();
    for (int i = 0; i < static_cast<int>(chars_required); i++) chars[i] = '?';
  }
#endif

  // We assemble the result string in reverse order, and then reverse it.
  // TODO(jkummerow): Consider building the string from the right, and
  // left-shifting it if the length estimate was too large.
  int pos = 0;

  digit_t last_digit;
  if (length == 1) {
    last_digit = x->digit(0);
  } else {
    int chunk_chars =
        kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char;
    digit_t chunk_divisor = digit_pow(radix, chunk_chars);
    // By construction of chunk_chars, there can't have been overflow.
    DCHECK_NE(chunk_divisor, 0);
    int nonzero_digit = length - 1;
    DCHECK_NE(x->digit(nonzero_digit), 0);
    // {rest} holds the part of the BigInt that we haven't looked at yet.
    // Not to be confused with "remainder"!
    Handle<MutableBigInt> rest;
    // In the first round, divide the input, allocating a new BigInt for
    // the result == rest; from then on divide the rest in-place.
    Handle<BigIntBase>* dividend = &x;
    do {
      digit_t chunk;
      AbsoluteDivSmall(isolate, *dividend, chunk_divisor, &rest, &chunk);
      DCHECK(!rest.is_null());
      dividend = reinterpret_cast<Handle<BigIntBase>*>(&rest);
      DisallowHeapAllocation no_gc;
      uint8_t* chars = result->GetChars();
      for (int i = 0; i < chunk_chars; i++) {
        chars[pos++] = kConversionChars[chunk % radix];
        chunk /= radix;
      }
      DCHECK_EQ(chunk, 0);
      if (rest->digit(nonzero_digit) == 0) nonzero_digit--;
      // We can never clear more than one digit per iteration, because
      // chunk_divisor is smaller than max digit value.
      DCHECK_GT(rest->digit(nonzero_digit), 0);
    } while (nonzero_digit > 0);
    last_digit = rest->digit(0);
  }
  DisallowHeapAllocation no_gc;
  uint8_t* chars = result->GetChars();
  do {
    chars[pos++] = kConversionChars[last_digit % radix];
    last_digit /= radix;
  } while (last_digit > 0);
  DCHECK_GE(pos, 1);
  DCHECK(pos <= static_cast<int>(chars_required));
  // Remove leading zeroes.
  while (pos > 1 && chars[pos - 1] == '0') pos--;
  if (sign) chars[pos++] = '-';
  // Trim any over-allocation (which can happen due to conservative estimates).
  if (pos < static_cast<int>(chars_required)) {
    result->synchronized_set_length(pos);
    int string_size =
        SeqOneByteString::SizeFor(static_cast<int>(chars_required));
    int needed_size = SeqOneByteString::SizeFor(pos);
    if (needed_size < string_size) {
      Address new_end = result->address() + needed_size;
      heap->CreateFillerObjectAt(new_end, (string_size - needed_size),
                                 ClearRecordedSlots::kNo);
    }
  }
  // Reverse the string.
  for (int i = 0, j = pos - 1; i < j; i++, j--) {
    uint8_t tmp = chars[i];
    chars[i] = chars[j];
    chars[j] = tmp;
  }
#if DEBUG
  // Verify that all characters have been written.
  DCHECK(result->length() == pos);
  for (int i = 0; i < pos; i++) DCHECK_NE(chars[i], '?');
#endif
  return result;
}

