summaryrefslogtreecommitdiff
path: root/tools/inspector_protocol/lib/CBOR_cpp.template
blob: 36750b19a3c935c966ea818b9993608fb083427e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
{# This template is generated by gen_cbor_templates.py. #}
// Generated by lib/CBOR_cpp.template.

// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


#include <cassert>
#include <limits>

{% for namespace in config.protocol.namespace %}
namespace {{namespace}} {
{% endfor %}

// ===== encoding/cbor.cc =====

using namespace cbor;

namespace {

// See RFC 7049 Section 2.3, Table 2.
static constexpr uint8_t kEncodedTrue =
    EncodeInitialByte(MajorType::SIMPLE_VALUE, 21);
static constexpr uint8_t kEncodedFalse =
    EncodeInitialByte(MajorType::SIMPLE_VALUE, 20);
static constexpr uint8_t kEncodedNull =
    EncodeInitialByte(MajorType::SIMPLE_VALUE, 22);
static constexpr uint8_t kInitialByteForDouble =
    EncodeInitialByte(MajorType::SIMPLE_VALUE, 27);

}  // namespace

uint8_t EncodeTrue() { return kEncodedTrue; }
uint8_t EncodeFalse() { return kEncodedFalse; }
uint8_t EncodeNull() { return kEncodedNull; }

uint8_t EncodeIndefiniteLengthArrayStart() {
  return kInitialByteIndefiniteLengthArray;
}

uint8_t EncodeIndefiniteLengthMapStart() {
  return kInitialByteIndefiniteLengthMap;
}

uint8_t EncodeStop() { return kStopByte; }

namespace {
// See RFC 7049 Table 3 and Section 2.4.4.2. This is used as a prefix for
// arbitrary binary data encoded as BYTE_STRING.
static constexpr uint8_t kExpectedConversionToBase64Tag =
    EncodeInitialByte(MajorType::TAG, 22);

// When parsing CBOR, we limit recursion depth for objects and arrays
// to this constant.
static constexpr int kStackLimit = 1000;

// Writes the bytes for |v| to |out|, starting with the most significant byte.
// See also: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
template <typename T>
void WriteBytesMostSignificantByteFirst(T v, std::vector<uint8_t>* out) {
  for (int shift_bytes = sizeof(T) - 1; shift_bytes >= 0; --shift_bytes)
    out->push_back(0xff & (v >> (shift_bytes * 8)));
}
}  // namespace

namespace cbor_internals {
// Writes the start of a token with |type|. The |value| may indicate the size,
// or it may be the payload if the value is an unsigned integer.
void WriteTokenStart(MajorType type, uint64_t value,
                     std::vector<uint8_t>* encoded) {
  if (value < 24) {
    // Values 0-23 are encoded directly into the additional info of the
    // initial byte.
    encoded->push_back(EncodeInitialByte(type, /*additional_info=*/value));
    return;
  }
  if (value <= std::numeric_limits<uint8_t>::max()) {
    // Values 24-255 are encoded with one initial byte, followed by the value.
    encoded->push_back(EncodeInitialByte(type, kAdditionalInformation1Byte));
    encoded->push_back(value);
    return;
  }
  if (value <= std::numeric_limits<uint16_t>::max()) {
    // Values 256-65535: 1 initial byte + 2 bytes payload.
    encoded->push_back(EncodeInitialByte(type, kAdditionalInformation2Bytes));
    WriteBytesMostSignificantByteFirst<uint16_t>(value, encoded);
    return;
  }
  if (value <= std::numeric_limits<uint32_t>::max()) {
    // 32 bit uint: 1 initial byte + 4 bytes payload.
    encoded->push_back(EncodeInitialByte(type, kAdditionalInformation4Bytes));
    WriteBytesMostSignificantByteFirst<uint32_t>(static_cast<uint32_t>(value),
                                                 encoded);
    return;
  }
  // 64 bit uint: 1 initial byte + 8 bytes payload.
  encoded->push_back(EncodeInitialByte(type, kAdditionalInformation8Bytes));
  WriteBytesMostSignificantByteFirst<uint64_t>(value, encoded);
}
}  // namespace cbor_internals

