summaryrefslogtreecommitdiff
path: root/src/util-inl.h
blob: 51adb816926e5290a3a7e837053154d37a58af13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#ifndef SRC_UTIL_INL_H_
#define SRC_UTIL_INL_H_

#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS

#include "util.h"

namespace node {

template <typename T>
ListNode<T>::ListNode() : prev_(this), next_(this) {}

template <typename T>
ListNode<T>::~ListNode() {
  Remove();
}

template <typename T>
void ListNode<T>::Remove() {
  prev_->next_ = next_;
  next_->prev_ = prev_;
  prev_ = this;
  next_ = this;
}

template <typename T>
bool ListNode<T>::IsEmpty() const {
  return prev_ == this;
}

template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}

template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::Iterator::operator*() const {
  return ContainerOf(M, node_);
}

template <typename T, ListNode<T> (T::*M)>
const typename ListHead<T, M>::Iterator&
ListHead<T, M>::Iterator::operator++() {
  node_ = node_->next_;
  return *this;
}

template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
  return node_ != that.node_;
}

template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::~ListHead() {
  while (IsEmpty() == false)
    head_.next_->Remove();
}

template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::MoveBack(ListHead* that) {
  if (IsEmpty())
    return;
  ListNode<T>* to = &that->head_;
  head_.next_->prev_ = to->prev_;
  to->prev_->next_ = head_.next_;
  head_.prev_->next_ = to;
  to->prev_ = head_.prev_;
  head_.prev_ = &head_;
  head_.next_ = &head_;
}

template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushBack(T* element) {
  ListNode<T>* that = &(element->*M);
  head_.prev_->next_ = that;
  that->prev_ = head_.prev_;
  that->next_ = &head_;
  head_.prev_ = that;
}

template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushFront(T* element) {
  ListNode<T>* that = &(element->*M);
  head_.next_->prev_ = that;
  that->prev_ = &head_;
  that->next_ = head_.next_;
  head_.next_ = that;
}

template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::IsEmpty() const {
  return head_.IsEmpty();
}

template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::PopFront() {
  if (IsEmpty())
    return nullptr;
  ListNode<T>* node = head_.next_;
  node->Remove();
  return ContainerOf(M, node);
}

template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
  return Iterator(head_.next_);
}

template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
  return Iterator(const_cast<ListNode<T>*>(&head_));
}

template <typename Inner, typename Outer>
ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
                                                   Inner* pointer)
    : pointer_(reinterpret_cast<Outer*>(
          reinterpret_cast<uintptr_t>(pointer) -
          reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(0)->*field)))) {
}

template <typename Inner, typename Outer>
template <typename TypeName>
ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
  return static_cast<TypeName*>(pointer_);
}

template <typename Inner, typename Outer>
inline ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
                                                   Inner* pointer) {
  return ContainerOfHelper<Inner, Outer>(field, pointer);
}

template <class TypeName>
inline v8::Local<TypeName> PersistentToLocal(
    v8::Isolate* isolate,
    const v8::Persistent<TypeName>& persistent) {
  if (persistent.IsWeak()) {
    return WeakPersistentToLocal(isolate, persistent);
  } else {
    return StrongPersistentToLocal(persistent);
  }
}

template <class TypeName>
inline v8::Local<TypeName> StrongPersistentToLocal(
    const v8::Persistent<TypeName>& persistent) {
  return *reinterpret_cast<v8::Local<TypeName>*>(
      const_cast<v8::Persistent<TypeName>*>(&persistent));
}

template <class TypeName>
inline v8::Local<TypeName> WeakPersistentToLocal(
    v8::Isolate* isolate,
    const v8::Persistent<TypeName>& persistent) {
  return v8::Local<TypeName>::New(isolate, persistent);
}

inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
                                           const char* data,
                                           int length) {
  return v8::String::NewFromOneByte(isolate,
                                    reinterpret_cast<const uint8_t*>(data),
                                    v8::NewStringType::kNormal,
                                    length).ToLocalChecked();
}

inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
                                           const signed char* data,
                                           int length) {
  return v8::String::NewFromOneByte(isolate,
                                    reinterpret_cast<const uint8_t*>(data),
                                    v8::NewStringType::kNormal,
                                    length).ToLocalChecked();
}

inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
                                           const unsigned char* data,
                                           int length) {
  return v8::String::NewFromOneByte(isolate,
                                    reinterpret_cast<const uint8_t*>(data),
                                    v8::NewStringType::kNormal,
                                    length).ToLocalChecked();
}

template <typename TypeName>
void Wrap(v8::Local<v8::Object> object, TypeName* pointer) {
  CHECK_EQ(false, object.IsEmpty());
  CHECK_GT(object->InternalFieldCount(), 0);
  object->SetAlignedPointerInInternalField(0, pointer);
}

void ClearWrap(v8::Local<v8::Object> object) {
  Wrap<void>(object, nullptr);
}

template <typename TypeName>
TypeName* Unwrap(v8::Local<v8::Object> object) {
  CHECK_EQ(false, object.IsEmpty());
  CHECK_GT(object->InternalFieldCount(), 0);
  void* pointer = object->GetAlignedPointerFromInternalField(0);
  return static_cast<TypeName*>(pointer);
}

void SwapBytes(uint16_t* dst, const uint16_t* src, size_t buflen) {
  for (size_t i = 0; i < buflen; i += 1)
    dst[i] = (src[i] << 8) | (src[i] >> 8);
}

char ToLower(char c) {
  return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
}

bool StringEqualNoCase(const char* a, const char* b) {
  do {
    if (*a == '\0')
      return *b == '\0';
    if (*b == '\0')
      return *a == '\0';
  } while (ToLower(*a++) == ToLower(*b++));
  return false;
}

bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
  for (size_t i = 0; i < length; i++) {
    if (ToLower(a[i]) != ToLower(b[i]))
      return false;
    if (a[i] == '\0')
      return true;
  }
  return true;
}

inline size_t MultiplyWithOverflowCheck(size_t a, size_t b) {
  size_t ret = a * b;
  if (a != 0)
    CHECK_EQ(b, ret / a);

  return ret;
}

// These should be used in our code as opposed to the native
// versions as they abstract out some platform and or
// compiler version specific functionality.
// malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
// that the standard allows them to either return a unique pointer or a
// nullptr for zero-sized allocation requests.  Normalize by always using
// a nullptr.
template <typename T>
T* UncheckedRealloc(T* pointer, size_t n) {
  size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);

  if (full_size == 0) {
    free(pointer);
    return nullptr;
  }

  void* allocated = realloc(pointer, full_size);

  if (UNLIKELY(allocated == nullptr)) {
    // Tell V8 that memory is low and retry.
    LowMemoryNotification();
    allocated = realloc(pointer, full_size);
  }

  return static_cast<T*>(allocated);
}

// As per spec realloc behaves like malloc if passed nullptr.
template <typename T>
T* UncheckedMalloc(size_t n) {
  if (n == 0) n = 1;
  return UncheckedRealloc<T>(nullptr, n);
}

template <typename T>
T* UncheckedCalloc(size_t n) {
  if (n == 0) n = 1;
  MultiplyWithOverflowCheck(sizeof(T), n);
  return static_cast<T*>(calloc(n, sizeof(T)));
}

template <typename T>
T* Realloc(T* pointer, size_t n) {
  T* ret = UncheckedRealloc(pointer, n);
  if (n > 0) CHECK_NE(ret, nullptr);
  return ret;
}

template <typename T>
T* Malloc(size_t n) {
  T* ret = UncheckedMalloc<T>(n);
  if (n > 0) CHECK_NE(ret, nullptr);
  return ret;
}

template <typename T>
T* Calloc(size_t n) {
  T* ret = UncheckedCalloc<T>(n);
  if (n > 0) CHECK_NE(ret, nullptr);
  return ret;
}

}  // namespace node

#endif  // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS

#endif  // SRC_UTIL_INL_H_