// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Parts of the implementation below: // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file [2]. // // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file [3]. // // [3] https://golang.org/LICENSE #include "src/objects/bigint.h" #include "src/double.h" #include "src/objects-inl.h" namespace v8 { namespace internal { // The MutableBigInt class is an implementation detail designed to prevent // accidental mutation of a BigInt after its construction. Step-by-step // construction of a BigInt must happen in terms of MutableBigInt, the // final result is then passed through MutableBigInt::MakeImmutable and not // modified further afterwards. // Many of the functions in this class use arguments of type {BigIntBase}, // indicating that they will be used in a read-only capacity, and both // {BigInt} and {MutableBigInt} objects can be passed in. class MutableBigInt : public FreshlyAllocatedBigInt, public NeverReadOnlySpaceObject { public: using NeverReadOnlySpaceObject::GetHeap; using NeverReadOnlySpaceObject::GetIsolate; // Bottleneck for converting MutableBigInts to BigInts. static MaybeHandle MakeImmutable(MaybeHandle maybe); static Handle MakeImmutable(Handle result); // Allocation helpers. static MaybeHandle New(Isolate* isolate, int length, PretenureFlag pretenure = NOT_TENURED); static Handle NewFromInt(Isolate* isolate, int value); static Handle NewFromDouble(Isolate* isolate, double value); void InitializeDigits(int length, byte value = 0); static Handle Copy(Isolate* isolate, Handle source); static Handle Zero(Isolate* isolate) { // TODO(jkummerow): Consider caching a canonical zero-BigInt. return MakeImmutable(New(isolate, 0)).ToHandleChecked(); } static Handle Cast(Handle bigint) { SLOW_DCHECK(bigint->IsBigInt()); return Handle::cast(bigint); } // Internal helpers. static MaybeHandle BitwiseAnd(Isolate* isolate, Handle x, Handle y); static MaybeHandle BitwiseXor(Isolate* isolate, Handle x, Handle y); static MaybeHandle BitwiseOr(Isolate* isolate, Handle x, Handle y); static Handle TruncateToNBits(Isolate* isolate, int n, Handle x); static Handle TruncateAndSubFromPowerOfTwo(Isolate* isolate, int n, Handle x, bool result_sign); static MaybeHandle AbsoluteAdd(Isolate* isolate, Handle x, Handle y, bool result_sign); static Handle AbsoluteSub(Isolate* isolate, Handle x, Handle y, bool result_sign); static MaybeHandle AbsoluteAddOne( Isolate* isolate, Handle x, bool sign, MutableBigInt* result_storage = nullptr); static Handle AbsoluteSubOne(Isolate* isolate, Handle x); static MaybeHandle AbsoluteSubOne(Isolate* isolate, Handle x, int result_length); enum ExtraDigitsHandling { kCopy, kSkip }; enum SymmetricOp { kSymmetric, kNotSymmetric }; static inline Handle AbsoluteBitwiseOp( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage, ExtraDigitsHandling extra_digits, SymmetricOp symmetric, std::function op); static Handle AbsoluteAnd( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage = nullptr); static Handle AbsoluteAndNot( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage = nullptr); static Handle AbsoluteOr( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage = nullptr); static Handle AbsoluteXor( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage = nullptr); static int AbsoluteCompare(Handle x, Handle y); static void MultiplyAccumulate(Handle multiplicand, digit_t multiplier, Handle accumulator, int accumulator_index); static void InternalMultiplyAdd(BigIntBase* source, digit_t factor, digit_t summand, int n, MutableBigInt* result); void InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand); // Specialized helpers for Divide/Remainder. static void AbsoluteDivSmall(Isolate* isolate, Handle x, digit_t divisor, Handle* quotient, digit_t* remainder); static bool AbsoluteDivLarge(Isolate* isolate, Handle dividend, Handle divisor, Handle* quotient, Handle* remainder); static bool ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high, digit_t low); digit_t InplaceAdd(Handle summand, int start_index); digit_t InplaceSub(Handle subtrahend, int start_index); void InplaceRightShift(int shift); enum SpecialLeftShiftMode { kSameSizeResult, kAlwaysAddOneDigit, }; static MaybeHandle SpecialLeftShift(Isolate* isolate, Handle x, int shift, SpecialLeftShiftMode mode); // Specialized helpers for shift operations. static MaybeHandle LeftShiftByAbsolute(Isolate* isolate, Handle x, Handle y); static Handle RightShiftByAbsolute(Isolate* isolate, Handle x, Handle y); static Handle RightShiftByMaximum(Isolate* isolate, bool sign); static Maybe ToShiftAmount(Handle x); static MaybeHandle ToStringBasePowerOfTwo(Isolate* isolate, Handle x, int radix); static MaybeHandle ToStringGeneric(Isolate* isolate, Handle x, int radix); static double ToDouble(Handle x); enum Rounding { kRoundDown, kTie, kRoundUp }; static Rounding DecideRounding(Handle x, int mantissa_bits_unset, int digit_index, uint64_t current_digit); // Returns the least significant 64 bits, simulating two's complement // representation. static uint64_t GetRawBits(BigIntBase* x, bool* lossless); // Digit arithmetic helpers. static inline digit_t digit_add(digit_t a, digit_t b, digit_t* carry); static inline digit_t digit_sub(digit_t a, digit_t b, digit_t* borrow); static inline digit_t digit_mul(digit_t a, digit_t b, digit_t* high); static inline digit_t digit_div(digit_t high, digit_t low, digit_t divisor, digit_t* remainder); static digit_t digit_pow(digit_t base, digit_t exponent); static inline bool digit_ismax(digit_t x) { return static_cast(~x) == 0; } // Internal field setters. Non-mutable BigInts don't have these. #include "src/objects/object-macros.h" inline void set_sign(bool new_sign) { intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); bitfield = SignBits::update(static_cast(bitfield), new_sign); WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); } inline void set_length(int new_length) { intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); bitfield = LengthBits::update(static_cast(bitfield), new_length); WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); } inline void initialize_bitfield(bool sign, int length) { intptr_t bitfield = LengthBits::encode(length) | SignBits::encode(sign); WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); } inline void set_digit(int n, digit_t value) { SLOW_DCHECK(0 <= n && n < length()); Address address = FIELD_ADDR(this, kDigitsOffset + n * kDigitSize); (*reinterpret_cast(address)) = value; } #include "src/objects/object-macros-undef.h" void set_64_bits(uint64_t bits); }; MaybeHandle MutableBigInt::New(Isolate* isolate, int length, PretenureFlag pretenure) { if (length > BigInt::kMaxLength) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), MutableBigInt); } Handle result = Cast(isolate->factory()->NewBigInt(length, pretenure)); result->initialize_bitfield(false, length); #if DEBUG result->InitializeDigits(length, 0xBF); #endif return result; } Handle MutableBigInt::NewFromInt(Isolate* isolate, int value) { if (value == 0) return Zero(isolate); Handle result = Cast(isolate->factory()->NewBigInt(1)); bool sign = value < 0; result->initialize_bitfield(sign, 1); if (!sign) { result->set_digit(0, value); } else { if (value == kMinInt) { STATIC_ASSERT(kMinInt == -kMaxInt - 1); result->set_digit(0, static_cast(kMaxInt) + 1); } else { result->set_digit(0, -value); } } return MakeImmutable(result); } Handle MutableBigInt::NewFromDouble(Isolate* isolate, double value) { DCHECK_EQ(value, std::floor(value)); if (value == 0) return Zero(isolate); bool sign = value < 0; // -0 was already handled above. uint64_t double_bits = bit_cast(value); int raw_exponent = static_cast(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF; DCHECK_NE(raw_exponent, 0x7FF); DCHECK_GE(raw_exponent, 0x3FF); int exponent = raw_exponent - 0x3FF; int digits = exponent / kDigitBits + 1; Handle result = Cast(isolate->factory()->NewBigInt(digits)); result->initialize_bitfield(sign, digits); // We construct a BigInt from the double {value} by shifting its mantissa // according to its exponent and mapping the bit pattern onto digits. // // <----------- bitlength = exponent + 1 -----------> // <----- 52 ------> <------ trailing zeroes ------> // mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 // digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx // <--> <------> // msd_topbit kDigitBits // uint64_t mantissa = (double_bits & Double::kSignificandMask) | Double::kHiddenBit; const int kMantissaTopBit = Double::kSignificandSize - 1; // 0-indexed. // 0-indexed position of most significant bit in the most significant digit. int msd_topbit = exponent % kDigitBits; // Number of unused bits in {mantissa}. We'll keep them shifted to the // left (i.e. most significant part) of the underlying uint64_t. int remaining_mantissa_bits = 0; // Next digit under construction. digit_t digit; // First, build the MSD by shifting the mantissa appropriately. if (msd_topbit < kMantissaTopBit) { remaining_mantissa_bits = kMantissaTopBit - msd_topbit; digit = mantissa >> remaining_mantissa_bits; mantissa = mantissa << (64 - remaining_mantissa_bits); } else { DCHECK_GE(msd_topbit, kMantissaTopBit); digit = mantissa << (msd_topbit - kMantissaTopBit); mantissa = 0; } result->set_digit(digits - 1, digit); // Then fill in the rest of the digits. for (int digit_index = digits - 2; digit_index >= 0; digit_index--) { if (remaining_mantissa_bits > 0) { remaining_mantissa_bits -= kDigitBits; if (sizeof(digit) == 4) { digit = mantissa >> 32; mantissa = mantissa << 32; } else { DCHECK_EQ(sizeof(digit), 8); digit = mantissa; mantissa = 0; } } else { digit = 0; } result->set_digit(digit_index, digit); } return MakeImmutable(result); } Handle MutableBigInt::Copy(Isolate* isolate, Handle source) { int length = source->length(); // Allocating a BigInt of the same length as an existing BigInt cannot throw. Handle result = New(isolate, length).ToHandleChecked(); memcpy(reinterpret_cast(result->address() + BigIntBase::kHeaderSize), reinterpret_cast(source->address() + BigIntBase::kHeaderSize), BigInt::SizeFor(length) - BigIntBase::kHeaderSize); return result; } void MutableBigInt::InitializeDigits(int length, byte value) { memset(reinterpret_cast(reinterpret_cast