Handle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x) {
  if (x->is_zero()) return x;
  if (n == 0) return MutableBigInt::Zero(isolate);
  uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits;
  uint64_t x_length = static_cast<uint64_t>(x->length());
  // If {x} has less than {n} bits, return it directly.
  if (x_length < needed_length) return x;
  DCHECK_LE(needed_length, kMaxInt);
  digit_t top_digit = x->digit(static_cast<int>(needed_length) - 1);
  digit_t compare_digit = static_cast<digit_t>(1) << ((n - 1) % kDigitBits);
  if (x_length == needed_length && top_digit < compare_digit) return x;
  // Otherwise we have to truncate (which is a no-op in the special case
  // of x == -2^(n-1)), and determine the right sign. We also might have
  // to subtract from 2^n to simulate having two's complement representation.
  // In most cases, the result's sign is x->sign() xor "(n-1)th bit present".
  // The only exception is when x is negative, has the (n-1)th bit, and all
  // its bits below (n-1) are zero. In that case, the result is the minimum
  // n-bit integer (example: asIntN(3, -12n) => -4n).
  bool has_bit = (top_digit & compare_digit) == compare_digit;
  DCHECK_LE(n, kMaxInt);
  int N = static_cast<int>(n);
  if (!has_bit) {
    return MutableBigInt::TruncateToNBits(isolate, N, x);
  }
  if (!x->sign()) {
    return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, true);
  }
  // Negative numbers must subtract from 2^n, except for the special case
  // described above.
  if ((top_digit & (compare_digit - 1)) == 0) {
    for (int i = static_cast<int>(needed_length) - 2; i >= 0; i--) {
      if (x->digit(i) != 0) {
        return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x,
                                                           false);
      }
    }
    return MutableBigInt::TruncateToNBits(isolate, N, x);
  }
  return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, false);
}

MaybeHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n,
                                    Handle<BigInt> x) {
  if (x->is_zero()) return x;
  if (n == 0) return MutableBigInt::Zero(isolate);
  // If {x} is negative, simulate two's complement representation.
  if (x->sign()) {
    if (n > kMaxLengthBits) {
      THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                      BigInt);
    }
    return MutableBigInt::TruncateAndSubFromPowerOfTwo(
        isolate, static_cast<int>(n), x, false);
  }
  // If {x} is positive and has up to {n} bits, return it directly.
  if (n >= kMaxLengthBits) return x;
  STATIC_ASSERT(kMaxLengthBits < kMaxInt - kDigitBits);
  int needed_length = static_cast<int>((n + kDigitBits - 1) / kDigitBits);
  if (x->length() < needed_length) return x;
  int bits_in_top_digit = n % kDigitBits;
  if (bits_in_top_digit == 0) {
    if (x->length() == needed_length) return x;
  } else {
    digit_t top_digit = x->digit(needed_length - 1);
    if ((top_digit >> bits_in_top_digit) == 0) return x;
  }
  // Otherwise, truncate.
  DCHECK_LE(n, kMaxInt);
  return MutableBigInt::TruncateToNBits(isolate, static_cast<int>(n), x);
}

Handle<BigInt> MutableBigInt::TruncateToNBits(Isolate* isolate, int n,
                                              Handle<BigInt> x) {
  // Only call this when there's something to do.
  DCHECK_NE(n, 0);
  DCHECK_GT(x->length(), n / kDigitBits);

  int needed_digits = (n + (kDigitBits - 1)) / kDigitBits;
  DCHECK_LE(needed_digits, x->length());
  Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked();

  // Copy all digits except the MSD.
  int last = needed_digits - 1;
  for (int i = 0; i < last; i++) {
    result->set_digit(i, x->digit(i));
  }

  // The MSD might contain extra bits that we don't want.
  digit_t msd = x->digit(last);
  if (n % kDigitBits != 0) {
    int drop = kDigitBits - (n % kDigitBits);
    msd = (msd << drop) >> drop;
  }
  result->set_digit(last, msd);
  result->set_sign(x->sign());
  return MakeImmutable(result);
}

// Subtracts the least significant n bits of abs(x) from 2^n.
Handle<BigInt> MutableBigInt::TruncateAndSubFromPowerOfTwo(Isolate* isolate,
                                                           int n,
                                                           Handle<BigInt> x,
                                                           bool result_sign) {
  DCHECK_NE(n, 0);
  DCHECK_LE(n, kMaxLengthBits);

  int needed_digits = (n + (kDigitBits - 1)) / kDigitBits;
  DCHECK_LE(needed_digits, kMaxLength);  // Follows from n <= kMaxLengthBits.
  Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked();