namespace {
// Extracts sizeof(T) bytes from |in| to extract a value of type T
// (e.g. uint64_t, uint32_t, ...), most significant byte first.
// See also: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
template <typename T>
T ReadBytesMostSignificantByteFirst(span<uint8_t> in) {
  assert(static_cast<std::size_t>(in.size()) >= sizeof(T));
  T result = 0;
  for (std::size_t shift_bytes = 0; shift_bytes < sizeof(T); ++shift_bytes)
    result |= T(in[sizeof(T) - 1 - shift_bytes]) << (shift_bytes * 8);
  return result;
}
}  // namespace

namespace cbor_internals {
int8_t ReadTokenStart(span<uint8_t> bytes, MajorType* type, uint64_t* value) {
  if (bytes.empty()) return -1;
  uint8_t initial_byte = bytes[0];
  *type = MajorType((initial_byte & kMajorTypeMask) >> kMajorTypeBitShift);

  uint8_t additional_information = initial_byte & kAdditionalInformationMask;
  if (additional_information < 24) {
    // Values 0-23 are encoded directly into the additional info of the
    // initial byte.
    *value = additional_information;
    return 1;
  }
  if (additional_information == kAdditionalInformation1Byte) {
    // Values 24-255 are encoded with one initial byte, followed by the value.
    if (bytes.size() < 2) return -1;
    *value = ReadBytesMostSignificantByteFirst<uint8_t>(bytes.subspan(1));
    return 2;
  }
  if (additional_information == kAdditionalInformation2Bytes) {
    // Values 256-65535: 1 initial byte + 2 bytes payload.
    if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint16_t))
      return -1;
    *value = ReadBytesMostSignificantByteFirst<uint16_t>(bytes.subspan(1));
    return 3;
  }
  if (additional_information == kAdditionalInformation4Bytes) {
    // 32 bit uint: 1 initial byte + 4 bytes payload.
    if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint32_t))
      return -1;
    *value = ReadBytesMostSignificantByteFirst<uint32_t>(bytes.subspan(1));
    return 5;
  }
  if (additional_information == kAdditionalInformation8Bytes) {
    // 64 bit uint: 1 initial byte + 8 bytes payload.
    if (static_cast<std::size_t>(bytes.size()) < 1 + sizeof(uint64_t))
      return -1;
    *value = ReadBytesMostSignificantByteFirst<uint64_t>(bytes.subspan(1));
    return 9;
  }
  return -1;
}
}  // namespace cbor_internals

using cbor_internals::WriteTokenStart;
using cbor_internals::ReadTokenStart;

void EncodeInt32(int32_t value, std::vector<uint8_t>* out) {
  if (value >= 0) {
    WriteTokenStart(MajorType::UNSIGNED, value, out);
  } else {
    uint64_t representation = static_cast<uint64_t>(-(value + 1));
    WriteTokenStart(MajorType::NEGATIVE, representation, out);
  }
}

void EncodeString16(span<uint16_t> in, std::vector<uint8_t>* out) {
  uint64_t byte_length = static_cast<uint64_t>(in.size_bytes());
  WriteTokenStart(MajorType::BYTE_STRING, byte_length, out);
  // When emitting UTF16 characters, we always write the least significant byte
  // first; this is because it's the native representation for X86.
  // TODO(johannes): Implement a more efficient thing here later, e.g.
  // casting *iff* the machine has this byte order.
  // The wire format for UTF16 chars will probably remain the same
  // (least significant byte first) since this way we can have
  // golden files, unittests, etc. that port easily and universally.
  // See also:
  // https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
  for (const uint16_t two_bytes : in) {
    out->push_back(two_bytes);
    out->push_back(two_bytes >> 8);
  }
}

void EncodeString8(span<uint8_t> in, std::vector<uint8_t>* out) {
  WriteTokenStart(MajorType::STRING, static_cast<uint64_t>(in.size_bytes()),
                  out);
  out->insert(out->end(), in.begin(), in.end());
}

void EncodeBinary(span<uint8_t> in, std::vector<uint8_t>* out) {
  out->push_back(kExpectedConversionToBase64Tag);
  uint64_t byte_length = static_cast<uint64_t>(in.size_bytes());
  WriteTokenStart(MajorType::BYTE_STRING, byte_length, out);
  out->insert(out->end(), in.begin(), in.end());
}