(this) + kDigitsOffset - kHeapObjectTag), value, length * kDigitSize); } MaybeHandle MutableBigInt::MakeImmutable( MaybeHandle maybe) { Handle result; if (!maybe.ToHandle(&result)) return MaybeHandle(); return MakeImmutable(result); } Handle MutableBigInt::MakeImmutable(Handle result) { // Check if we need to right-trim any leading zero-digits. int old_length = result->length(); int new_length = old_length; while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--; int to_trim = old_length - new_length; if (to_trim != 0) { int size_delta = to_trim * kDigitSize; Address new_end = result->address() + BigInt::SizeFor(new_length); Heap* heap = result->GetHeap(); heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo); result->set_length(new_length); // Canonicalize -0n. if (new_length == 0) { result->set_sign(false); // TODO(jkummerow): If we cache a canonical 0n, return that here. } } DCHECK_IMPLIES(result->length() > 0, result->digit(result->length() - 1) != 0); // MSD is non-zero. return Handle(reinterpret_cast(result.location())); } Handle BigInt::Zero(Isolate* isolate) { return MutableBigInt::Zero(isolate); } Handle BigInt::UnaryMinus(Isolate* isolate, Handle x) { // Special case: There is no -0n. if (x->is_zero()) { return x; } Handle result = MutableBigInt::Copy(isolate, x); result->set_sign(!x->sign()); return MutableBigInt::MakeImmutable(result); } MaybeHandle BigInt::BitwiseNot(Isolate* isolate, Handle x) { MaybeHandle result; if (x->sign()) { // ~(-x) == ~(~(x-1)) == x-1 result = MutableBigInt::AbsoluteSubOne(isolate, x, x->length()); } else { // ~x == -x-1 == -(x+1) result = MutableBigInt::AbsoluteAddOne(isolate, x, true); } return MutableBigInt::MakeImmutable(result); } MaybeHandle BigInt::Exponentiate(Isolate* isolate, Handle base, Handle exponent) { // 1. If exponent is < 0, throw a RangeError exception. if (exponent->sign()) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntNegativeExponent), BigInt); } // 2. If base is 0n and exponent is 0n, return 1n. if (exponent->is_zero()) { return MutableBigInt::NewFromInt(isolate, 1); } // 3. Return a BigInt representing the mathematical value of base raised // to the power exponent. if (base->is_zero()) return base; if (base->length() == 1 && base->digit(0) == 1) { // (-1) ** even_number == 1. if (base->sign() && (exponent->digit(0) & 1) == 0) { return UnaryMinus(isolate, base); } // (-1) ** odd_number == -1; 1 ** anything == 1. return base; } // For all bases >= 2, very large exponents would lead to unrepresentable // results. STATIC_ASSERT(kMaxLengthBits < std::numeric_limits::max()); if (exponent->length() > 1) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } digit_t exp_value = exponent->digit(0); if (exp_value == 1) return base; if (exp_value >= kMaxLengthBits) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } STATIC_ASSERT(kMaxLengthBits <= kMaxInt); int n = static_cast(exp_value); if (base->length() == 1 && base->digit(0) == 2) { // Fast path for 2^n. int needed_digits = 1 + (n / kDigitBits); Handle result; if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) { return MaybeHandle(); } result->InitializeDigits(needed_digits); // All bits are zero. Now set the n-th bit. digit_t msd = static_cast(1) << (n % kDigitBits); result->set_digit(needed_digits - 1, msd); // Result is negative for odd powers of -2n. if (base->sign()) result->set_sign((n & 1) != 0); return MutableBigInt::MakeImmutable(result); } Handle result; Handle running_square = base; // This implicitly sets the result's sign correctly. if (n & 1) result = base; n >>= 1; for (; n != 0; n >>= 1) { MaybeHandle maybe_result = Multiply(isolate, running_square, running_square); if (!maybe_result.ToHandle(&running_square)) return maybe_result; if (n & 1) { if (result.is_null()) { result = running_square; } else { maybe_result = Multiply(isolate, result, running_square); if (!maybe_result.ToHandle(&result)) return maybe_result; } } } return result; } MaybeHandle BigInt::Multiply(Isolate* isolate, Handle x, Handle y) { if (x->is_zero()) return x; if (y->is_zero()) return y; int result_length = x->length() + y->length(); Handle result; if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) { return MaybeHandle(); } result->InitializeDigits(result_length); for (int i = 0; i < x->length(); i++) { MutableBigInt::MultiplyAccumulate(y, x->digit(i), result, i); } result->set_sign(x->sign() != y->sign()); return MutableBigInt::MakeImmutable(result); } MaybeHandle BigInt::Divide(Isolate* isolate, Handle x, Handle y) { // 1. If y is 0n, throw a RangeError exception. if (y->is_zero()) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero), BigInt); } // 2. Let quotient be the mathematical value of x divided by y. // 3. Return a BigInt representing quotient rounded towards 0 to the next // integral value. if (MutableBigInt::AbsoluteCompare(x, y) < 0) { return Zero(isolate); } Handle quotient; bool result_sign = x->sign() != y->sign(); if (y->length() == 1) { digit_t divisor = y->digit(0); if (divisor == 1) { return result_sign == x->sign() ? x : UnaryMinus(isolate, x); } digit_t remainder; MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, "ient, &remainder); } else { if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, "ient, nullptr)) { return MaybeHandle(); } } quotient->set_sign(x->sign() != y->sign()); return MutableBigInt::MakeImmutable(quotient); } MaybeHandle BigInt::Remainder(Isolate* isolate, Handle x, Handle y) { // 1. If y is 0n, throw a RangeError exception. if (y->is_zero()) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero), BigInt); } // 2. Return the BigInt representing x modulo y. // See https://github.com/tc39/proposal-bigint/issues/84 though. if (MutableBigInt::AbsoluteCompare(x, y) < 0) return x; Handle remainder; if (y->length() == 1) { digit_t divisor = y->digit(0); if (divisor == 1) return Zero(isolate); digit_t remainder_digit; MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, nullptr, &remainder_digit); if (remainder_digit == 0) { return Zero(isolate); } remainder = MutableBigInt::New(isolate, 1).ToHandleChecked(); remainder->set_digit(0, remainder_digit); } else { if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, nullptr, &remainder)) { return MaybeHandle(); } } remainder->set_sign(x->sign()); return MutableBigInt::MakeImmutable(remainder); } MaybeHandle BigInt::Add(Isolate* isolate, Handle x, Handle y) { bool xsign = x->sign(); if (xsign == y->sign()) { // x + y == x + y // -x + -y == -(x + y) return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign); } // x + -y == x - y == -(y - x) // -x + y == y - x == -(x - y) if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { return MutableBigInt::AbsoluteSub(isolate, x, y, xsign); } return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign); } MaybeHandle BigInt::Subtract(Isolate* isolate, Handle x, Handle y) { bool xsign = x->sign(); if (xsign != y->sign()) { // x - (-y) == x + y // (-x) - y == -(x + y) return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign); } // x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { return MutableBigInt::AbsoluteSub(isolate, x, y, xsign); } return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign); } MaybeHandle BigInt::LeftShift(Isolate* isolate, Handle x, Handle y) { if (y->is_zero() || x->is_zero()) return x; if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y); return MutableBigInt::LeftShiftByAbsolute(isolate, x, y); } MaybeHandle BigInt::SignedRightShift(Isolate* isolate, Handle x, Handle y) { if (y->is_zero() || x->is_zero()) return x; if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y); return MutableBigInt::RightShiftByAbsolute(isolate, x, y); } MaybeHandle BigInt::UnsignedRightShift(Isolate* isolate, Handle x, Handle y) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt); } namespace { // Produces comparison result for {left_negative} == sign(x) != sign(y). ComparisonResult UnequalSign(bool left_negative) { return left_negative ? ComparisonResult::kLessThan : ComparisonResult::kGreaterThan; } // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y); ComparisonResult AbsoluteGreater(bool both_negative) { return both_negative ? ComparisonResult::kLessThan : ComparisonResult::kGreaterThan; } // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y). ComparisonResult AbsoluteLess(bool both_negative) { return both_negative ? ComparisonResult::kGreaterThan : ComparisonResult::kLessThan; } } // namespace // (Never returns kUndefined.) ComparisonResult BigInt::CompareToBigInt(Handle x, Handle y) { bool x_sign = x->sign(); if (x_sign != y->sign()) return UnequalSign(x_sign); int result = MutableBigInt::AbsoluteCompare(x, y); if (result > 0) return AbsoluteGreater(x_sign); if (result < 0) return AbsoluteLess(x_sign); return ComparisonResult::kEqual; } bool BigInt::EqualToBigInt(BigInt* x, BigInt* y) { if (x->sign() != y->sign()) return false; if (x->length() != y->length()) return false; for (int i = 0; i < x->length(); i++) { if (x->digit(i) != y->digit(i)) return false; } return true; } MaybeHandle BigInt::BitwiseAnd(Isolate* isolate, Handle x, Handle y) { return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseAnd(isolate, x, y)); } MaybeHandle MutableBigInt::BitwiseAnd(Isolate* isolate, Handle x, Handle y) { if (!x->sign() && !y->sign()) { return AbsoluteAnd(isolate, x, y); } else if (x->sign() && y->sign()) { int result_length = Max(x->length(), y->length()) + 1; // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) // == -(((x-1) | (y-1)) + 1) Handle result; if (!AbsoluteSubOne(isolate, x, result_length).ToHandle(&result)) { return MaybeHandle(); } Handle y_1 = AbsoluteSubOne(isolate, y); result = AbsoluteOr(isolate, result, y_1, *result); return AbsoluteAddOne(isolate, result, true, *result); } else { DCHECK(x->sign() != y->sign()); // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x & (-y) == x & ~(y-1) == x &~ (y-1) return AbsoluteAndNot(isolate, x, AbsoluteSubOne(isolate, y)); } } MaybeHandle BigInt::BitwiseXor(Isolate* isolate, Handle