summaryrefslogtreecommitdiff
path: root/test/parallel/test-crypto-rsa-dsa.js
blob: 30ef7ec6d185edc29eb5386027d5bd5e57f772a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
'use strict';
const common = require('../common');
if (!common.hasCrypto)
  common.skip('missing crypto');

const assert = require('assert');
const crypto = require('crypto');

const constants = crypto.constants;

const fixtures = require('../common/fixtures');

// Test certificates
const certPem = fixtures.readKey('rsa_cert.crt');
const keyPem = fixtures.readKey('rsa_private.pem');
const rsaKeySize = 2048;
const rsaPubPem = fixtures.readKey('rsa_public.pem', 'ascii');
const rsaKeyPem = fixtures.readKey('rsa_private.pem', 'ascii');
const rsaKeyPemEncrypted = fixtures.readKey('rsa_private_encrypted.pem',
                                            'ascii');
const dsaPubPem = fixtures.readKey('dsa_public.pem', 'ascii');
const dsaKeyPem = fixtures.readKey('dsa_private.pem', 'ascii');
const dsaKeyPemEncrypted = fixtures.readKey('dsa_private_encrypted.pem',
                                            'ascii');
const rsaPkcs8KeyPem = fixtures.readKey('rsa_private_pkcs8.pem');
const dsaPkcs8KeyPem = fixtures.readKey('dsa_private_pkcs8.pem');

const decryptError = {
  message: 'error:06065064:digital envelope routines:EVP_DecryptFinal_ex:' +
    'bad decrypt',
  code: 'ERR_OSSL_EVP_BAD_DECRYPT',
  reason: 'bad decrypt',
  function: 'EVP_DecryptFinal_ex',
  library: 'digital envelope routines',
};

// Test RSA encryption/decryption
{
  const input = 'I AM THE WALRUS';
  const bufferToEncrypt = Buffer.from(input);
  const bufferPassword = Buffer.from('password');

  let encryptedBuffer = crypto.publicEncrypt(rsaPubPem, bufferToEncrypt);

  let decryptedBuffer = crypto.privateDecrypt(rsaKeyPem, encryptedBuffer);
  assert.strictEqual(decryptedBuffer.toString(), input);

  decryptedBuffer = crypto.privateDecrypt(rsaPkcs8KeyPem, encryptedBuffer);
  assert.strictEqual(decryptedBuffer.toString(), input);

  let decryptedBufferWithPassword = crypto.privateDecrypt({
    key: rsaKeyPemEncrypted,
    passphrase: 'password'
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), input);

  encryptedBuffer = crypto.publicEncrypt({
    key: rsaKeyPemEncrypted,
    passphrase: 'password'
  }, bufferToEncrypt);

  decryptedBufferWithPassword = crypto.privateDecrypt({
    key: rsaKeyPemEncrypted,
    passphrase: 'password'
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), input);

  encryptedBuffer = crypto.privateEncrypt({
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, bufferToEncrypt);

  decryptedBufferWithPassword = crypto.publicDecrypt({
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), input);

  // Now with explicit RSA_PKCS1_PADDING.
  encryptedBuffer = crypto.privateEncrypt({
    padding: crypto.constants.RSA_PKCS1_PADDING,
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, bufferToEncrypt);

  decryptedBufferWithPassword = crypto.publicDecrypt({
    padding: crypto.constants.RSA_PKCS1_PADDING,
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), input);

  // Omitting padding should be okay because RSA_PKCS1_PADDING is the default.
  decryptedBufferWithPassword = crypto.publicDecrypt({
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), input);

  // Now with RSA_NO_PADDING. Plaintext needs to match key size.
  const plaintext = 'x'.repeat(rsaKeySize / 8);
  encryptedBuffer = crypto.privateEncrypt({
    padding: crypto.constants.RSA_NO_PADDING,
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, Buffer.from(plaintext));

  decryptedBufferWithPassword = crypto.publicDecrypt({
    padding: crypto.constants.RSA_NO_PADDING,
    key: rsaKeyPemEncrypted,
    passphrase: bufferPassword
  }, encryptedBuffer);
  assert.strictEqual(decryptedBufferWithPassword.toString(), plaintext);

  encryptedBuffer = crypto.publicEncrypt(certPem, bufferToEncrypt);

  decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
  assert.strictEqual(decryptedBuffer.toString(), input);

  encryptedBuffer = crypto.publicEncrypt(keyPem, bufferToEncrypt);

  decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
  assert.strictEqual(decryptedBuffer.toString(), input);

  encryptedBuffer = crypto.privateEncrypt(keyPem, bufferToEncrypt);

  decryptedBuffer = crypto.publicDecrypt(keyPem, encryptedBuffer);
  assert.strictEqual(decryptedBuffer.toString(), input);

  assert.throws(() => {
    crypto.privateDecrypt({
      key: rsaKeyPemEncrypted,
      passphrase: 'wrong'
    }, bufferToEncrypt);
  }, decryptError);

  assert.throws(() => {
    crypto.publicEncrypt({
      key: rsaKeyPemEncrypted,
      passphrase: 'wrong'
    }, encryptedBuffer);
  }, decryptError);

  encryptedBuffer = crypto.privateEncrypt({
    key: rsaKeyPemEncrypted,
    passphrase: Buffer.from('password')
  }, bufferToEncrypt);

  assert.throws(() => {
    crypto.publicDecrypt({
      key: rsaKeyPemEncrypted,
      passphrase: Buffer.from('wrong')
    }, encryptedBuffer);
  }, decryptError);
}

function test_rsa(padding, encryptOaepHash, decryptOaepHash) {
  const size = (padding === 'RSA_NO_PADDING') ? rsaKeySize / 8 : 32;
  const input = Buffer.allocUnsafe(size);
  for (let i = 0; i < input.length; i++)
    input[i] = (i * 7 + 11) & 0xff;
  const bufferToEncrypt = Buffer.from(input);

  padding = constants[padding];

  const encryptedBuffer = crypto.publicEncrypt({
    key: rsaPubPem,
    padding: padding,
    oaepHash: encryptOaepHash
  }, bufferToEncrypt);

  let decryptedBuffer = crypto.privateDecrypt({
    key: rsaKeyPem,
    padding: padding,
    oaepHash: decryptOaepHash
  }, encryptedBuffer);
  assert.deepStrictEqual(decryptedBuffer, input);

  decryptedBuffer = crypto.privateDecrypt({
    key: rsaPkcs8KeyPem,
    padding: padding,
    oaepHash: decryptOaepHash
  }, encryptedBuffer);
  assert.deepStrictEqual(decryptedBuffer, input);
}

test_rsa('RSA_NO_PADDING');
test_rsa('RSA_PKCS1_PADDING');
test_rsa('RSA_PKCS1_OAEP_PADDING');

// Test OAEP with different hash functions.
test_rsa('RSA_PKCS1_OAEP_PADDING', undefined, 'sha1');
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha1', undefined);
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha256');
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha512', 'sha512');
common.expectsError(() => {
  test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha512');
}, {
  code: 'ERR_OSSL_RSA_OAEP_DECODING_ERROR'
});

// The following RSA-OAEP test cases were created using the WebCrypto API to
// ensure compatibility when using non-SHA1 hash functions.
{
  const { decryptionTests } =
      JSON.parse(fixtures.readSync('rsa-oaep-test-vectors.js', 'utf8'));

  for (const { ct, oaepHash, oaepLabel } of decryptionTests) {
    const decrypted = crypto.privateDecrypt({
      key: rsaPkcs8KeyPem,
      oaepHash,
      oaepLabel: oaepLabel ? Buffer.from(oaepLabel, 'hex') : undefined
    }, Buffer.from(ct, 'hex'));

    assert.strictEqual(decrypted.toString('utf8'), 'Hello Node.js');
  }
}

// Test invalid oaepHash and oaepLabel options.
for (const fn of [crypto.publicEncrypt, crypto.privateDecrypt]) {
  assert.throws(() => {
    fn({
      key: rsaPubPem,
      oaepHash: 'Hello world'
    }, Buffer.alloc(10));
  }, {
    code: 'ERR_OSSL_EVP_INVALID_DIGEST'
  });

  for (const oaepHash of [0, false, null, Symbol(), () => {}]) {
    common.expectsError(() => {
      fn({
        key: rsaPubPem,
        oaepHash
      }, Buffer.alloc(10));
    }, {
      code: 'ERR_INVALID_ARG_TYPE'
    });
  }

  for (const oaepLabel of [0, false, null, Symbol(), () => {}, {}, 'foo']) {
    common.expectsError(() => {
      fn({
        key: rsaPubPem,
        oaepLabel
      }, Buffer.alloc(10));
    }, {
      code: 'ERR_INVALID_ARG_TYPE'
    });
  }
}