// A double is encoded with a specific initial byte
// (kInitialByteForDouble) plus the 64 bits of payload for its value.
constexpr std::ptrdiff_t kEncodedDoubleSize = 1 + sizeof(uint64_t);

// An envelope is encoded with a specific initial byte
// (kInitialByteForEnvelope), plus the start byte for a BYTE_STRING with a 32
// bit wide length, plus a 32 bit length for that string.
constexpr std::ptrdiff_t kEncodedEnvelopeHeaderSize = 1 + 1 + sizeof(uint32_t);

void EncodeDouble(double value, std::vector<uint8_t>* out) {
  // The additional_info=27 indicates 64 bits for the double follow.
  // See RFC 7049 Section 2.3, Table 1.
  out->push_back(kInitialByteForDouble);
  union {
    double from_double;
    uint64_t to_uint64;
  } reinterpret;
  reinterpret.from_double = value;
  WriteBytesMostSignificantByteFirst<uint64_t>(reinterpret.to_uint64, out);
}

void EnvelopeEncoder::EncodeStart(std::vector<uint8_t>* out) {
  assert(byte_size_pos_ == 0);
  out->push_back(kInitialByteForEnvelope);
  out->push_back(kInitialByteFor32BitLengthByteString);
  byte_size_pos_ = out->size();
  out->resize(out->size() + sizeof(uint32_t));
}

bool EnvelopeEncoder::EncodeStop(std::vector<uint8_t>* out) {
  assert(byte_size_pos_ != 0);
  // The byte size is the size of the payload, that is, all the
  // bytes that were written past the byte size position itself.
  uint64_t byte_size = out->size() - (byte_size_pos_ + sizeof(uint32_t));
  // We store exactly 4 bytes, so at most INT32MAX, with most significant
  // byte first.
  if (byte_size > std::numeric_limits<uint32_t>::max()) return false;
  for (int shift_bytes = sizeof(uint32_t) - 1; shift_bytes >= 0;
       --shift_bytes) {
    (*out)[byte_size_pos_++] = 0xff & (byte_size >> (shift_bytes * 8));
  }
  return true;
}

namespace {
class JSONToCBOREncoder : public JSONParserHandler {
 public:
  JSONToCBOREncoder(std::vector<uint8_t>* out, Status* status)
      : out_(out), status_(status) {
    *status_ = Status();
  }

  void HandleObjectBegin() override {
    envelopes_.emplace_back();
    envelopes_.back().EncodeStart(out_);
    out_->push_back(kInitialByteIndefiniteLengthMap);
  }

  void HandleObjectEnd() override {
    out_->push_back(kStopByte);
    assert(!envelopes_.empty());
    envelopes_.back().EncodeStop(out_);
    envelopes_.pop_back();
  }

  void HandleArrayBegin() override {
    envelopes_.emplace_back();
    envelopes_.back().EncodeStart(out_);
    out_->push_back(kInitialByteIndefiniteLengthArray);
  }

  void HandleArrayEnd() override {
    out_->push_back(kStopByte);
    assert(!envelopes_.empty());
    envelopes_.back().EncodeStop(out_);
    envelopes_.pop_back();
  }

  void HandleString16(std::vector<uint16_t> chars) override {
    for (uint16_t ch : chars) {
      if (ch >= 0x7f) {
        // If there's at least one non-7bit character, we encode as UTF16.
        EncodeString16(span<uint16_t>(chars.data(), chars.size()), out_);
        return;
      }
    }
    std::vector<uint8_t> sevenbit_chars(chars.begin(), chars.end());
    EncodeString8(span<uint8_t>(sevenbit_chars.data(), sevenbit_chars.size()),
                  out_);
  }