x, Handle y) { return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseXor(isolate, x, y)); } MaybeHandle MutableBigInt::BitwiseXor(Isolate* isolate, Handle x, Handle y) { if (!x->sign() && !y->sign()) { return AbsoluteXor(isolate, x, y); } else if (x->sign() && y->sign()) { int result_length = Max(x->length(), y->length()); // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) Handle result = AbsoluteSubOne(isolate, x, result_length).ToHandleChecked(); Handle y_1 = AbsoluteSubOne(isolate, y); return AbsoluteXor(isolate, result, y_1, *result); } else { DCHECK(x->sign() != y->sign()); int result_length = Max(x->length(), y->length()) + 1; // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) Handle result; if (!AbsoluteSubOne(isolate, y, result_length).ToHandle(&result)) { return MaybeHandle(); } result = AbsoluteXor(isolate, result, x, *result); return AbsoluteAddOne(isolate, result, true, *result); } } MaybeHandle BigInt::BitwiseOr(Isolate* isolate, Handle x, Handle y) { return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseOr(isolate, x, y)); } MaybeHandle MutableBigInt::BitwiseOr(Isolate* isolate, Handle x, Handle y) { int result_length = Max(x->length(), y->length()); if (!x->sign() && !y->sign()) { return AbsoluteOr(isolate, x, y); } else if (x->sign() && y->sign()) { // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) // == -(((x-1) & (y-1)) + 1) Handle result = AbsoluteSubOne(isolate, x, result_length).ToHandleChecked(); Handle y_1 = AbsoluteSubOne(isolate, y); result = AbsoluteAnd(isolate, result, y_1, *result); return AbsoluteAddOne(isolate, result, true, *result); } else { DCHECK(x->sign() != y->sign()); // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) Handle result = AbsoluteSubOne(isolate, y, result_length).ToHandleChecked(); result = AbsoluteAndNot(isolate, result, x, *result); return AbsoluteAddOne(isolate, result, true, *result); } } MaybeHandle BigInt::Increment(Isolate* isolate, Handle x) { if (x->sign()) { Handle result = MutableBigInt::AbsoluteSubOne(isolate, x); result->set_sign(true); return MutableBigInt::MakeImmutable(result); } else { return MutableBigInt::MakeImmutable( MutableBigInt::AbsoluteAddOne(isolate, x, false)); } } MaybeHandle BigInt::Decrement(Isolate* isolate, Handle x) { MaybeHandle result; if (x->sign()) { result = MutableBigInt::AbsoluteAddOne(isolate, x, true); } else if (x->is_zero()) { // TODO(jkummerow): Consider caching a canonical -1n BigInt. return MutableBigInt::NewFromInt(isolate, -1); } else { result = MutableBigInt::AbsoluteSubOne(isolate, x); } return MutableBigInt::MakeImmutable(result); } ComparisonResult BigInt::CompareToString(Isolate* isolate, Handle x, Handle y) { // a. Let ny be StringToBigInt(y); MaybeHandle maybe_ny = StringToBigInt(isolate, y); // b. If ny is NaN, return undefined. Handle ny; if (!maybe_ny.ToHandle(&ny)) { DCHECK(!isolate->has_pending_exception()); return ComparisonResult::kUndefined; } // c. Return BigInt::lessThan(x, ny). return CompareToBigInt(x, ny); } bool BigInt::EqualToString(Isolate* isolate, Handle x, Handle y) { // a. Let n be StringToBigInt(y). MaybeHandle maybe_n = StringToBigInt(isolate, y); // b. If n is NaN, return false. Handle n; if (!maybe_n.ToHandle(&n)) { DCHECK(!isolate->has_pending_exception()); return false; } // c. Return the result of x == n. return EqualToBigInt(*x, *n); } bool BigInt::EqualToNumber(Handle x, Handle y) { DCHECK(y->IsNumber()); // a. If x or y are any of NaN, +∞, or -∞, return false. // b. If the mathematical value of x is equal to the mathematical value of y, // return true, otherwise return false. if (y->IsSmi()) { int value = Smi::ToInt(*y); if (value == 0) return x->is_zero(); // Any multi-digit BigInt is bigger than a Smi. STATIC_ASSERT(sizeof(digit_t) >= sizeof(value)); return (x->length() == 1) && (x->sign() == (value < 0)) && (x->digit(0) == static_cast(std::abs(static_cast(value)))); } DCHECK(y->IsHeapNumber()); double value = Handle::cast(y)->value(); return CompareToDouble(x, value) == ComparisonResult::kEqual; } ComparisonResult BigInt::CompareToNumber(Handle x, Handle y) { DCHECK(y->IsNumber()); if (y->IsSmi()) { bool x_sign = x->sign(); int y_value = Smi::ToInt(*y); bool y_sign = (y_value < 0); if (x_sign != y_sign) return UnequalSign(x_sign); if (x->is_zero()) { DCHECK(!y_sign); return y_value == 0 ? ComparisonResult::kEqual : ComparisonResult::kLessThan; } // Any multi-digit BigInt is bigger than a Smi. STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value)); if (x->length() > 1) return AbsoluteGreater(x_sign); digit_t abs_value = std::abs(static_cast(y_value)); digit_t x_digit = x->digit(0); if (x_digit > abs_value) return AbsoluteGreater(x_sign); if (x_digit < abs_value) return AbsoluteLess(x_sign); return ComparisonResult::kEqual; } DCHECK(y->IsHeapNumber()); double value = Handle::cast(y)->value(); return CompareToDouble(x, value); } ComparisonResult BigInt::CompareToDouble(Handle x, double y) { if (std::isnan(y)) return ComparisonResult::kUndefined; if (y == V8_INFINITY) return ComparisonResult::kLessThan; if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan; bool x_sign = x->sign(); // Note that this is different from the double's sign bit for -0. That's // intentional because -0 must be treated like 0. bool y_sign = (y < 0); if (x_sign != y_sign) return UnequalSign(x_sign); if (y == 0) { DCHECK(!x_sign); return x->is_zero() ? ComparisonResult::kEqual : ComparisonResult::kGreaterThan; } if (x->is_zero()) { DCHECK(!y_sign); return ComparisonResult::kLessThan; } uint64_t double_bits = bit_cast(y); int raw_exponent = static_cast(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF; uint64_t mantissa = double_bits & Double::kSignificandMask; // Non-finite doubles are handled above. DCHECK_NE(raw_exponent, 0x7FF); int exponent = raw_exponent - 0x3FF; if (exponent < 0) { // The absolute value of the double is less than 1. Only 0n has an // absolute value smaller than that, but we've already covered that case. DCHECK(!x->is_zero()); return AbsoluteGreater(x_sign); } int x_length = x->length(); digit_t x_msd = x->digit(x_length - 1); int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); int x_bitlength = x_length * kDigitBits - msd_leading_zeros; int y_bitlength = exponent + 1; if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign); if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign); // At this point, we know that signs and bit lengths (i.e. position of // the most significant bit in exponent-free representation) are identical. // {x} is not zero, {y} is finite and not denormal. // Now we virtually convert the double to an integer by shifting its // mantissa according to its exponent, so it will align with the BigInt {x}, // and then we compare them bit for bit until we find a difference or the // least significant bit. // <----- 52 ------> <-- virtual trailing zeroes --> // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... // <--> <------> // msd_topbit kDigitBits // mantissa |= Double::kHiddenBit; const int kMantissaTopBit = 52; // 0-indexed. // 0-indexed position of {x}'s most significant bit within the {msd}. int msd_topbit = kDigitBits - 1 - msd_leading_zeros; DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits); // Shifted chunk of {mantissa} for comparing with {digit}. digit_t compare_mantissa; // Number of unprocessed bits in {mantissa}. We'll keep them shifted to // the left (i.e. most significant part) of the underlying uint64_t. int remaining_mantissa_bits = 0; // First, compare the most significant digit against the beginning of // the mantissa. if (msd_topbit < kMantissaTopBit) { remaining_mantissa_bits = (kMantissaTopBit - msd_topbit); compare_mantissa = mantissa >> remaining_mantissa_bits; mantissa = mantissa << (64 - remaining_mantissa_bits); } else { DCHECK_GE(msd_topbit, kMantissaTopBit); compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit); mantissa = 0; } if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign); if (x_msd < compare_mantissa) return AbsoluteLess(x_sign); // Then, compare additional digits against any remaining mantissa bits. for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) { if (remaining_mantissa_bits > 0) { remaining_mantissa_bits -= kDigitBits; if (sizeof(mantissa) != sizeof(x_msd)) { compare_mantissa = mantissa >> (64 - kDigitBits); // "& 63" to appease compilers. kDigitBits is 32 here anyway. mantissa = mantissa << (kDigitBits & 63); } else { compare_mantissa = mantissa; mantissa = 0; } } else { compare_mantissa = 0; } digit_t digit = x->digit(digit_index); if (digit > compare_mantissa) return AbsoluteGreater(x_sign); if (digit < compare_mantissa) return AbsoluteLess(x_sign); } // Integer parts are equal; check whether {y} has a fractional part. if (mantissa != 0) { DCHECK_GT(remaining_mantissa_bits, 0); return AbsoluteLess(x_sign); } return ComparisonResult::kEqual; } MaybeHandle BigInt::ToString(Isolate* isolate, Handle bigint, int radix) { if (bigint->is_zero()) { return isolate->factory()->NewStringFromStaticChars("0"); } if (base::bits::IsPowerOfTwo(radix)) { return MutableBigInt::ToStringBasePowerOfTwo(isolate, bigint, radix); } return MutableBigInt::ToStringGeneric(isolate, bigint, radix); } MaybeHandle BigInt::FromNumber(Isolate* isolate, Handle number) { DCHECK(number->IsNumber()); if (number->IsSmi()) { return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number)); } double value = HeapNumber::cast(*number)->value(); if (!std::isfinite(value) || (DoubleToInteger(value) != value)) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntFromNumber, number), BigInt); } return MutableBigInt::NewFromDouble(isolate, value); } MaybeHandle BigInt::FromObject(Isolate* isolate, Handle obj) { if (obj->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, obj, JSReceiver::ToPrimitive(Handle::cast(obj), ToPrimitiveHint::kNumber), BigInt); } if (obj->IsBoolean()) { return MutableBigInt::NewFromInt(isolate, obj->BooleanValue(isolate)); } if (obj->IsBigInt()) { return Handle::cast(obj); } if (obj->IsString()) { Handle n; if (!StringToBigInt(isolate, Handle::cast(obj)).ToHandle(&n)) { THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kBigIntFromObject, obj), BigInt); } return n; } THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt); } Handle BigInt::ToNumber(Isolate* isolate, Handle x) { if (x->is_zero()) return Handle(Smi::kZero, isolate); if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) { int value = static_cast(x->digit(0)); if (x->sign()) value = -value; return Handle(Smi::FromInt(value), isolate); } double result = MutableBigInt::ToDouble(x); return isolate->factory()->NewHeapNumber(result); } double MutableBigInt::ToDouble(Handle x) { if (x->is_zero()) return 0.0; int x_length = x->length(); digit_t x_msd = x->digit(x_length - 1); int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); int x_bitlength = x_length * kDigitBits - msd_leading_zeros; if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY; uint64_t exponent = x_bitlength - 1; // We need the most significant bit shifted to the position of a double's // "hidden bit". We also need to hide that MSB, so we shift it out. uint64_t current_digit = x_msd; int digit_index = x_length - 1; int shift = msd_leading_zeros + 1 + (64 - kDigitBits); DCHECK_LE(1, shift); DCHECK_LE(shift, 64); uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift; mantissa >>= 12; int mantissa_bits_unset = shift - 12; // If not all mantissa bits are defined yet, get more digits as needed. if (mantissa_bits_unset >= kDigitBits && digit_index > 0) { digit_index--; current_digit = static_cast(x->digit(digit_index)); mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits)); mantissa_bits_unset -= kDigitBits; } if (mantissa_bits_unset > 0 && digit_index > 0) { DCHECK_LT(mantissa_bits_unset, kDigitBits); digit_index--; current_digit = static_cast(x->digit(digit_index)); mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset)); mantissa_bits_unset -= kDigitBits; } // If there are unconsumed digits left, we may have to round. Rounding rounding = DecideRounding(x, mantissa_bits_unset, digit_index, current_digit); if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) { mantissa++; // Incrementing the mantissa can overflow the mantissa bits. In that case // the new mantissa will be all zero (plus hidden bit). if ((mantissa >> Double::kPhysicalSignificandSize) != 0) { mantissa = 0; exponent++; // Incrementing the exponent can overflow too. if (exponent > 1023) { return x->sign() ? -V8_INFINITY : V8_INFINITY; } } } // Assemble the result. uint64_t sign_bit = x->sign() ? (static_cast(1) << 63) : 0; exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize; uint64_t double_bits = sign_bit | exponent | mantissa; return bit_cast(double_bits); } // This is its own function to keep control flow sane. The meaning of the // parameters is defined by {ToDouble}'s local variable usage. MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle x, int mantissa_bits_unset, int digit_index, uint64_t current_digit) { if (mantissa_bits_unset > 0) return kRoundDown; int top_unconsumed_bit; if (mantissa_bits_unset < 0) { // There are unconsumed bits in {current_digit}. top_unconsumed_bit = -mantissa_bits_unset - 1; } else { DCHECK_EQ(mantissa_bits_unset, 0); // {current_digit} fit the mantissa exactly; look at the next digit. if (digit_index == 0) return kRoundDown; digit_index--; current_digit = static_cast(x->digit(digit_index)); top_unconsumed_bit = kDigitBits - 1; } // If the most significant remaining bit is 0, round down. uint64_t bitmask = static_cast(1) << top_unconsumed_bit; if ((current_digit & bitmask) == 0) { return kRoundDown; } // If any other remaining bit is set, round up. bitmask -= 1; if ((current_digit & bitmask) != 0) return kRoundUp; while (digit_index > 0) { digit_index--; if (x->digit(digit_index) != 0) return kRoundUp; } return kTie; } void BigInt::BigIntShortPrint(std::ostream& os) { if (sign()) os << "-"; int len = length(); if (len == 0) { os << "0"; return; } if (len > 1) os << "..."; os << digit(0); } // Internal helpers. MaybeHandle MutableBigInt::AbsoluteAdd(Isolate* isolate, Handle x, Handle y, bool result_sign) { if (x->length() < y->length()) return AbsoluteAdd(isolate, y, x, result_sign); if (x->is_zero()) { DCHECK(y->is_zero()); return x; } if (y->is_zero()) { return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x); } Handle result; if (!New(isolate, x->length() + 1).ToHandle(&result)) { return MaybeHandle(); } digit_t carry = 0; int i = 0; for (; i < y->length(); i++) { digit_t new_carry = 0; digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry); sum = digit_add(sum, carry, &new_carry); result->set_digit(i, sum); carry = new_carry; } for (; i < x->length(); i++) { digit_t new_carry = 0; digit_t sum = digit_add(x->digit(i), carry, &new_carry); result->set_digit(i, sum); carry = new_carry; } result->set_digit(i, carry); result->set_sign(result_sign); return MakeImmutable(result); } Handle MutableBigInt::AbsoluteSub(Isolate* isolate, Handle x, Handle y, bool result_sign) { DCHECK(x->length() >= y->length()); SLOW_DCHECK(AbsoluteCompare(x, y) >= 0); if (x->is_zero()) { DCHECK(y->is_zero()); return x; } if (y->is_zero()) { return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x); } Handle result = New(isolate, x->length()).ToHandleChecked(); digit_t borrow = 0; int i = 0; for (; i < y->length(); i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow); difference = digit_sub(difference, borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } for (; i < x->length(); i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } DCHECK_EQ(0, borrow); result->set_sign(result_sign); return MakeImmutable(result); } // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}. // {result_storage} is optional; if present, it will be used to store the // result, otherwise a new BigInt will be allocated for the result. // {result_storage} and {x} may refer to the same BigInt for in-place // modification. MaybeHandle MutableBigInt::AbsoluteAddOne( Isolate* isolate, Handle x, bool sign, MutableBigInt* result_storage) { int input_length = x->length(); // The addition will overflow into a new digit if all existing digits are // at maximum. bool will_overflow = true; for (int i = 0; i < input_length; i++) { if (!digit_ismax(x->digit(i))) { will_overflow = false; break; } } int result_length = input_length + will_overflow; Handle result(result_storage, isolate); if (result_storage == nullptr) { if (!New(isolate, result_length).ToHandle(&result)) { return MaybeHandle(); } } else { DCHECK(result->length() == result_length); } digit_t carry = 1; for (int i = 0; i < input_length; i++) { digit_t new_carry = 0; result->set_digit(i, digit_add(x->digit(i), carry, &new_carry)); carry = new_carry; } if (result_length > input_length) { result->set_digit(input_length, carry); } else { DCHECK_EQ(carry, 0); } result->set_sign(sign); return result; } // Subtracts 1 from the absolute value of {x}. {x} must not be zero. Handle MutableBigInt::AbsoluteSubOne(Isolate* isolate, Handle x) { DCHECK(!x->is_zero()); // Requesting a result length identical to an existing BigInt's length // cannot overflow the limit. return AbsoluteSubOne(isolate, x, x->length()).ToHandleChecked(); } // Like the above, but you can specify that the allocated result should have // length {result_length}, which must be at least as large as {x->length()}. MaybeHandle MutableBigInt::AbsoluteSubOne(Isolate* isolate, Handle x, int result_length) { DCHECK(!x->is_zero()); DCHECK(result_length >= x->length()); Handle result; if (!New(isolate, result_length).ToHandle(&result)) { return MaybeHandle(); } int length = x->length(); digit_t borrow = 1; for (int i = 0; i < length; i++) { digit_t new_borrow = 0; result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow)); borrow = new_borrow; } DCHECK_EQ(borrow, 0); for (int i = length; i < result_length; i++) { result->set_digit(i, borrow); } return result; } // Helper for Absolute{And,AndNot,Or,Xor}. // Performs the given binary {op} on digit pairs of {x} and {y}; when the // end of the shorter of the two is reached, {extra_digits} configures how // remaining digits in the longer input (if {symmetric} == kSymmetric, in // {x} otherwise) are handled: copied to the result or ignored. // If {result_storage} is non-nullptr, it will be used for the result and // any extra digits in it will be zeroed out, otherwise a new BigInt (with // the same length as the longer input) will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. // Example: // y: [ y2 ][ y1 ][ y0 ] // x: [ x3 ][ x2 ][ x1 ][ x0 ] // | | | | // (kCopy) (op) (op) (op) // | | | | // v v v v // result_storage: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] inline Handle MutableBigInt::AbsoluteBitwiseOp( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage, ExtraDigitsHandling extra_digits, SymmetricOp symmetric, std::function op) { int x_length = x->length(); int y_length = y->length(); int num_pairs = y_length; if (x_length < y_length) { num_pairs = x_length; if (symmetric == kSymmetric) { std::swap(x, y); std::swap(x_length, y_length); } } DCHECK(num_pairs == Min(x_length, y_length)); Handle result(result_storage, isolate); int result_length = extra_digits == kCopy ? x_length : num_pairs; if (result_storage == nullptr) { result = New(isolate, result_length).ToHandleChecked(); } else { DCHECK(result_storage->length() >= result_length); result_length = result_storage->length(); } int i = 0; for (; i < num_pairs; i++) { result->set_digit(i, op(x->digit(i), y->digit(i))); } if (extra_digits == kCopy) { for (; i < x_length; i++) { result->set_digit(i, x->digit(i)); } } for (; i < result_length; i++) { result->set_digit(i, 0); } return result; } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle MutableBigInt::AbsoluteAnd( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage) { return AbsoluteBitwiseOp(isolate, x, y, result_storage, kSkip, kSymmetric, [](digit_t a, digit_t b) { return a & b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle MutableBigInt::AbsoluteAndNot( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage) { return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kNotSymmetric, [](digit_t a, digit_t b) { return a & ~b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle MutableBigInt::AbsoluteOr(Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage) { return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric, [](digit_t a, digit_t b) { return a | b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle MutableBigInt::AbsoluteXor( Isolate* isolate, Handle x, Handle y, MutableBigInt* result_storage) { return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric, [](digit_t a, digit_t b) { return a ^ b; }); } // Returns a positive value if abs(x) > abs(y), a negative value if // abs(x) < abs(y), or zero if abs(x) == abs(y). int MutableBigInt::AbsoluteCompare(Handle x, Handle y) { int diff = x->length() - y->length(); if (diff != 0) return diff; int i = x->length() - 1; while (i >= 0 && x->digit(i) == y->digit(i)) i--; if (i < 0) return 0; return x->digit(i) > y->digit(i) ? 