// Test RSA key signing/verification
let rsaSign = crypto.createSign('SHA1');
let rsaVerify = crypto.createVerify('SHA1');
assert.ok(rsaSign);
assert.ok(rsaVerify);

const expectedSignature = fixtures.readKey(
  'rsa_public_sha1_signature_signedby_rsa_private_pkcs8.sha1',
  'hex'
);

rsaSign.update(rsaPubPem);
let rsaSignature = rsaSign.sign(rsaKeyPem, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);

rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);

// Test RSA PKCS#8 key signing/verification
rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
rsaSignature = rsaSign.sign(rsaPkcs8KeyPem, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);

rsaVerify = crypto.createVerify('SHA1');
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);

// Test RSA key signing/verification with encrypted key
rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'password' };
rsaSignature = rsaSign.sign(signOptions, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);

rsaVerify = crypto.createVerify('SHA1');
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);

rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
assert.throws(() => {
  const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'wrong' };
  rsaSign.sign(signOptions, 'hex');
}, decryptError);

//
// Test RSA signing and verification
//
{
  const privateKey = fixtures.readKey('rsa_private_b.pem');
  const publicKey = fixtures.readKey('rsa_public_b.pem');

  const input = 'I AM THE WALRUS';

  const signature = fixtures.readKey(
    'I_AM_THE_WALRUS_sha256_signature_signedby_rsa_private_b.sha256',
    'hex'
  );

  const sign = crypto.createSign('SHA256');
  sign.update(input);

  const output = sign.sign(privateKey, 'hex');
  assert.strictEqual(output, signature);

  const verify = crypto.createVerify('SHA256');
  verify.update(input);

  assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);

  // Test the legacy signature algorithm name.
  const sign2 = crypto.createSign('RSA-SHA256');
  sign2.update(input);

  const output2 = sign2.sign(privateKey, 'hex');
  assert.strictEqual(output2, signature);

  const verify2 = crypto.createVerify('SHA256');
  verify2.update(input);

  assert.strictEqual(verify2.verify(publicKey, signature, 'hex'), true);
}


//
// Test DSA signing and verification
//
{
  const input = 'I AM THE WALRUS';

  // DSA signatures vary across runs so there is no static string to verify
  // against.
  const sign = crypto.createSign('SHA1');
  sign.update(input);
  const signature = sign.sign(dsaKeyPem, 'hex');

  const verify = crypto.createVerify('SHA1');
  verify.update(input);

  assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);

  // Test the legacy 'DSS1' name.
  const sign2 = crypto.createSign('DSS1');
  sign2.update(input);
  const signature2 = sign2.sign(dsaKeyPem, 'hex');

  const verify2 = crypto.createVerify('DSS1');
  verify2.update(input);

  assert.strictEqual(verify2.verify(dsaPubPem, signature2, 'hex'), true);
}


//
// Test DSA signing and verification with PKCS#8 private key
//
{
  const input = 'I AM THE WALRUS';

  // DSA signatures vary across runs so there is no static string to verify
  // against.
  const sign = crypto.createSign('SHA1');
  sign.update(input);
  const signature = sign.sign(dsaPkcs8KeyPem, 'hex');

  const verify = crypto.createVerify('SHA1');
  verify.update(input);

  assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
}


//
// Test DSA signing and verification with encrypted key
//
const input = 'I AM THE WALRUS';

{
  const sign = crypto.createSign('SHA1');
  sign.update(input);
  assert.throws(() => {
    sign.sign({ key: dsaKeyPemEncrypted, passphrase: 'wrong' }, 'hex');
  }, decryptError);
}

{
  // DSA signatures vary across runs so there is no static string to verify
  // against.
  const sign = crypto.createSign('SHA1');
  sign.update(input);
  const signOptions = { key: dsaKeyPemEncrypted, passphrase: 'password' };
  const signature = sign.sign(signOptions, 'hex');

  const verify = crypto.createVerify('SHA1');
  verify.update(input);

  assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
}