  void HandleBinary(std::vector<uint8_t> bytes) override {
    EncodeBinary(span<uint8_t>(bytes.data(), bytes.size()), out_);
  }

  void HandleDouble(double value) override { EncodeDouble(value, out_); }

  void HandleInt32(int32_t value) override { EncodeInt32(value, out_); }

  void HandleBool(bool value) override {
    // See RFC 7049 Section 2.3, Table 2.
    out_->push_back(value ? kEncodedTrue : kEncodedFalse);
  }

  void HandleNull() override {
    // See RFC 7049 Section 2.3, Table 2.
    out_->push_back(kEncodedNull);
  }

  void HandleError(Status error) override {
    assert(!error.ok());
    *status_ = error;
    out_->clear();
  }

 private:
  std::vector<uint8_t>* out_;
  std::vector<EnvelopeEncoder> envelopes_;
  Status* status_;
};
}  // namespace

std::unique_ptr<JSONParserHandler> NewJSONToCBOREncoder(
    std::vector<uint8_t>* out, Status* status) {
  return std::unique_ptr<JSONParserHandler>(new JSONToCBOREncoder(out, status));
}

namespace {
// Below are three parsing routines for CBOR, which cover enough
// to roundtrip JSON messages.
bool ParseMap(int32_t stack_depth, CBORTokenizer* tokenizer,
              JSONParserHandler* out);
bool ParseArray(int32_t stack_depth, CBORTokenizer* tokenizer,
                JSONParserHandler* out);
bool ParseValue(int32_t stack_depth, CBORTokenizer* tokenizer,
                JSONParserHandler* out);

void ParseUTF16String(CBORTokenizer* tokenizer, JSONParserHandler* out) {
  std::vector<uint16_t> value;
  span<uint8_t> rep = tokenizer->GetString16WireRep();
  for (std::ptrdiff_t ii = 0; ii < rep.size(); ii += 2)
    value.push_back((rep[ii + 1] << 8) | rep[ii]);
  out->HandleString16(std::move(value));
  tokenizer->Next();
}

// For now this method only covers US-ASCII. Later, we may allow UTF8.
bool ParseASCIIString(CBORTokenizer* tokenizer, JSONParserHandler* out) {
  assert(tokenizer->TokenTag() == CBORTokenTag::STRING8);
  std::vector<uint16_t> value16;
  for (uint8_t ch : tokenizer->GetString8()) {
    // We only accept us-ascii (7 bit) strings here. Other strings must
    // be encoded with 16 bit (the BYTE_STRING case).
    if (ch >= 0x7f) {
      out->HandleError(
          Status{Error::CBOR_STRING8_MUST_BE_7BIT, tokenizer->Status().pos});
      return false;
    }
    value16.push_back(ch);
  }
  out->HandleString16(std::move(value16));
  tokenizer->Next();
  return true;
}