  // Process all digits except the MSD.
  int i = 0;
  int last = needed_digits - 1;
  int x_length = x->length();
  digit_t borrow = 0;
  // Take digits from {x} unless its length is exhausted.
  int limit = Min(last, x_length);
  for (; i < limit; i++) {
    digit_t new_borrow = 0;
    digit_t difference = digit_sub(0, x->digit(i), &new_borrow);
    difference = digit_sub(difference, borrow, &new_borrow);
    result->set_digit(i, difference);
    borrow = new_borrow;
  }
  // Then simulate leading zeroes in {x} as needed.
  for (; i < last; i++) {
    digit_t new_borrow = 0;
    digit_t difference = digit_sub(0, borrow, &new_borrow);
    result->set_digit(i, difference);
    borrow = new_borrow;
  }

  // The MSD might contain extra bits that we don't want.
  digit_t msd = last < x_length ? x->digit(last) : 0;
  int msd_bits_consumed = n % kDigitBits;
  digit_t result_msd;
  if (msd_bits_consumed == 0) {
    digit_t new_borrow = 0;
    result_msd = digit_sub(0, msd, &new_borrow);
    result_msd = digit_sub(result_msd, borrow, &new_borrow);
  } else {
    int drop = kDigitBits - msd_bits_consumed;
    msd = (msd << drop) >> drop;
    digit_t minuend_msd = static_cast<digit_t>(1) << (kDigitBits - drop);
    digit_t new_borrow = 0;
    result_msd = digit_sub(minuend_msd, msd, &new_borrow);
    result_msd = digit_sub(result_msd, borrow, &new_borrow);
    DCHECK_EQ(new_borrow, 0);  // result < 2^n.
    // If all subtracted bits were zero, we have to get rid of the
    // materialized minuend_msd again.
    result_msd &= (minuend_msd - 1);
  }
  result->set_digit(last, result_msd);
  result->set_sign(result_sign);
  return MakeImmutable(result);
}

Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) {
  if (n == 0) return MutableBigInt::Zero(isolate);
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  int length = 64 / kDigitBits;
  Handle<MutableBigInt> result =
      MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
  bool sign = n < 0;
  result->initialize_bitfield(sign, length);
  uint64_t absolute;
  if (!sign) {
    absolute = static_cast<uint64_t>(n);
  } else {
    if (n == std::numeric_limits<int64_t>::min()) {
      absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1;
    } else {
      absolute = static_cast<uint64_t>(-n);
    }
  }
  result->set_64_bits(absolute);
  return MutableBigInt::MakeImmutable(result);
}

Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) {
  if (n == 0) return MutableBigInt::Zero(isolate);
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  int length = 64 / kDigitBits;
  Handle<MutableBigInt> result =
      MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
  result->initialize_bitfield(false, length);
  result->set_64_bits(n);
  return MutableBigInt::MakeImmutable(result);
}

MaybeHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit,
                                        int words64_count,
                                        const uint64_t* words) {
  if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) {
    THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
                    BigInt);
  }
  if (words64_count == 0) return MutableBigInt::Zero(isolate);
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  int length = (64 / kDigitBits) * words64_count;
  DCHECK_GT(length, 0);
  if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--;

  Handle<MutableBigInt> result;
  if (!MutableBigInt::New(isolate, length).ToHandle(&result)) {
    return MaybeHandle<BigInt>();
  }

  result->set_sign(sign_bit);
  if (kDigitBits == 64) {
    for (int i = 0; i < length; ++i) {
      result->set_digit(i, static_cast<digit_t>(words[i]));
    }
  } else {
    for (int i = 0; i < length; i += 2) {
      digit_t lo = static_cast<digit_t>(words[i / 2]);
      digit_t hi = static_cast<digit_t>(words[i / 2] >> 32);
      result->set_digit(i, lo);
      if (i + 1 < length) result->set_digit(i + 1, hi);
    }
  }

  return MutableBigInt::MakeImmutable(result);
}

int BigInt::Words64Count() {
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  return length() / (64 / kDigitBits) +
         (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0);
}

void BigInt::ToWordsArray64(int* sign_bit, int* words64_count,
                            uint64_t* words) {
  DCHECK_NE(sign_bit, nullptr);
  DCHECK_NE(words64_count, nullptr);
  *sign_bit = sign();
  int available_words = *words64_count;
  *words64_count = Words64Count();
  if (available_words == 0) return;
  DCHECK_NE(words, nullptr);

