summaryrefslogtreecommitdiff
path: root/test/parallel/test-crypto-dh.js
blob: 1a96604ec1682f2d09e69139dcba8a98011f5a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
'use strict';
const common = require('../common');
const assert = require('assert');
const constants = require('constants');

if (!common.hasCrypto) {
  console.log('1..0 # Skipped: missing crypto');
  return;
}
const crypto = require('crypto');

// Test Diffie-Hellman with two parties sharing a secret,
// using various encodings as we go along
var dh1 = crypto.createDiffieHellman(common.hasFipsCrypto ? 1024 : 256);
var p1 = dh1.getPrime('buffer');
var dh2 = crypto.createDiffieHellman(p1, 'buffer');
var key1 = dh1.generateKeys();
var key2 = dh2.generateKeys('hex');
var secret1 = dh1.computeSecret(key2, 'hex', 'base64');
var secret2 = dh2.computeSecret(key1, 'binary', 'buffer');

assert.equal(secret1, secret2.toString('base64'));
assert.equal(dh1.verifyError, 0);
assert.equal(dh2.verifyError, 0);

assert.throws(function() {
  crypto.createDiffieHellman([0x1, 0x2]);
});

assert.throws(function() {
  crypto.createDiffieHellman(function() { });
});

assert.throws(function() {
  crypto.createDiffieHellman(/abc/);
});

assert.throws(function() {
  crypto.createDiffieHellman({});
});

// Create "another dh1" using generated keys from dh1,
// and compute secret again
var dh3 = crypto.createDiffieHellman(p1, 'buffer');
var privkey1 = dh1.getPrivateKey();
dh3.setPublicKey(key1);
dh3.setPrivateKey(privkey1);

assert.deepEqual(dh1.getPrime(), dh3.getPrime());
assert.deepEqual(dh1.getGenerator(), dh3.getGenerator());
assert.deepEqual(dh1.getPublicKey(), dh3.getPublicKey());
assert.deepEqual(dh1.getPrivateKey(), dh3.getPrivateKey());
assert.equal(dh3.verifyError, 0);

var secret3 = dh3.computeSecret(key2, 'hex', 'base64');

assert.equal(secret1, secret3);

// Run this one twice to make sure that the dh3 clears its error properly
(function() {
  var c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
  assert.throws(function() { c.final('utf8'); }, /wrong final block length/);
})();

assert.throws(function() {
  dh3.computeSecret('');
}, /key is too small/i);

(function() {
  var c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), '');
  assert.throws(function() { c.final('utf8'); }, /wrong final block length/);
})();

// Create a shared using a DH group.
var alice = crypto.createDiffieHellmanGroup('modp5');
var bob = crypto.createDiffieHellmanGroup('modp5');
alice.generateKeys();
bob.generateKeys();
var aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex');
var bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex');
assert.equal(aSecret, bSecret);
assert.equal(alice.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);
assert.equal(bob.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);

/* Ensure specific generator (buffer) works as expected.
 * The values below (modp2/modp2buf) are for a 1024 bits long prime from
 * RFC 2412 E.2, see https://tools.ietf.org/html/rfc2412. */
var modp2 = crypto.createDiffieHellmanGroup('modp2');
var modp2buf = Buffer.from([
  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f,
  0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b,
  0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67,
  0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22,
  0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95,
  0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
  0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51,
  0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6,
  0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff,
  0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb,
  0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b,
  0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe6, 0x53, 0x81,
  0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
]);
var exmodp2 = crypto.createDiffieHellman(modp2buf, Buffer.from([2]));
modp2.generateKeys();
exmodp2.generateKeys();
var modp2Secret = modp2.computeSecret(exmodp2.getPublicKey()).toString('hex');
var exmodp2Secret = exmodp2.computeSecret(modp2.getPublicKey()).toString('hex');
assert.equal(modp2Secret, exmodp2Secret);
assert.equal(modp2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);
assert.equal(exmodp2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string with encoding) works as expected.
var exmodp2_2 = crypto.createDiffieHellman(modp2buf, '02', 'hex');
exmodp2_2.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_2.getPublicKey()).toString('hex');
var exmodp2_2Secret = exmodp2_2.computeSecret(modp2.getPublicKey())
                               .toString('hex');
assert.equal(modp2Secret, exmodp2_2Secret);
assert.equal(exmodp2_2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string without encoding) works as expected.
var exmodp2_3 = crypto.createDiffieHellman(modp2buf, '\x02');
exmodp2_3.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_3.getPublicKey()).toString('hex');
var exmodp2_3Secret = exmodp2_3.computeSecret(modp2.getPublicKey())
                               .toString('hex');
assert.equal(modp2Secret, exmodp2_3Secret);
assert.equal(exmodp2_3.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (numeric) works as expected.
var exmodp2_4 = crypto.createDiffieHellman(modp2buf, 2);
exmodp2_4.generateKeys();
modp2Secret = modp2.computeSecret(exmodp2_4.getPublicKey()).toString('hex');
var exmodp2_4Secret = exmodp2_4.computeSecret(modp2.getPublicKey())
                               .toString('hex');
assert.equal(modp2Secret, exmodp2_4Secret);
assert.equal(exmodp2_4.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
        '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
        '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
        'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
var bad_dh = crypto.createDiffieHellman(p, 'hex');
assert.equal(bad_dh.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Test ECDH
const ecdh1 = crypto.createECDH('prime256v1');
const ecdh2 = crypto.createECDH('prime256v1');
key1 = ecdh1.generateKeys();
key2 = ecdh2.generateKeys('hex');
secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
secret2 = ecdh2.computeSecret(key1, 'binary', 'buffer');