bool ParseValue(int32_t stack_depth, CBORTokenizer* tokenizer,
                JSONParserHandler* out) {
  if (stack_depth > kStackLimit) {
    out->HandleError(
        Status{Error::CBOR_STACK_LIMIT_EXCEEDED, tokenizer->Status().pos});
    return false;
  }
  // Skip past the envelope to get to what's inside.
  if (tokenizer->TokenTag() == CBORTokenTag::ENVELOPE)
    tokenizer->EnterEnvelope();
  switch (tokenizer->TokenTag()) {
    case CBORTokenTag::ERROR_VALUE:
      out->HandleError(tokenizer->Status());
      return false;
    case CBORTokenTag::DONE:
      out->HandleError(Status{Error::CBOR_UNEXPECTED_EOF_EXPECTED_VALUE,
                              tokenizer->Status().pos});
      return false;
    case CBORTokenTag::TRUE_VALUE:
      out->HandleBool(true);
      tokenizer->Next();
      return true;
    case CBORTokenTag::FALSE_VALUE:
      out->HandleBool(false);
      tokenizer->Next();
      return true;
    case CBORTokenTag::NULL_VALUE:
      out->HandleNull();
      tokenizer->Next();
      return true;
    case CBORTokenTag::INT32:
      out->HandleInt32(tokenizer->GetInt32());
      tokenizer->Next();
      return true;
    case CBORTokenTag::DOUBLE:
      out->HandleDouble(tokenizer->GetDouble());
      tokenizer->Next();
      return true;
    case CBORTokenTag::STRING8:
      return ParseASCIIString(tokenizer, out);
    case CBORTokenTag::STRING16:
      ParseUTF16String(tokenizer, out);
      return true;
    case CBORTokenTag::BINARY: {
      span<uint8_t> binary = tokenizer->GetBinary();
      out->HandleBinary(std::vector<uint8_t>(binary.begin(), binary.end()));
      tokenizer->Next();
      return true;
    }
    case CBORTokenTag::MAP_START:
      return ParseMap(stack_depth + 1, tokenizer, out);
    case CBORTokenTag::ARRAY_START:
      return ParseArray(stack_depth + 1, tokenizer, out);
    default:
      out->HandleError(
          Status{Error::CBOR_UNSUPPORTED_VALUE, tokenizer->Status().pos});
      return false;
  }
}

// |bytes| must start with the indefinite length array byte, so basically,
// ParseArray may only be called after an indefinite length array has been
// detected.
bool ParseArray(int32_t stack_depth, CBORTokenizer* tokenizer,
                JSONParserHandler* out) {
  assert(tokenizer->TokenTag() == CBORTokenTag::ARRAY_START);
  tokenizer->Next();
  out->HandleArrayBegin();
  while (tokenizer->TokenTag() != CBORTokenTag::STOP) {
    if (tokenizer->TokenTag() == CBORTokenTag::DONE) {
      out->HandleError(
          Status{Error::CBOR_UNEXPECTED_EOF_IN_ARRAY, tokenizer->Status().pos});
      return false;
    }
    if (tokenizer->TokenTag() == CBORTokenTag::ERROR_VALUE) {
      out->HandleError(tokenizer->Status());
      return false;
    }
    // Parse value.
    if (!ParseValue(stack_depth, tokenizer, out)) return false;
  }
  out->HandleArrayEnd();
  tokenizer->Next();
  return true;
}

// |bytes| must start with the indefinite length array byte, so basically,
// ParseArray may only be called after an indefinite length array has been
// detected.
bool ParseMap(int32_t stack_depth, CBORTokenizer* tokenizer,
              JSONParserHandler* out) {
  assert(tokenizer->TokenTag() == CBORTokenTag::MAP_START);
  out->HandleObjectBegin();
  tokenizer->Next();
  while (tokenizer->TokenTag() != CBORTokenTag::STOP) {
    if (tokenizer->TokenTag() == CBORTokenTag::DONE) {
      out->HandleError(
          Status{Error::CBOR_UNEXPECTED_EOF_IN_MAP, tokenizer->Status().pos});
      return false;
    }
    if (tokenizer->TokenTag() == CBORTokenTag::ERROR_VALUE) {
      out->HandleError(tokenizer->Status());
      return false;
    }
    // Parse key.
    if (tokenizer->TokenTag() == CBORTokenTag::STRING8) {
      if (!ParseASCIIString(tokenizer, out)) return false;
    } else if (tokenizer->TokenTag() == CBORTokenTag::STRING16) {
      ParseUTF16String(tokenizer, out);
    } else {
      out->HandleError(
          Status{Error::CBOR_INVALID_MAP_KEY, tokenizer->Status().pos});
      return false;
    }
    // Parse value.
    if (!ParseValue(stack_depth, tokenizer, out)) return false;
  }
  out->HandleObjectEnd();
  tokenizer->Next();
  return true;
}
}  // namespace