  int len = length();
  if (kDigitBits == 64) {
    for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i);
  } else {
    for (int i = 0; i < len && available_words > 0; i += 2) {
      uint64_t lo = digit(i);
      uint64_t hi = (i + 1) < len ? digit(i + 1) : 0;
      words[i / 2] = lo | (hi << 32);
      available_words--;
    }
  }
}

uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) {
  if (lossless != nullptr) *lossless = true;
  if (x->is_zero()) return 0;
  int len = x->length();
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false;
  uint64_t raw = static_cast<uint64_t>(x->digit(0));
  if (kDigitBits == 32 && len > 1) {
    raw |= static_cast<uint64_t>(x->digit(1)) << 32;
  }
  // Simulate two's complement. MSVC dislikes "-raw".
  return x->sign() ? ((~raw) + 1u) : raw;
}

int64_t BigInt::AsInt64(bool* lossless) {
  uint64_t raw = MutableBigInt::GetRawBits(this, lossless);
  int64_t result = static_cast<int64_t>(raw);
  if (lossless != nullptr && (result < 0) != sign()) *lossless = false;
  return result;
}

uint64_t BigInt::AsUint64(bool* lossless) {
  uint64_t result = MutableBigInt::GetRawBits(this, lossless);
  if (lossless != nullptr && sign()) *lossless = false;
  return result;
}

// Digit arithmetic helpers.

#if V8_TARGET_ARCH_32_BIT
#define HAVE_TWODIGIT_T 1
typedef uint64_t twodigit_t;
#elif defined(__SIZEOF_INT128__)
// Both Clang and GCC support this on x64.
#define HAVE_TWODIGIT_T 1
typedef __uint128_t twodigit_t;
#endif

// {carry} must point to an initialized digit_t and will either be incremented
// by one or left alone.
inline BigInt::digit_t MutableBigInt::digit_add(digit_t a, digit_t b,
                                                digit_t* carry) {
#if HAVE_TWODIGIT_T
  twodigit_t result = static_cast<twodigit_t>(a) + static_cast<twodigit_t>(b);
  *carry += result >> kDigitBits;
  return static_cast<digit_t>(result);
#else
  digit_t result = a + b;
  if (result < a) *carry += 1;
  return result;
#endif
}

// {borrow} must point to an initialized digit_t and will either be incremented
// by one or left alone.
inline BigInt::digit_t MutableBigInt::digit_sub(digit_t a, digit_t b,
                                                digit_t* borrow) {
#if HAVE_TWODIGIT_T
  twodigit_t result = static_cast<twodigit_t>(a) - static_cast<twodigit_t>(b);
  *borrow += (result >> kDigitBits) & 1;
  return static_cast<digit_t>(result);
#else
  digit_t result = a - b;
  if (result > a) *borrow += 1;
  return static_cast<digit_t>(result);
#endif
}

// Returns the low half of the result. High half is in {high}.
inline BigInt::digit_t MutableBigInt::digit_mul(digit_t a, digit_t b,
                                                digit_t* high) {
#if HAVE_TWODIGIT_T
  twodigit_t result = static_cast<twodigit_t>(a) * static_cast<twodigit_t>(b);
  *high = result >> kDigitBits;
  return static_cast<digit_t>(result);
#else
  // Multiply in half-pointer-sized chunks.
  // For inputs [AH AL]*[BH BL], the result is:
  //
  //            [AL*BL]  // r_low
  //    +    [AL*BH]     // r_mid1
  //    +    [AH*BL]     // r_mid2
  //    + [AH*BH]        // r_high
  //    = [R4 R3 R2 R1]  // high = [R4 R3], low = [R2 R1]
  //
  // Where of course we must be careful with carries between the columns.
  digit_t a_low = a & kHalfDigitMask;
  digit_t a_high = a >> kHalfDigitBits;
  digit_t b_low = b & kHalfDigitMask;
  digit_t b_high = b >> kHalfDigitBits;

  digit_t r_low = a_low * b_low;
  digit_t r_mid1 = a_low * b_high;
  digit_t r_mid2 = a_high * b_low;
  digit_t r_high = a_high * b_high;

  digit_t carry = 0;
  digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry);
  low = digit_add(low, r_mid2 << kHalfDigitBits, &carry);
  *high =
      (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry;
  return low;
#endif
}