assert.equal(secret1, secret2.toString('base64'));

// Oakley curves do not clean up ERR stack, it was causing unexpected failure
// when accessing other OpenSSL APIs afterwards.
crypto.createECDH('Oakley-EC2N-3');
crypto.createHash('sha256');

// Point formats
assert.equal(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
assert(firstByte === 2 || firstByte === 3);
firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
assert(firstByte === 6 || firstByte === 7);

// ECDH should check that point is on curve
const ecdh3 = crypto.createECDH('secp256k1');
const key3 = ecdh3.generateKeys();

assert.throws(function() {
  ecdh2.computeSecret(key3, 'binary', 'buffer');
});

// ECDH should allow .setPrivateKey()/.setPublicKey()
const ecdh4 = crypto.createECDH('prime256v1');

ecdh4.setPrivateKey(ecdh1.getPrivateKey());
ecdh4.setPublicKey(ecdh1.getPublicKey());

assert.throws(function() {
  ecdh4.setPublicKey(ecdh3.getPublicKey());
}, /Failed to convert Buffer to EC_POINT/);

// Verify that we can use ECDH without having to use newly generated keys.
const ecdh5 = crypto.createECDH('secp256k1');

// Verify errors are thrown when retrieving keys from an uninitialized object.
assert.throws(function() {
  ecdh5.getPublicKey();
}, /Failed to get ECDH public key/);
assert.throws(function() {
  ecdh5.getPrivateKey();
}, /Failed to get ECDH private key/);

// A valid private key for the secp256k1 curve.
const cafebabeKey = 'cafebabe'.repeat(8);
// Associated compressed and uncompressed public keys (points).
const cafebabePubPtComp =
'03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3';
const cafebabePubPtUnComp =
'04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' +
'2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d';
ecdh5.setPrivateKey(cafebabeKey, 'hex');
assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
// Show that the public point (key) is generated while setting the private key.
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);

// Compressed and uncompressed public points/keys for other party's private key
// 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF
const peerPubPtComp =
'02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae';
const peerPubPtUnComp =
'04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' +
'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e';

const sharedSecret =
'1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970';

assert.equal(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'), sharedSecret);
assert.equal(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'), sharedSecret);

// Verify that we still have the same key pair as before the computation.
assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);

// Verify setting and getting compressed and non-compressed serializations.
ecdh5.setPublicKey(cafebabePubPtComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.equal(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.equal(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);

// Show why allowing the public key to be set on this type does not make sense.
ecdh5.setPublicKey(peerPubPtComp, 'hex');
assert.equal(ecdh5.getPublicKey('hex'), peerPubPtUnComp);
assert.throws(function() {
  // Error because the public key does not match the private key anymore.
  ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex');
}, /Invalid key pair/);

// Set to a valid key to show that later attempts to set an invalid key are
// rejected.
ecdh5.setPrivateKey(cafebabeKey, 'hex');

[ // Some invalid private keys for the secp256k1 curve.
  '0000000000000000000000000000000000000000000000000000000000000000',
  'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141',
  'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
].forEach(function(element, index, object) {
  assert.throws(function() {
    ecdh5.setPrivateKey(element, 'hex');
  }, /Private key is not valid for specified curve/);
  // Verify object state did not change.
  assert.equal(ecdh5.getPrivateKey('hex'), cafebabeKey);
});