void ParseCBOR(span<uint8_t> bytes, JSONParserHandler* json_out) {
  if (bytes.empty()) {
    json_out->HandleError(Status{Error::CBOR_NO_INPUT, 0});
    return;
  }
  if (bytes[0] != kInitialByteForEnvelope) {
    json_out->HandleError(Status{Error::CBOR_INVALID_START_BYTE, 0});
    return;
  }
  CBORTokenizer tokenizer(bytes);
  if (tokenizer.TokenTag() == CBORTokenTag::ERROR_VALUE) {
    json_out->HandleError(tokenizer.Status());
    return;
  }
  // We checked for the envelope start byte above, so the tokenizer
  // must agree here, since it's not an error.
  assert(tokenizer.TokenTag() == CBORTokenTag::ENVELOPE);
  tokenizer.EnterEnvelope();
  if (tokenizer.TokenTag() != CBORTokenTag::MAP_START) {
    json_out->HandleError(
        Status{Error::CBOR_MAP_START_EXPECTED, tokenizer.Status().pos});
    return;
  }
  if (!ParseMap(/*stack_depth=*/1, &tokenizer, json_out)) return;
  if (tokenizer.TokenTag() == CBORTokenTag::DONE) return;
  if (tokenizer.TokenTag() == CBORTokenTag::ERROR_VALUE) {
    json_out->HandleError(tokenizer.Status());
    return;
  }
  json_out->HandleError(
      Status{Error::CBOR_TRAILING_JUNK, tokenizer.Status().pos});
}

CBORTokenizer::CBORTokenizer(span<uint8_t> bytes) : bytes_(bytes) {
  ReadNextToken(/*enter_envelope=*/false);
}
CBORTokenizer::~CBORTokenizer() {}

CBORTokenTag CBORTokenizer::TokenTag() const { return token_tag_; }

void CBORTokenizer::Next() {
  if (token_tag_ == CBORTokenTag::ERROR_VALUE || token_tag_ == CBORTokenTag::DONE)
    return;
  ReadNextToken(/*enter_envelope=*/false);
}

void CBORTokenizer::EnterEnvelope() {
  assert(token_tag_ == CBORTokenTag::ENVELOPE);
  ReadNextToken(/*enter_envelope=*/true);
}

Status CBORTokenizer::Status() const { return status_; }

int32_t CBORTokenizer::GetInt32() const {
  assert(token_tag_ == CBORTokenTag::INT32);
  // The range checks happen in ::ReadNextToken().
  return static_cast<uint32_t>(
      token_start_type_ == MajorType::UNSIGNED
          ? token_start_internal_value_
          : -static_cast<int64_t>(token_start_internal_value_) - 1);
}

double CBORTokenizer::GetDouble() const {
  assert(token_tag_ == CBORTokenTag::DOUBLE);
  union {
    uint64_t from_uint64;
    double to_double;
  } reinterpret;
  reinterpret.from_uint64 = ReadBytesMostSignificantByteFirst<uint64_t>(
      bytes_.subspan(status_.pos + 1));
  return reinterpret.to_double;
}

span<uint8_t> CBORTokenizer::GetString8() const {
  assert(token_tag_ == CBORTokenTag::STRING8);
  auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
  return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}

span<uint8_t> CBORTokenizer::GetString16WireRep() const {
  assert(token_tag_ == CBORTokenTag::STRING16);
  auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
  return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}

span<uint8_t> CBORTokenizer::GetBinary() const {
  assert(token_tag_ == CBORTokenTag::BINARY);
  auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
  return bytes_.subspan(status_.pos + (token_byte_length_ - length), length);
}