1 : -1; } // Multiplies {multiplicand} with {multiplier} and adds the result to // {accumulator}, starting at {accumulator_index} for the least-significant // digit. // Callers must ensure that {accumulator} is big enough to hold the result. void MutableBigInt::MultiplyAccumulate(Handle multiplicand, digit_t multiplier, Handle accumulator, int accumulator_index) { // This is a minimum requirement; the DCHECK in the second loop below // will enforce more as needed. DCHECK(accumulator->length() > multiplicand->length() + accumulator_index); if (multiplier == 0L) return; digit_t carry = 0; digit_t high = 0; for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) { digit_t acc = accumulator->digit(accumulator_index); digit_t new_carry = 0; // Add last round's carryovers. acc = digit_add(acc, high, &new_carry); acc = digit_add(acc, carry, &new_carry); // Compute this round's multiplication. digit_t m_digit = multiplicand->digit(i); digit_t low = digit_mul(multiplier, m_digit, &high); acc = digit_add(acc, low, &new_carry); // Store result and prepare for next round. accumulator->set_digit(accumulator_index, acc); carry = new_carry; } for (; carry != 0 || high != 0; accumulator_index++) { DCHECK(accumulator_index < accumulator->length()); digit_t acc = accumulator->digit(accumulator_index); digit_t new_carry = 0; acc = digit_add(acc, high, &new_carry); high = 0; acc = digit_add(acc, carry, &new_carry); accumulator->set_digit(accumulator_index, acc); carry = new_carry; } } // Multiplies {source} with {factor} and adds {summand} to the result. // {result} and {source} may be the same BigInt for inplace modification. void MutableBigInt::InternalMultiplyAdd(BigIntBase* source, digit_t factor, digit_t summand, int n, MutableBigInt* result) { DCHECK(source->length() >= n); DCHECK(result->length() >= n); digit_t carry = summand; digit_t high = 0; for (int i = 0; i < n; i++) { digit_t current = source->digit(i); digit_t new_carry = 0; // Compute this round's multiplication. digit_t new_high = 0; current = digit_mul(current, factor, &new_high); // Add last round's carryovers. current = digit_add(current, high, &new_carry); current = digit_add(current, carry, &new_carry); // Store result and prepare for next round. result->set_digit(i, current); carry = new_carry; high = new_high; } if (result->length() > n) { result->set_digit(n++, carry + high); // Current callers don't pass in such large results, but let's be robust. while (n < result->length()) { result->set_digit(n++, 0); } } else { CHECK_EQ(carry + high, 0); } } // Multiplies {x} with {factor} and then adds {summand} to it. void BigInt::InplaceMultiplyAdd(Handle x, uintptr_t factor, uintptr_t summand) { STATIC_ASSERT(sizeof(factor) == sizeof(digit_t)); STATIC_ASSERT(sizeof(summand) == sizeof(digit_t)); Handle bigint = MutableBigInt::Cast(x); MutableBigInt::InternalMultiplyAdd(*bigint, factor, summand, bigint->length(), *bigint); } // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. // Mathematically, the contract is: // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. // If {quotient} is an empty handle, an appropriately sized BigInt will be // allocated for it; otherwise the caller must ensure that it is big enough. // {quotient} can be the same as {x} for an in-place division. {quotient} can // also be nullptr if the caller is only interested in the remainder. void MutableBigInt::AbsoluteDivSmall(Isolate* isolate, Handle x, digit_t divisor, Handle* quotient, digit_t* remainder) { DCHECK_NE(divisor, 0); DCHECK(!x->is_zero()); // Callers check anyway, no need to handle this. *remainder = 0; int length = x->length(); if (quotient != nullptr) { if ((*quotient).is_null()) { *quotient = New(isolate, length).ToHandleChecked(); } for (int i = length - 1; i >= 0; i--) { digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder); (*quotient)->set_digit(i, q); } } else { for (int i = length - 1; i >= 0; i--) { digit_div(*remainder, x->digit(i), divisor, remainder); } } } // Divides {dividend} by {divisor}, returning the result in {quotient} and // {remainder}. Mathematically, the contract is: // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. // Both {quotient} and {remainder} are optional, for callers that are only // interested in one of them. // See Knuth, Volume 2, section 4.3.1, Algorithm D. bool MutableBigInt::AbsoluteDivLarge(Isolate* isolate, Handle dividend, Handle divisor, Handle* quotient, Handle* remainder) { DCHECK_GE(divisor->length(), 2); DCHECK(dividend->length() >= divisor->length()); // The unusual variable names inside this function are consistent with // Knuth's book, as well as with Go's implementation of this algorithm. // Maintaining this consistency is probably more useful than trying to // come up with more descriptive names for them. int n = divisor->length(); int m = dividend->length() - n; // The quotient to be computed. Handle q; if (quotient != nullptr) q = New(isolate, m + 1).ToHandleChecked(); // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. // "v" is the book's name for {divisor}, "qhat" the current quotient digit. Handle qhatv; if (!New(isolate, n + 1).ToHandle(&qhatv)) return false; // D1. // Left-shift inputs so that the divisor's MSB is set. This is necessary // to prevent the digit-wise divisions (see digit_div call below) from // overflowing (they take a two digits wide input, and return a one digit // result). int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1)); if (shift > 0) { divisor = SpecialLeftShift(isolate, divisor, shift, kSameSizeResult) .ToHandleChecked(); } // Holds the (continuously updated) remaining part of the dividend, which // eventually becomes the remainder. Handle u; if (!SpecialLeftShift(isolate, dividend, shift, kAlwaysAddOneDigit) .ToHandle(&u)) { return false; } // D2. // Iterate over the dividend's digit (like the "grad school" algorithm). // {vn1} is the divisor's most significant digit. digit_t vn1 = divisor->digit(n - 1); for (int j = m; j >= 0; j--) { // D3. // Estimate the current iteration's quotient digit (see Knuth for details). // {qhat} is the current quotient digit. digit_t qhat = std::numeric_limits::max(); // {ujn} is the dividend's most significant remaining digit. digit_t ujn = u->digit(j + n); if (ujn != vn1) { // {rhat} is the current iteration's remainder. digit_t rhat = 0; // Estimate the current quotient digit by dividing the most significant // digits of dividend and divisor. The result will not be too small, // but could be a bit too large. qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat); // Decrement the quotient estimate as needed by looking at the next // digit, i.e. by testing whether // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}. digit_t vn2 = divisor->digit(n - 2); digit_t ujn2 = u->digit(j + n - 2); while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) { qhat--; digit_t prev_rhat = rhat; rhat += vn1; // v[n-1] >= 0, so this tests for overflow. if (rhat < prev_rhat) break; } } // D4. // Multiply the divisor with the current quotient digit, and subtract // it from the dividend. If there was "borrow", then the quotient digit // was one too high, so we must correct it and undo one subtraction of // the (shifted) divisor. InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv); digit_t c = u->InplaceSub(qhatv, j); if (c != 0) { c = u->InplaceAdd(divisor, j); u->set_digit(j + n, u->digit(j + n) + c); qhat--; } if (quotient != nullptr) q->set_digit(j, qhat); } if (quotient != nullptr) { *quotient = q; // Caller will right-trim. } if (remainder != nullptr) { u->InplaceRightShift(shift); *remainder = u; } return true; } // Returns whether (factor1 * factor2) > (high << kDigitBits) + low. bool MutableBigInt::ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high, digit_t low) { digit_t result_high; digit_t result_low = digit_mul(factor1, factor2, &result_high); return result_high > high || (result_high == high && result_low > low); } // Adds {summand} onto {this}, starting with {summand}'s 0th digit // at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1). BigInt::digit_t MutableBigInt::InplaceAdd(Handle summand, int start_index) { digit_t carry = 0; int n = summand->length(); DCHECK(length() >= start_index + n); for (int i = 0; i < n; i++) { digit_t new_carry = 0; digit_t sum = digit_add(digit(start_index + i), summand->digit(i), &new_carry); sum = digit_add(sum, carry, &new_carry); set_digit(start_index + i, sum); carry = new_carry; } return carry; } // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit // at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1). BigInt::digit_t MutableBigInt::InplaceSub(Handle subtrahend, int start_index) { digit_t borrow = 0; int n = subtrahend->length(); DCHECK(length() >= start_index + n); for (int i = 0; i < n; i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow); difference = digit_sub(difference, borrow, &new_borrow); set_digit(start_index + i, difference); borrow = new_borrow; } return borrow; } void MutableBigInt::InplaceRightShift(int shift) { DCHECK_GE(shift, 0); DCHECK_LT(shift, kDigitBits); DCHECK_GT(length(), 0); DCHECK_EQ(digit(0) & ((static_cast(1) << shift) - 1), 0); if (shift == 0) return; digit_t carry = digit(0) >> shift; int last = length() - 