summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/store-buffer.cc
blob: 349e7877409c8027f08e237b418945a9fa3c6945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/store-buffer.h"

#include <algorithm>

#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/base/template-utils.h"
#include "src/execution/isolate.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/store-buffer-inl.h"
#include "src/init/v8.h"
#include "src/logging/counters.h"
#include "src/objects/objects-inl.h"

namespace v8 {
namespace internal {

StoreBuffer::StoreBuffer(Heap* heap)
    : heap_(heap), top_(nullptr), current_(0), mode_(NOT_IN_GC) {
  for (int i = 0; i < kStoreBuffers; i++) {
    start_[i] = nullptr;
    limit_[i] = nullptr;
    lazy_top_[i] = nullptr;
  }
  task_running_ = false;
  insertion_callback = &InsertDuringRuntime;
}

void StoreBuffer::SetUp() {
  v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
  // Round up the requested size in order to fulfill the VirtualMemory's
  // requrements on the requested size alignment. This may cause a bit of
  // memory wastage if the actual CommitPageSize() will be bigger than the
  // kMinExpectedOSPageSize value but this is a trade-off for keeping the
  // store buffer overflow check in write barriers cheap.
  const size_t requested_size = RoundUp(kStoreBufferSize * kStoreBuffers,
                                        page_allocator->CommitPageSize());
  // Allocate buffer memory aligned at least to kStoreBufferSize. This lets us
  // use a bit test to detect the ends of the buffers.
  STATIC_ASSERT(base::bits::IsPowerOfTwo(kStoreBufferSize));
  const size_t alignment =
      std::max<size_t>(kStoreBufferSize, page_allocator->AllocatePageSize());
  void* hint = AlignedAddress(heap_->GetRandomMmapAddr(), alignment);
  VirtualMemory reservation(page_allocator, requested_size, hint, alignment);
  if (!reservation.IsReserved()) {
    heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp");
  }

  Address start = reservation.address();
  const size_t allocated_size = reservation.size();

  start_[0] = reinterpret_cast<Address*>(start);
  limit_[0] = start_[0] + (kStoreBufferSize / kSystemPointerSize);
  start_[1] = limit_[0];
  limit_[1] = start_[1] + (kStoreBufferSize / kSystemPointerSize);

  // Sanity check the buffers.
  Address* vm_limit = reinterpret_cast<Address*>(start + allocated_size);
  USE(vm_limit);
  for (int i = 0; i < kStoreBuffers; i++) {
    DCHECK(reinterpret_cast<Address>(start_[i]) >= reservation.address());
    DCHECK(reinterpret_cast<Address>(limit_[i]) >= reservation.address());
    DCHECK(start_[i] <= vm_limit);
    DCHECK(limit_[i] <= vm_limit);
    DCHECK_EQ(0, reinterpret_cast<Address>(limit_[i]) & kStoreBufferMask);
  }

  // Set RW permissions only on the pages we use.
  const size_t used_size = RoundUp(requested_size, CommitPageSize());
  if (!reservation.SetPermissions(start, used_size,
                                  PageAllocator::kReadWrite)) {
    heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp");
  }
  current_ = 0;
  top_ = start_[current_];
  virtual_memory_ = std::move(reservation);
}

void StoreBuffer::TearDown() {
  if (virtual_memory_.IsReserved()) virtual_memory_.Free();
  top_ = nullptr;
  for (int i = 0; i < kStoreBuffers; i++) {
    start_[i] = nullptr;
    limit_[i] = nullptr;
    lazy_top_[i] = nullptr;
  }
}

void StoreBuffer::InsertDuringRuntime(StoreBuffer* store_buffer, Address slot) {
  DCHECK(store_buffer->mode() == StoreBuffer::NOT_IN_GC);
  store_buffer->InsertIntoStoreBuffer(slot);
}

void StoreBuffer::InsertDuringGarbageCollection(StoreBuffer* store_buffer,
                                                Address slot) {
  DCHECK(store_buffer->mode() != StoreBuffer::NOT_IN_GC);
  RememberedSet<OLD_TO_NEW>::Insert(Page::FromAddress(slot), slot);
}

void StoreBuffer::SetMode(StoreBufferMode mode) {
  mode_ = mode;
  if (mode == NOT_IN_GC) {
    insertion_callback = &InsertDuringRuntime;
  } else {
    insertion_callback = &InsertDuringGarbageCollection;
  }
}

int StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
  isolate->heap()->store_buffer()->FlipStoreBuffers();
  isolate->counters()->store_buffer_overflows()->Increment();
  // Called by RecordWriteCodeStubAssembler, which doesnt accept void type
  return 0;
}

void StoreBuffer::FlipStoreBuffers() {
  base::MutexGuard guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  lazy_top_[current_] = top_;
  current_ = other;
  top_ = start_[current_];

  if (!task_running_ && FLAG_concurrent_store_buffer) {
    task_running_ = true;
    V8::GetCurrentPlatform()->CallOnWorkerThread(
        base::make_unique<Task>(heap_->isolate(), this));
  }
}

void StoreBuffer::MoveEntriesToRememberedSet(int index) {
  if (!lazy_top_[index]) return;
  DCHECK_GE(index, 0);
  DCHECK_LT(index, kStoreBuffers);
  Address last_inserted_addr = kNullAddress;
  MemoryChunk* chunk = nullptr;

  for (Address* current = start_[index]; current < lazy_top_[index];
       current++) {
    Address addr = *current;
    if (chunk == nullptr ||
        MemoryChunk::BaseAddress(addr) != chunk->address()) {
      chunk = MemoryChunk::FromAnyPointerAddress(addr);
    }
    if (addr != last_inserted_addr) {
      RememberedSet<OLD_TO_NEW>::Insert(chunk, addr);
      last_inserted_addr = addr;
    }
  }
  lazy_top_[index] = nullptr;
}

void StoreBuffer::MoveAllEntriesToRememberedSet() {
  base::MutexGuard guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  lazy_top_[current_] = top_;
  MoveEntriesToRememberedSet(current_);
  top_ = start_[current_];
}

void StoreBuffer::ConcurrentlyProcessStoreBuffer() {
  base::MutexGuard guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  task_running_ = false;
}

}  // namespace internal
}  // namespace v8