void CBORTokenizer::ReadNextToken(bool enter_envelope) {
  if (enter_envelope) {
    status_.pos += kEncodedEnvelopeHeaderSize;
  } else {
    status_.pos =
        status_.pos == Status::npos() ? 0 : status_.pos + token_byte_length_;
  }
  status_.error = Error::OK;
  if (status_.pos >= bytes_.size()) {
    token_tag_ = CBORTokenTag::DONE;
    return;
  }
  switch (bytes_[status_.pos]) {
    case kStopByte:
      SetToken(CBORTokenTag::STOP, 1);
      return;
    case kInitialByteIndefiniteLengthMap:
      SetToken(CBORTokenTag::MAP_START, 1);
      return;
    case kInitialByteIndefiniteLengthArray:
      SetToken(CBORTokenTag::ARRAY_START, 1);
      return;
    case kEncodedTrue:
      SetToken(CBORTokenTag::TRUE_VALUE, 1);
      return;
    case kEncodedFalse:
      SetToken(CBORTokenTag::FALSE_VALUE, 1);
      return;
    case kEncodedNull:
      SetToken(CBORTokenTag::NULL_VALUE, 1);
      return;
    case kExpectedConversionToBase64Tag: {  // BINARY
      int8_t bytes_read =
          ReadTokenStart(bytes_.subspan(status_.pos + 1), &token_start_type_,
                         &token_start_internal_value_);
      int64_t token_byte_length = 1 + bytes_read + token_start_internal_value_;
      if (-1 == bytes_read || token_start_type_ != MajorType::BYTE_STRING ||
          status_.pos + token_byte_length > bytes_.size()) {
        SetError(Error::CBOR_INVALID_BINARY);
        return;
      }
      SetToken(CBORTokenTag::BINARY,
               static_cast<std::ptrdiff_t>(token_byte_length));
      return;
    }
    case kInitialByteForDouble: {  // DOUBLE
      if (status_.pos + kEncodedDoubleSize > bytes_.size()) {
        SetError(Error::CBOR_INVALID_DOUBLE);
        return;
      }
      SetToken(CBORTokenTag::DOUBLE, kEncodedDoubleSize);
      return;
    }
    case kInitialByteForEnvelope: {  // ENVELOPE
      if (status_.pos + kEncodedEnvelopeHeaderSize > bytes_.size()) {
        SetError(Error::CBOR_INVALID_ENVELOPE);
        return;
      }
      // The envelope must be a byte string with 32 bit length.
      if (bytes_[status_.pos + 1] != kInitialByteFor32BitLengthByteString) {
        SetError(Error::CBOR_INVALID_ENVELOPE);
        return;
      }
      // Read the length of the byte string.
      token_start_internal_value_ = ReadBytesMostSignificantByteFirst<uint32_t>(
          bytes_.subspan(status_.pos + 2));
      // Make sure the payload is contained within the message.
      if (token_start_internal_value_ + kEncodedEnvelopeHeaderSize +
              status_.pos >
          static_cast<std::size_t>(bytes_.size())) {
        SetError(Error::CBOR_INVALID_ENVELOPE);
        return;
      }
      auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
      SetToken(CBORTokenTag::ENVELOPE,
               kEncodedEnvelopeHeaderSize + length);
      return;
    }
    default: {
      span<uint8_t> remainder =
          bytes_.subspan(status_.pos, bytes_.size() - status_.pos);
      assert(!remainder.empty());
      int8_t token_start_length = ReadTokenStart(remainder, &token_start_type_,
                                                 &token_start_internal_value_);
      bool success = token_start_length != -1;
      switch (token_start_type_) {
        case MajorType::UNSIGNED:  // INT32.
          if (!success || std::numeric_limits<int32_t>::max() <
                              token_start_internal_value_) {
            SetError(Error::CBOR_INVALID_INT32);
            return;
          }
          SetToken(CBORTokenTag::INT32, token_start_length);
          return;
        case MajorType::NEGATIVE:  // INT32.
          if (!success ||
              std::numeric_limits<int32_t>::min() >
                  -static_cast<int64_t>(token_start_internal_value_) - 1) {
            SetError(Error::CBOR_INVALID_INT32);
            return;
          }
          SetToken(CBORTokenTag::INT32, token_start_length);
          return;
        case MajorType::STRING: {  // STRING8.
          if (!success || remainder.size() < static_cast<int64_t>(
                                                 token_start_internal_value_)) {
            SetError(Error::CBOR_INVALID_STRING8);
            return;
          }
          auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
          SetToken(CBORTokenTag::STRING8, token_start_length + length);
          return;
        }
        case MajorType::BYTE_STRING: {  // STRING16.
          if (!success ||
              remainder.size() <
                  static_cast<int64_t>(token_start_internal_value_) ||
              // Must be divisible by 2 since UTF16 is 2 bytes per character.
              token_start_internal_value_ & 1) {
            SetError(Error::CBOR_INVALID_STRING16);
            return;
          }
          auto length = static_cast<std::ptrdiff_t>(token_start_internal_value_);
          SetToken(CBORTokenTag::STRING16, token_start_length + length);
          return;
        }
        case MajorType::ARRAY:
        case MajorType::MAP:
        case MajorType::TAG:
        case MajorType::SIMPLE_VALUE:
          SetError(Error::CBOR_UNSUPPORTED_VALUE);
          return;
      }
    }
  }
}