1; for (int i = 0; i < last; i++) { digit_t d = digit(i + 1); set_digit(i, (d << (kDigitBits - shift)) | carry); carry = d >> shift; } set_digit(last, carry); } // Always copies the input, even when {shift} == 0. // {shift} must be less than kDigitBits, {x} must be non-zero. MaybeHandle MutableBigInt::SpecialLeftShift( Isolate* isolate, Handle x, int shift, SpecialLeftShiftMode mode) { DCHECK_GE(shift, 0); DCHECK_LT(shift, kDigitBits); DCHECK_GT(x->length(), 0); int n = x->length(); int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n; Handle result; if (!New(isolate, result_length).ToHandle(&result)) { return MaybeHandle(); } if (shift == 0) { for (int i = 0; i < n; i++) result->set_digit(i, x->digit(i)); if (mode == kAlwaysAddOneDigit) result->set_digit(n, 0); return result; } DCHECK_GT(shift, 0); digit_t carry = 0; for (int i = 0; i < n; i++) { digit_t d = x->digit(i); result->set_digit(i, (d << shift) | carry); carry = d >> (kDigitBits - shift); } if (mode == kAlwaysAddOneDigit) { result->set_digit(n, carry); } else { DCHECK_EQ(mode, kSameSizeResult); DCHECK_EQ(carry, 0); } return result; } MaybeHandle MutableBigInt::LeftShiftByAbsolute(Isolate* isolate, Handle x, Handle y) { Maybe maybe_shift = ToShiftAmount(y); if (maybe_shift.IsNothing()) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } digit_t shift = maybe_shift.FromJust(); int digit_shift = static_cast(shift / kDigitBits); int bits_shift = static_cast(shift % kDigitBits); int length = x->length(); bool grow = bits_shift != 0 && (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0; int result_length = length + digit_shift + grow; if (result_length > kMaxLength) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } Handle result; if (!New(isolate, result_length).ToHandle(&result)) { return MaybeHandle(); } if (bits_shift == 0) { int i = 0; for (; i < digit_shift; i++) result->set_digit(i, 0ul); for (; i < result_length; i++) { result->set_digit(i, x->digit(i - digit_shift)); } } else { digit_t carry = 0; for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul); for (int i = 0; i < length; i++) { digit_t d = x->digit(i); result->set_digit(i + digit_shift, (d << bits_shift) | carry); carry = d >> (kDigitBits - bits_shift); } if (grow) { result->set_digit(length + digit_shift, carry); } else { DCHECK_EQ(carry, 0); } } result->set_sign(x->sign()); return MakeImmutable(result); } Handle MutableBigInt::RightShiftByAbsolute(Isolate* isolate, Handle x, Handle y) { int length = x->length(); bool sign = x->sign(); Maybe maybe_shift = ToShiftAmount(y); if (maybe_shift.IsNothing()) { return RightShiftByMaximum(isolate, sign); } digit_t shift = maybe_shift.FromJust(); int digit_shift = static_cast(shift / kDigitBits); int bits_shift = static_cast(shift % kDigitBits); int result_length = length - digit_shift; if (result_length <= 0) { return RightShiftByMaximum(isolate, sign); } // For negative numbers, round down if any bit was shifted out (so that e.g. // -5n >> 1n == -3n and not -2n). Check now whether this will happen and // whether it can cause overflow into a new digit. If we allocate the result // large enough up front, it avoids having to do a second allocation later. bool must_round_down = false; if (sign) { const digit_t mask = (static_cast(1) << bits_shift) - 1; if ((x->digit(digit_shift) & mask) != 0) { must_round_down = true; } else { for (int i = 0; i < digit_shift; i++) { if (x->digit(i) != 0) { must_round_down = true; break; } } } } // If bits_shift is non-zero, it frees up bits, preventing overflow. if (must_round_down && bits_shift == 0) { // Overflow cannot happen if the most significant digit has unset bits. digit_t msd = x->digit(length - 1); bool rounding_can_overflow = digit_ismax(msd); if (rounding_can_overflow) result_length++; } DCHECK_LE(result_length, length); Handle result = New(isolate, result_length).ToHandleChecked(); if (bits_shift == 0) { for (int i = digit_shift; i < length; i++) { result->set_digit(i - digit_shift, x->digit(i)); } } else { digit_t carry = x->digit(digit_shift) >> bits_shift; int last = length - digit_shift - 1; for (int i = 0; i < last; i++) { digit_t d = x->digit(i + digit_shift + 1); result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry); carry = d >> bits_shift; } result->set_digit(last, carry); } if (sign) { result->set_sign(true); if (must_round_down) { // Since the result is negative, rounding down means adding one to // its absolute value. This cannot overflow. result = AbsoluteAddOne(isolate, result, true, *result).ToHandleChecked(); } } return MakeImmutable(result); } Handle MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) { if (sign) { // TODO(jkummerow): Consider caching a canonical -1n BigInt. return NewFromInt(isolate, -1); } else { return Zero(isolate); } } // Returns the value of {x} if it is less than the maximum bit length of // a BigInt, or Nothing otherwise. Maybe MutableBigInt::ToShiftAmount(Handle x) { if (x->length() > 1) return Nothing(); digit_t value = x->digit(0); STATIC_ASSERT(kMaxLengthBits < std::numeric_limits::max()); if (value > kMaxLengthBits) return Nothing(); return Just(value); } // Lookup table for the maximum number of bits required per character of a // base-N string representation of a number. To increase accuracy, the array // value is the actual value multiplied by 32. To generate this table: // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } constexpr uint8_t kMaxBitsPerChar[] = { 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 162, 163, 165, 166, // 33..36 }; static const int kBitsPerCharTableShift = 5; static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift; MaybeHandle BigInt::AllocateFor( Isolate* isolate, int radix, int charcount, ShouldThrow should_throw, PretenureFlag pretenure) { DCHECK(2 <= radix && radix <= 36); DCHECK_GE(charcount, 0); size_t bits_per_char = kMaxBitsPerChar[radix]; size_t chars = static_cast(charcount); const int roundup = kBitsPerCharTableMultiplier - 1; if (chars <= (std::numeric_limits::max() - roundup) / bits_per_char) { size_t bits_min = bits_per_char * chars; // Divide by 32 (see table), rounding up. bits_min = (bits_min + roundup) >> kBitsPerCharTableShift; if (bits_min <= static_cast(kMaxInt)) { // Divide by kDigitsBits, rounding up. int length = (static_cast(bits_min) + kDigitBits - 1) / kDigitBits; if (length <= kMaxLength) { Handle result = MutableBigInt::New(isolate, length, pretenure).ToHandleChecked(); result->InitializeDigits(length); return result; } } } // All the overflow/maximum checks above fall through to here. if (should_throw == kThrowOnError) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), FreshlyAllocatedBigInt); } else { return MaybeHandle(); } } Handle BigInt::Finalize(Handle x, bool sign) { Handle bigint = MutableBigInt::Cast(x); bigint->set_sign(sign); return MutableBigInt::MakeImmutable(bigint); } // The serialization format MUST NOT CHANGE without updating the format // version in value-serializer.cc! uint32_t BigInt::GetBitfieldForSerialization() const { // In order to make the serialization format the same on 32/64 bit builds, // we convert the length-in-digits to length-in-bytes for serialization. // Being able to do this depends on having enough LengthBits: STATIC_ASSERT(kMaxLength * kDigitSize <= LengthBits::kMax); int bytelength = length() * kDigitSize; return SignBits::encode(sign()) | LengthBits::encode(bytelength); } int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) { return LengthBits::decode(bitfield); } // The serialization format MUST NOT CHANGE without updating the format // version in value-serializer.cc! void BigInt::SerializeDigits(uint8_t* storage) { void* digits = reinterpret_cast(reinterpret_cast
(this) + kDigitsOffset - kHeapObjectTag); #if defined(V8_TARGET_LITTLE_ENDIAN) int bytelength = length() * kDigitSize; memcpy(storage, digits, bytelength); #elif defined(V8_TARGET_BIG_ENDIAN) digit_t* digit_storage = reinterpret_cast(storage); const digit_t* digit = reinterpret_cast(digits); for (int i = 0; i < length(); i++) { *digit_storage = ByteReverse(*digit); digit_storage++; digit++; } #endif // V8_TARGET_BIG_ENDIAN } // The serialization format MUST NOT CHANGE without updating the format // version in value-serializer.cc! MaybeHandle BigInt::FromSerializedDigits( Isolate* isolate, uint32_t bitfield, Vector digits_storage, PretenureFlag pretenure) { int bytelength = LengthBits::decode(bitfield); DCHECK(digits_storage.length() == bytelength); bool sign = SignBits::decode(bitfield); int length = (bytelength + kDigitSize - 1) / kDigitSize; // Round up. Handle result = MutableBigInt::Cast(isolate->factory()->NewBigInt(length, pretenure)); result->initialize_bitfield(sign, length); void* digits = reinterpret_cast(reinterpret_cast
(*result) + kDigitsOffset - kHeapObjectTag); #if defined(V8_TARGET_LITTLE_ENDIAN) memcpy(digits, digits_storage.start(), bytelength); void* padding_start = reinterpret_cast(reinterpret_cast
