// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/store-buffer.h" #include #include "src/base/bits.h" #include "src/base/macros.h" #include "src/base/template-utils.h" #include "src/execution/isolate.h" #include "src/heap/incremental-marking.h" #include "src/heap/store-buffer-inl.h" #include "src/init/v8.h" #include "src/logging/counters.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { StoreBuffer::StoreBuffer(Heap* heap) : heap_(heap), top_(nullptr), current_(0), mode_(NOT_IN_GC) { for (int i = 0; i < kStoreBuffers; i++) { start_[i] = nullptr; limit_[i] = nullptr; lazy_top_[i] = nullptr; } task_running_ = false; insertion_callback = &InsertDuringRuntime; } void StoreBuffer::SetUp() { v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); // Round up the requested size in order to fulfill the VirtualMemory's // requrements on the requested size alignment. This may cause a bit of // memory wastage if the actual CommitPageSize() will be bigger than the // kMinExpectedOSPageSize value but this is a trade-off for keeping the // store buffer overflow check in write barriers cheap. const size_t requested_size = RoundUp(kStoreBufferSize * kStoreBuffers, page_allocator->CommitPageSize()); // Allocate buffer memory aligned at least to kStoreBufferSize. This lets us // use a bit test to detect the ends of the buffers. STATIC_ASSERT(base::bits::IsPowerOfTwo(kStoreBufferSize)); const size_t alignment = std::max(kStoreBufferSize, page_allocator->AllocatePageSize()); void* hint = AlignedAddress(heap_->GetRandomMmapAddr(), alignment); VirtualMemory reservation(page_allocator, requested_size, hint, alignment); if (!reservation.IsReserved()) { heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp"); } Address start = reservation.address(); const size_t allocated_size = reservation.size(); start_[0] = reinterpret_cast(start); limit_[0] = start_[0] + (kStoreBufferSize / kSystemPointerSize); start_[1] = limit_[0]; limit_[1] = start_[1] + (kStoreBufferSize / kSystemPointerSize); // Sanity check the buffers. Address* vm_limit = reinterpret_cast(start + allocated_size); USE(vm_limit); for (int i = 0; i < kStoreBuffers; i++) { DCHECK(reinterpret_cast
(start_[i]) >= reservation.address()); DCHECK(reinterpret_cast
(limit_[i]) >= reservation.address()); DCHECK(start_[i] <= vm_limit); DCHECK(limit_[i] <= vm_limit); DCHECK_EQ(0, reinterpret_cast
(limit_[i]) & kStoreBufferMask); } // Set RW permissions only on the pages we use. const size_t used_size = RoundUp(requested_size, CommitPageSize()); if (!reservation.SetPermissions(start, used_size, PageAllocator::kReadWrite)) { heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp"); } current_ = 0; top_ = start_[current_]; virtual_memory_ = std::move(reservation); } void StoreBuffer::TearDown() { if (virtual_memory_.IsReserved()) virtual_memory_.Free(); top_ = nullptr; for (int i = 0; i < kStoreBuffers; i++) { start_[i] = nullptr; limit_[i] = nullptr; lazy_top_[i] = nullptr; } } void StoreBuffer::InsertDuringRuntime(StoreBuffer* store_buffer, Address slot) { DCHECK(store_buffer->mode() == StoreBuffer::NOT_IN_GC); store_buffer->InsertIntoStoreBuffer(slot); } void StoreBuffer::InsertDuringGarbageCollection(StoreBuffer* store_buffer, Address slot) { DCHECK(store_buffer->mode() != StoreBuffer::NOT_IN_GC); RememberedSet::Insert(Page::FromAddress(slot), slot); } void StoreBuffer::SetMode(StoreBufferMode mode) { mode_ = mode; if (mode == NOT_IN_GC) { insertion_callback = &InsertDuringRuntime; } else { insertion_callback = &InsertDuringGarbageCollection; } } int StoreBuffer::StoreBufferOverflow(Isolate* isolate) { isolate->heap()->store_buffer()->FlipStoreBuffers(); isolate->counters()->store_buffer_overflows()->Increment(); // Called by RecordWriteCodeStubAssembler, which doesnt accept void type return 0; } void StoreBuffer::FlipStoreBuffers() { base::MutexGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); lazy_top_[current_] = top_; current_ = other; top_ = start_[current_]; if (!task_running_ && FLAG_concurrent_store_buffer) { task_running_ = true; V8::GetCurrentPlatform()->CallOnWorkerThread( base::make_unique(heap_->isolate(), this)); } } void StoreBuffer::MoveEntriesToRememberedSet(int index) { if (!lazy_top_[index]) return; DCHECK_GE(index, 0); DCHECK_LT(index, kStoreBuffers); Address last_inserted_addr = kNullAddress; MemoryChunk* chunk = nullptr; for (Address* current = start_[index]; current < lazy_top_[index]; current++) { Address addr = *current; if (chunk == nullptr || MemoryChunk::BaseAddress(addr) != chunk->address()) { chunk = MemoryChunk::FromAnyPointerAddress(addr); } if (addr != last_inserted_addr) { RememberedSet::Insert(chunk, addr); last_inserted_addr = addr; } } lazy_top_[index] = nullptr; } void StoreBuffer::MoveAllEntriesToRememberedSet() { base::MutexGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); lazy_top_[current_] = top_; MoveEntriesToRememberedSet(current_); top_ = start_[current_]; } void StoreBuffer::ConcurrentlyProcessStoreBuffer() { base::MutexGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); task_running_ = false; } } // namespace internal } // namespace v8