// Returns the quotient.
// quotient = (high << kDigitBits + low - remainder) / divisor
BigInt::digit_t MutableBigInt::digit_div(digit_t high, digit_t low,
                                         digit_t divisor, digit_t* remainder) {
  DCHECK(high < divisor);
#if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__)
  digit_t quotient;
  digit_t rem;
  __asm__("divq  %[divisor]"
          // Outputs: {quotient} will be in rax, {rem} in rdx.
          : "=a"(quotient), "=d"(rem)
          // Inputs: put {high} into rdx, {low} into rax, and {divisor} into
          // any register or stack slot.
          : "d"(high), "a"(low), [divisor] "rm"(divisor));
  *remainder = rem;
  return quotient;
#elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__)
  digit_t quotient;
  digit_t rem;
  __asm__("divl  %[divisor]"
          // Outputs: {quotient} will be in eax, {rem} in edx.
          : "=a"(quotient), "=d"(rem)
          // Inputs: put {high} into edx, {low} into eax, and {divisor} into
          // any register or stack slot.
          : "d"(high), "a"(low), [divisor] "rm"(divisor));
  *remainder = rem;
  return quotient;
#else
  static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits;
  // Adapted from Warren, Hacker's Delight, p. 152.
  int s = base::bits::CountLeadingZeros(divisor);
  DCHECK_NE(s, kDigitBits);  // {divisor} is not 0.
  divisor <<= s;

  digit_t vn1 = divisor >> kHalfDigitBits;
  digit_t vn0 = divisor & kHalfDigitMask;
  // {s} can be 0. {low >> kDigitBits} would be undefined behavior, so
  // we mask the shift amount with {kShiftMask}, and the result with
  // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise.
  STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t));
  const int kShiftMask = kDigitBits - 1;
  digit_t s_zero_mask =
      static_cast<digit_t>(static_cast<intptr_t>(-s) >> (kDigitBits - 1));
  digit_t un32 =
      (high << s) | ((low >> ((kDigitBits - s) & kShiftMask)) & s_zero_mask);
  digit_t un10 = low << s;
  digit_t un1 = un10 >> kHalfDigitBits;
  digit_t un0 = un10 & kHalfDigitMask;
  digit_t q1 = un32 / vn1;
  digit_t rhat = un32 - q1 * vn1;

  while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) {
    q1--;
    rhat += vn1;
    if (rhat >= kHalfDigitBase) break;
  }

  digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor;
  digit_t q0 = un21 / vn1;
  rhat = un21 - q0 * vn1;

  while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) {
    q0--;
    rhat += vn1;
    if (rhat >= kHalfDigitBase) break;
  }

  *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s;
  return q1 * kHalfDigitBase + q0;
#endif
}

// Raises {base} to the power of {exponent}. Does not check for overflow.
BigInt::digit_t MutableBigInt::digit_pow(digit_t base, digit_t exponent) {
  digit_t result = 1ull;
  while (exponent > 0) {
    if (exponent & 1) {
      result *= base;
    }
    exponent >>= 1;
    base *= base;
  }
  return result;
}

#undef HAVE_TWODIGIT_T

void MutableBigInt::set_64_bits(uint64_t bits) {
  STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
  if (kDigitBits == 64) {
    set_digit(0, static_cast<digit_t>(bits));
  } else {
    set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu));
    set_digit(1, static_cast<digit_t>(bits >> 32));
  }
}

#ifdef OBJECT_PRINT
void BigInt::BigIntPrint(std::ostream& os) {
  DisallowHeapAllocation no_gc;
  HeapObject::PrintHeader(os, "BigInt");
  int len = length();
  os << "\n- length: " << len;
  os << "\n- sign: " << sign();
  if (len > 0) {
    os << "\n- digits:";
    for (int i = 0; i < len; i++) {
      os << "\n    0x" << std::hex << digit(i);
    }
  }
  os << std::dec << "\n";
}
#endif  // OBJECT_PRINT

}  // namespace internal
}  // namespace v8