void CBORTokenizer::SetToken(CBORTokenTag token_tag,
                             std::ptrdiff_t token_byte_length) {
  token_tag_ = token_tag;
  token_byte_length_ = token_byte_length;
}

void CBORTokenizer::SetError(Error error) {
  token_tag_ = CBORTokenTag::ERROR_VALUE;
  status_.error = error;
}

#if 0
void DumpCBOR(span<uint8_t> cbor) {
  std::string indent;
  CBORTokenizer tokenizer(cbor);
  while (true) {
    fprintf(stderr, "%s", indent.c_str());
    switch (tokenizer.TokenTag()) {
      case CBORTokenTag::ERROR_VALUE:
        fprintf(stderr, "ERROR {status.error=%d, status.pos=%ld}\n",
               tokenizer.Status().error, tokenizer.Status().pos);
        return;
      case CBORTokenTag::DONE:
        fprintf(stderr, "DONE\n");
        return;
      case CBORTokenTag::TRUE_VALUE:
        fprintf(stderr, "TRUE_VALUE\n");
        break;
      case CBORTokenTag::FALSE_VALUE:
        fprintf(stderr, "FALSE_VALUE\n");
        break;
      case CBORTokenTag::NULL_VALUE:
        fprintf(stderr, "NULL_VALUE\n");
        break;
      case CBORTokenTag::INT32:
        fprintf(stderr, "INT32 [%d]\n", tokenizer.GetInt32());
        break;
      case CBORTokenTag::DOUBLE:
        fprintf(stderr, "DOUBLE [%lf]\n", tokenizer.GetDouble());
        break;
      case CBORTokenTag::STRING8: {
        span<uint8_t> v = tokenizer.GetString8();
        std::string t(v.begin(), v.end());
        fprintf(stderr, "STRING8 [%s]\n", t.c_str());
        break;
      }
      case CBORTokenTag::STRING16: {
        span<uint8_t> v = tokenizer.GetString16WireRep();
        std::string t(v.begin(), v.end());
        fprintf(stderr, "STRING16 [%s]\n", t.c_str());
        break;
      }
      case CBORTokenTag::BINARY: {
        span<uint8_t> v = tokenizer.GetBinary();
        std::string t(v.begin(), v.end());
        fprintf(stderr, "BINARY [%s]\n", t.c_str());
        break;
      }
      case CBORTokenTag::MAP_START:
        fprintf(stderr, "MAP_START\n");
        indent += "  ";
        break;
      case CBORTokenTag::ARRAY_START:
        fprintf(stderr, "ARRAY_START\n");
        indent += "  ";
        break;
      case CBORTokenTag::STOP:
        fprintf(stderr, "STOP\n");
        indent.erase(0, 2);
        break;
      case CBORTokenTag::ENVELOPE:
        fprintf(stderr, "ENVELOPE\n");
        tokenizer.EnterEnvelope();
        continue;
    }
    tokenizer.Next();
  }
}
#endif


{% for namespace in config.protocol.namespace %}
} // namespace {{namespace}}
{% endfor %}