(digits) + bytelength); memset(padding_start, 0, length * kDigitSize - bytelength); #elif defined(V8_TARGET_BIG_ENDIAN) digit_t* digit = reinterpret_cast(digits); const digit_t* digit_storage = reinterpret_cast(digits_storage.start()); for (int i = 0; i < bytelength / kDigitSize; i++) { *digit = ByteReverse(*digit_storage); digit_storage++; digit++; } if (bytelength % kDigitSize) { *digit = 0; byte* digit_byte = reinterpret_cast(digit); digit_byte += sizeof(*digit) - 1; const byte* digit_storage_byte = reinterpret_cast(digit_storage); for (int i = 0; i < bytelength % kDigitSize; i++) { *digit_byte = *digit_storage_byte; digit_byte--; digit_storage_byte++; } } #endif // V8_TARGET_BIG_ENDIAN return MutableBigInt::MakeImmutable(result); } static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; MaybeHandle MutableBigInt::ToStringBasePowerOfTwo(Isolate* isolate, Handle x, int radix) { STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits)); DCHECK(base::bits::IsPowerOfTwo(radix)); DCHECK(radix >= 2 && radix <= 32); DCHECK(!x->is_zero()); const int length = x->length(); const bool sign = x->sign(); const int bits_per_char = base::bits::CountTrailingZeros(radix); const int char_mask = radix - 1; // Compute the length of the resulting string: divide the bit length of the // BigInt by the number of bits representable per character (rounding up). const digit_t msd = x->digit(length - 1); const int msd_leading_zeros = base::bits::CountLeadingZeros(msd); const size_t bit_length = length * kDigitBits - msd_leading_zeros; const size_t chars_required = (bit_length + bits_per_char - 1) / bits_per_char + sign; if (chars_required > String::kMaxLength) { THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); } Handle result = isolate->factory() ->NewRawOneByteString(static_cast(chars_required)) .ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* buffer = result->GetChars(); // Print the number into the string, starting from the last position. int pos = static_cast(chars_required - 1); digit_t digit = 0; // Keeps track of how many unprocessed bits there are in {digit}. int available_bits = 0; for (int i = 0; i < length - 1; i++) { digit_t new_digit = x->digit(i); // Take any leftover bits from the last iteration into account. int current = (digit | (new_digit << available_bits)) & char_mask; buffer[pos--] = kConversionChars[current]; int consumed_bits = bits_per_char - available_bits; digit = new_digit >> consumed_bits; available_bits = kDigitBits - consumed_bits; while (available_bits >= bits_per_char) { buffer[pos--] = kConversionChars[digit & char_mask]; digit >>= bits_per_char; available_bits -= bits_per_char; } } // Take any leftover bits from the last iteration into account. int current = (digit | (msd << available_bits)) & char_mask; buffer[pos--] = kConversionChars[current]; digit = msd >> (bits_per_char - available_bits); while (digit != 0) { buffer[pos--] = kConversionChars[digit & char_mask]; digit >>= bits_per_char; } if (sign) buffer[pos--] = '-'; DCHECK_EQ(pos, -1); return result; } MaybeHandle MutableBigInt::ToStringGeneric(Isolate* isolate, Handle x, int radix) { DCHECK(radix >= 2 && radix <= 36); DCHECK(!x->is_zero()); Heap* heap = isolate->heap(); const int length = x->length(); const bool sign = x->sign(); // Compute (an overapproximation of) the length of the resulting string: // Divide bit length of the BigInt by bits representable per character. const size_t bit_length = length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1)); // Maximum number of bits we can represent with one character. We'll use this // to find an appropriate chunk size below. const uint8_t max_bits_per_char = kMaxBitsPerChar[radix]; // For estimating result length, we have to be pessimistic and work with // the minimum number of bits one character can represent. const uint8_t min_bits_per_char = max_bits_per_char - 1; // Perform the following computation with uint64_t to avoid overflows. uint64_t chars_required = bit_length; chars_required *= kBitsPerCharTableMultiplier; chars_required += min_bits_per_char - 1; // Round up. chars_required /= min_bits_per_char; chars_required += sign; if (chars_required > String::kMaxLength) { THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); } Handle result = isolate->factory() ->NewRawOneByteString(static_cast(chars_required)) .ToHandleChecked(); #if DEBUG // Zap the string first. { DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); for (int i = 0; i < static_cast(chars_required); i++) chars[i] = '?'; } #endif // We assemble the result string in reverse order, and then reverse it. // TODO(jkummerow): Consider building the string from the right, and // left-shifting it if the length estimate was too large. int pos = 0; digit_t last_digit; if (length == 1) { last_digit = x->digit(0); } else { int chunk_chars = kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char; digit_t chunk_divisor = digit_pow(radix, chunk_chars); // By construction of chunk_chars, there can't have been overflow. DCHECK_NE(chunk_divisor, 0); int nonzero_digit = length - 1; DCHECK_NE(x->digit(nonzero_digit), 0); // {rest} holds the part of the BigInt that we haven't looked at yet. // Not to be confused with "remainder"! Handle rest; // In the first round, divide the input, allocating a new BigInt for // the result == rest; from then on divide the rest in-place. Handle* dividend = &x; do { digit_t chunk; AbsoluteDivSmall(isolate, *dividend, chunk_divisor, &rest, &chunk); DCHECK(!rest.is_null()); dividend = reinterpret_cast*>(&rest); DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); for (int i = 0; i < chunk_chars; i++) { chars[pos++] = kConversionChars[chunk % radix]; chunk /= radix; } DCHECK_EQ(chunk, 0); if (rest->digit(nonzero_digit) == 0) nonzero_digit--; // We can never clear more than one digit per iteration, because // chunk_divisor is smaller than max digit value. DCHECK_GT(rest->digit(nonzero_digit), 0); } while (nonzero_digit > 0); last_digit = rest->digit(0); } DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); do { chars[pos++] = kConversionChars[last_digit % radix]; last_digit /= radix; } while (last_digit > 0); DCHECK_GE(pos, 1); DCHECK(pos <= static_cast(chars_required)); // Remove leading zeroes. while (pos > 1 && chars[pos - 1] == '0') pos--; if (sign) chars[pos++] = '-'; // Trim any over-allocation (which can happen due to conservative estimates). if (pos < static_cast(chars_required)) { result->synchronized_set_length(pos); int string_size = SeqOneByteString::SizeFor(static_cast(chars_required)); int needed_size = SeqOneByteString::SizeFor(pos); if (needed_size < string_size) { Address new_end = result->address() + needed_size; heap->CreateFillerObjectAt(new_end, (string_size - needed_size), ClearRecordedSlots::kNo); } } // Reverse the string. for (int i = 0, j = pos - 1; i < j; i++, j--) { uint8_t tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } #if DEBUG // Verify that all characters have been written. DCHECK(result->length() == pos); for (int i = 0; i < pos; i++) DCHECK_NE(chars[i], '?'); #endif return result; } Handle BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle x) { if (x->is_zero()) return x; if (n == 0) return MutableBigInt::Zero(isolate); uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits; uint64_t x_length = static_cast(x->length()); // If {x} has less than {n} bits, return it directly. if (x_length < needed_length) return x; DCHECK_LE(needed_length, kMaxInt); digit_t top_digit = x->digit(static_cast(needed_length) - 1); digit_t compare_digit = static_cast(1) << ((n - 1) % kDigitBits); if (x_length == needed_length && top_digit < compare_digit) return x; // Otherwise we have to truncate (which is a no-op in the special case // of x == -2^(n-1)), and determine the right sign. We also might have // to subtract from 2^n to simulate having two's complement representation. // In most cases, the result's sign is x->sign() xor "(n-1)th bit present". // The only exception is when x is negative, has the (n-1)th bit, and all // its bits below (n-1) are zero. In that case, the result is the minimum // n-bit integer (example: asIntN(3, -12n) => -4n). bool has_bit = (top_digit & compare_digit) == compare_digit; DCHECK_LE(n, kMaxInt); int N = static_cast(n); if (!has_bit) { return MutableBigInt::TruncateToNBits(isolate, N, x); } if (!x->sign()) { return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, true); } // Negative numbers must subtract from 2^n, except for the special case // described above. if ((top_digit & (compare_digit - 1)) == 0) { for (int i = static_cast(needed_length) - 2; i >= 0; i--) { if (x->digit(i) != 0) { return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, false); } } return MutableBigInt::TruncateToNBits(isolate, N, x); } return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, false); } MaybeHandle BigInt::AsUintN(Isolate* isolate, uint64_t n, Handle x) { if (x->is_zero()) return x; if (n == 0) return MutableBigInt::Zero(isolate); // If {x} is negative, simulate two's complement representation. if (x->sign()) { if (n > kMaxLengthBits) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } return MutableBigInt::TruncateAndSubFromPowerOfTwo( isolate, static_cast(n), x, false); } // If {x} is positive and has up to {n} bits, return it directly. if (n >= kMaxLengthBits) return x; STATIC_ASSERT(kMaxLengthBits < kMaxInt - kDigitBits); int needed_length = static_cast((n + kDigitBits - 1) / kDigitBits); if (x->length() < needed_length) return x; int bits_in_top_digit = n % kDigitBits; if (bits_in_top_digit == 0) { if (x->length() == needed_length) return x; } else { digit_t top_digit = x->digit(needed_length - 1); if ((top_digit >> bits_in_top_digit) == 0) return x; } // Otherwise, truncate. DCHECK_LE(n, kMaxInt); return MutableBigInt::TruncateToNBits(isolate, static_cast(n), x); } Handle MutableBigInt::TruncateToNBits(Isolate* isolate, int n, Handle x) { // Only call this when there's something to do. DCHECK_NE(n, 0); DCHECK_GT(x->length(), n / kDigitBits); int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; DCHECK_LE(needed_digits, x->length()); Handle result = New(isolate, needed_digits).ToHandleChecked(); // Copy all digits except the MSD. int last = needed_digits - 1; for (int i = 0; i < last; i++) { result->set_digit(i, x->digit(i)); } // The MSD might contain extra bits that we don't want. digit_t msd = x->digit(last); if (n % kDigitBits != 0) { int drop = kDigitBits - (n % kDigitBits); msd = (msd << drop) >> drop; } result->set_digit(last, msd); result->set_sign(x->sign()); return MakeImmutable(result); } // Subtracts the least significant n bits of abs(x) from 2^n. Handle MutableBigInt::TruncateAndSubFromPowerOfTwo(Isolate* isolate, int n, Handle x, bool result_sign) { DCHECK_NE(n, 0); DCHECK_LE(n, kMaxLengthBits); int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; DCHECK_LE(needed_digits, kMaxLength); // Follows from n <= kMaxLengthBits. Handle result = New(isolate, needed_digits).ToHandleChecked(); // Process all digits except the MSD. int i = 0; int last = needed_digits - 1; int x_length = x->length(); digit_t borrow = 0; // Take digits from {x} unless its length is exhausted. int limit = Min(last, x_length); for (; i < limit; i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(0, x->digit(i), &new_borrow); difference = digit_sub(difference, borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } // Then simulate leading zeroes in {x} as needed. for (; i < last; i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(0, borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } // The MSD might contain extra bits that we don't want. digit_t msd = last < x_length ? x->digit(last) : 0; int msd_bits_consumed = n % kDigitBits; digit_t result_msd; if (msd_bits_consumed == 0) { digit_t new_borrow = 0; result_msd = digit_sub(0, msd, &new_borrow); result_msd = digit_sub(result_msd, borrow, &new_borrow); } else { int drop = kDigitBits - msd_bits_consumed; msd = (msd << drop) >> drop; digit_t minuend_msd = static_cast(1) << (kDigitBits - drop); digit_t new_borrow = 0; result_msd = digit_sub(minuend_msd, msd, &new_borrow); result_msd = digit_sub(result_msd, borrow, &new_borrow); DCHECK_EQ(new_borrow, 0); // result < 2^n. // If all subtracted bits were zero, we have to get rid of the // materialized minuend_msd again. result_msd &= (minuend_msd - 1); } result->set_digit(last, result_msd); result->set_sign(result_sign); return MakeImmutable(result); } Handle BigInt::FromInt64(Isolate* isolate, int64_t n) { if (n == 0) return MutableBigInt::Zero(isolate); STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); int length = 64 / kDigitBits; Handle result = MutableBigInt::Cast(isolate->factory()->NewBigInt(length)); bool sign = n < 0; result->initialize_bitfield(sign, length); uint64_t absolute; if (!sign) { absolute = static_cast(n); } else { if (n == std::numeric_limits::min()) { absolute = static_cast(std::numeric_limits::max()) + 1; } else { absolute = static_cast(-n); } } result->set_64_bits(absolute); return MutableBigInt::MakeImmutable(result); } Handle BigInt::FromUint64(Isolate* isolate, uint64_t n) { if (n == 0) return MutableBigInt::Zero(isolate); STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); int length = 64 / kDigitBits; Handle result = MutableBigInt::Cast(isolate->factory()->NewBigInt(length)); result->initialize_bitfield(false, length); result->set_64_bits(n); return MutableBigInt::MakeImmutable(result); } MaybeHandle BigInt::FromWords64(Isolate* isolate, int sign_bit, int words64_count, const uint64_t* words) { if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } if (words64_count == 0) return MutableBigInt::Zero(isolate); STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); int length = (64 / kDigitBits) * words64_count; DCHECK_GT(length, 0); if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--; Handle result; if (!MutableBigInt::New(isolate, length).ToHandle(&result)) { return MaybeHandle(); } result->set_sign(sign_bit); if (kDigitBits == 64) { for (int i = 0; i < length; ++i) { result->set_digit(i, static_cast(words[i])); } } else { for (int i = 0; i < length; i += 2) { digit_t lo = static_cast(words[i / 2]); digit_t hi = static_cast(words[i / 2] >> 32); result->set_digit(i, lo); if (i + 1 < length) result->set_digit(i + 1, hi); } } return MutableBigInt::MakeImmutable(result); } int BigInt::Words64Count() { STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); return length() / (64 / kDigitBits) + (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0); } void BigInt::ToWordsArray64(int* sign_bit, int* words64_count, uint64_t* words) { DCHECK_NE(sign_bit, nullptr); DCHECK_NE(words64_count, nullptr); *sign_bit = sign(); int available_words = *words64_count; *words64_count = Words64Count(); if (available_words == 0) return; DCHECK_NE(words, nullptr); int len = length(); if (kDigitBits == 64) { for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i); } else { for (int i = 0; i < len && available_words > 0; i += 2) { uint64_t lo = digit(i); uint64_t hi = (i + 1) < len ? digit(i + 1) : 0; words[i / 2] = lo | (hi << 32); available_words--; } } } uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) { if (lossless != nullptr) *lossless = true; if (x->is_zero()) return 0; int len = x->length(); STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false; uint64_t raw = static_cast(x->digit(0)); if (kDigitBits == 32 && len > 1) { raw |= static_cast(x->digit(1)) << 32; } // Simulate two's complement. MSVC dislikes "-raw". return x->sign() ? ((~raw) + 1u) : raw; } int64_t BigInt::AsInt64(bool* lossless) { uint64_t raw = MutableBigInt::GetRawBits(this, lossless); int64_t result = static_cast(raw); if (lossless != nullptr && (result < 0) != sign()) *lossless = false; return result; } uint64_t BigInt::AsUint64(bool* lossless) { uint64_t result = MutableBigInt::GetRawBits(this, lossless); if (lossless != nullptr && sign()) *lossless = false; return result; } // Digit arithmetic helpers. #if V8_TARGET_ARCH_32_BIT #define HAVE_TWODIGIT_T 1 typedef uint64_t twodigit_t; #elif defined(__SIZEOF_INT128__) // Both Clang and GCC support this on x64. #define HAVE_TWODIGIT_T 1 typedef __uint128_t twodigit_t; #endif // {carry} must point to an initialized digit_t and will either be incremented // by one or left alone. inline BigInt::digit_t MutableBigInt::digit_add(digit_t a, digit_t b, digit_t* carry) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) + static_cast(b); *carry += result >> kDigitBits; return static_cast(result); #else digit_t result = a + b; if (result < a) *carry += 1; return result; #endif } // {borrow} must point to an initialized digit_t and will either be incremented // by one or left alone. inline BigInt::digit_t MutableBigInt::digit_sub(digit_t a, digit_t b, digit_t* borrow) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) - static_cast(b); *borrow += (result >> kDigitBits) & 1; return static_cast(result); #else digit_t result = a - b; if (result > a) *borrow += 1; return static_cast(result); #endif } // Returns the low half of the result. High half is in {high}. inline BigInt::digit_t MutableBigInt::digit_mul(digit_t a, digit_t b, digit_t* high) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) * static_cast(b); *high = result >> kDigitBits; return static_cast(result); #else // Multiply in half-pointer-sized chunks. // For inputs [AH AL]*[BH BL], the result is: // // [AL*BL] // r_low // + [AL*BH] // r_mid1 // + [AH*BL] // r_mid2 // + [AH*BH] // r_high // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] // // Where of course we must be careful with carries between the columns. digit_t a_low = a & kHalfDigitMask; digit_t a_high = a >> kHalfDigitBits; digit_t b_low = b & kHalfDigitMask; digit_t b_high = b >> kHalfDigitBits; digit_t r_low = a_low * b_low; digit_t r_mid1 = a_low * b_high; digit_t r_mid2 = a_high * b_low; digit_t r_high = a_high * b_high; digit_t carry = 0; digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry); low = digit_add(low, r_mid2 << kHalfDigitBits, &carry); *high = (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry; return low; #endif } // Returns the quotient. // quotient = (high << kDigitBits + low - remainder) / divisor BigInt::digit_t MutableBigInt::digit_div(digit_t high, digit_t low, digit_t divisor, digit_t* remainder) { DCHECK(high < divisor); #if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__) digit_t quotient; digit_t rem; __asm__("divq %[divisor]" // Outputs: {quotient} will be in rax, {rem} in rdx. : "=a"(quotient), "=d"(rem) // Inputs: put {high} into rdx, {low} into rax, and {divisor} into // any register or stack slot. : "d"(high), "a"(low), [divisor] "rm"(divisor)); *remainder = rem; return quotient; #elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__) digit_t quotient; digit_t rem; __asm__("divl %[divisor]" // Outputs: {quotient} will be in eax, {rem} in edx. : "=a"(quotient), "=d"(rem) // Inputs: put {high} into edx, {low} into eax, and {divisor} into // any register or stack slot. : "d"(high), "a"(low), [divisor] "rm"(divisor)); *remainder = rem; return quotient; #else static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits; // Adapted from Warren, Hacker's Delight, p. 152. int s = base::bits::CountLeadingZeros(divisor); DCHECK_NE(s, kDigitBits); // {divisor} is not 0. divisor <<= s; digit_t vn1 = divisor >> kHalfDigitBits; digit_t vn0 = divisor & kHalfDigitMask; // {s} can be 0. {low >> kDigitBits} would be undefined behavior, so // we mask the shift amount with {kShiftMask}, and the result with // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise. STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t)); const int kShiftMask = kDigitBits - 1; digit_t s_zero_mask = static_cast(static_cast(-s) >> (kDigitBits - 1)); digit_t un32 = (high << s) | ((low >> ((kDigitBits - s) & kShiftMask)) & s_zero_mask); digit_t un10 = low << s; digit_t un1 = un10 >> kHalfDigitBits; digit_t un0 = un10 & kHalfDigitMask; digit_t q1 = un32 / vn1; digit_t rhat = un32 - q1 * vn1; while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) { q1--; rhat += vn1; if (rhat >= kHalfDigitBase) break; } digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor; digit_t q0 = un21 / vn1; rhat = un21 - q0 * vn1; while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) { q0--; rhat += vn1; if (rhat >= kHalfDigitBase) break; } *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s; return q1 * kHalfDigitBase + q0; #endif } // Raises {base} to the power of {exponent}. Does not check for overflow. BigInt::digit_t MutableBigInt::digit_pow(digit_t base, digit_t exponent) { digit_t result = 1ull; while (exponent > 0) { if (exponent & 1) { result *= base; } exponent >>= 1; base *= base; } return result; } #undef HAVE_TWODIGIT_T void MutableBigInt::set_64_bits(uint64_t bits) { STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); if (kDigitBits == 64) { set_digit(0, static_cast(bits)); } else { set_digit(0, static_cast(bits & 0xFFFFFFFFu)); set_digit(1, static_cast(bits >> 32)); } } #ifdef OBJECT_PRINT void BigInt::BigIntPrint(std::ostream& os) { DisallowHeapAllocation no_gc; HeapObject::PrintHeader(os, "BigInt"); int len = length(); os << "\n- length: " << len; os << "\n- sign: " << sign(); if (len > 0) { os << "\n- digits:"; for (int i = 0; i < len; i++) { os << "\n 0x" << std::hex << digit(i); } } os << std::dec << "\n"; } #endif // OBJECT_PRINT } // namespace internal } // namespace v8