summaryrefslogtreecommitdiff
path: root/src/node_platform.cc
blob: 3d023114ad26918c73ddf0b4dfc69eca17e1be54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "node_platform.h"

#include "util.h"

namespace node {

using v8::Isolate;
using v8::Platform;
using v8::Task;
using v8::TracingController;

static void FlushTasks(uv_async_t* handle) {
  NodePlatform* platform = static_cast<NodePlatform*>(handle->data);
  platform->FlushForegroundTasksInternal();
}

static void BackgroundRunner(void* data) {
  TaskQueue<Task>* background_tasks = static_cast<TaskQueue<Task>*>(data);
  while (Task* task = background_tasks->BlockingPop()) {
    task->Run();
    delete task;
    background_tasks->NotifyOfCompletion();
  }
}

NodePlatform::NodePlatform(int thread_pool_size, uv_loop_t* loop,
                           TracingController* tracing_controller)
    : loop_(loop) {
  CHECK_EQ(0, uv_async_init(loop, &flush_tasks_, FlushTasks));
  flush_tasks_.data = static_cast<void*>(this);
  uv_unref(reinterpret_cast<uv_handle_t*>(&flush_tasks_));
  if (tracing_controller) {
    tracing_controller_.reset(tracing_controller);
  } else {
    TracingController* controller = new TracingController();
    tracing_controller_.reset(controller);
  }
  for (int i = 0; i < thread_pool_size; i++) {
    uv_thread_t* t = new uv_thread_t();
    if (uv_thread_create(t, BackgroundRunner, &background_tasks_) != 0) {
      delete t;
      break;
    }
    threads_.push_back(std::unique_ptr<uv_thread_t>(t));
  }
}

void NodePlatform::Shutdown() {
  background_tasks_.Stop();
  for (size_t i = 0; i < threads_.size(); i++) {
    CHECK_EQ(0, uv_thread_join(threads_[i].get()));
  }
  // uv_run cannot be called from the time before the beforeExit callback
  // runs until the program exits unless the event loop has any referenced
  // handles after beforeExit terminates. This prevents unrefed timers
  // that happen to terminate during shutdown from being run unsafely.
  // Since uv_run cannot be called, this handle will never be fully cleaned
  // up.
  uv_close(reinterpret_cast<uv_handle_t*>(&flush_tasks_), nullptr);
}

size_t NodePlatform::NumberOfAvailableBackgroundThreads() {
  return threads_.size();
}

static void RunForegroundTask(uv_timer_t* handle) {
  Task* task = static_cast<Task*>(handle->data);
  task->Run();
  delete task;
  uv_close(reinterpret_cast<uv_handle_t*>(handle), [](uv_handle_t* handle) {
    delete reinterpret_cast<uv_timer_t*>(handle);
  });
}

void NodePlatform::DrainBackgroundTasks() {
  FlushForegroundTasksInternal();
  background_tasks_.BlockingDrain();
}

void NodePlatform::FlushForegroundTasksInternal() {
  while (auto delayed = foreground_delayed_tasks_.Pop()) {
    uint64_t delay_millis =
        static_cast<uint64_t>(delayed->second + 0.5) * 1000;
    uv_timer_t* handle = new uv_timer_t();
    handle->data = static_cast<void*>(delayed->first);
    uv_timer_init(loop_, handle);
    // Timers may not guarantee queue ordering of events with the same delay if
    // the delay is non-zero. This should not be a problem in practice.
    uv_timer_start(handle, RunForegroundTask, delay_millis, 0);
    uv_unref(reinterpret_cast<uv_handle_t*>(handle));
    delete delayed;
  }
  while (Task* task = foreground_tasks_.Pop()) {
    task->Run();
    delete task;
  }
}

void NodePlatform::CallOnBackgroundThread(Task* task,
                                          ExpectedRuntime expected_runtime) {
  background_tasks_.Push(task);
}

void NodePlatform::CallOnForegroundThread(Isolate* isolate, Task* task) {
  foreground_tasks_.Push(task);
  uv_async_send(&flush_tasks_);
}

void NodePlatform::CallDelayedOnForegroundThread(Isolate* isolate,
                                                 Task* task,
                                                 double delay_in_seconds) {
  auto pair = new std::pair<Task*, double>(task, delay_in_seconds);
  foreground_delayed_tasks_.Push(pair);
  uv_async_send(&flush_tasks_);
}

bool NodePlatform::IdleTasksEnabled(Isolate* isolate) { return false; }

double NodePlatform::MonotonicallyIncreasingTime() {
  // Convert nanos to seconds.
  return uv_hrtime() / 1e9;
}

TracingController* NodePlatform::GetTracingController() {
  return tracing_controller_.get();
}

template <class T>
TaskQueue<T>::TaskQueue()
    : lock_(), tasks_available_(), tasks_drained_(),
      outstanding_tasks_(0), stopped_(false), task_queue_() { }

template <class T>
void TaskQueue<T>::Push(T* task) {
  Mutex::ScopedLock scoped_lock(lock_);
  outstanding_tasks_++;
  task_queue_.push(task);
  tasks_available_.Signal(scoped_lock);
}

template <class T>
T* TaskQueue<T>::Pop() {
  Mutex::ScopedLock scoped_lock(lock_);
  T* result = nullptr;
  if (!task_queue_.empty()) {
    result = task_queue_.front();
    task_queue_.pop();
  }
  return result;
}

template <class T>
T* TaskQueue<T>::BlockingPop() {
  Mutex::ScopedLock scoped_lock(lock_);
  while (task_queue_.empty() && !stopped_) {
    tasks_available_.Wait(scoped_lock);
  }
  if (stopped_) {
    return nullptr;
  }
  T* result = task_queue_.front();
  task_queue_.pop();
  return result;
}

template <class T>
void TaskQueue<T>::NotifyOfCompletion() {
  Mutex::ScopedLock scoped_lock(lock_);
  if (--outstanding_tasks_ == 0) {
    tasks_drained_.Broadcast(scoped_lock);
  }
}

template <class T>
void TaskQueue<T>::BlockingDrain() {
  Mutex::ScopedLock scoped_lock(lock_);
  while (outstanding_tasks_ > 0) {
    tasks_drained_.Wait(scoped_lock);
  }
}

template <class T>
void TaskQueue<T>::Stop() {
  Mutex::ScopedLock scoped_lock(lock_);
  stopped_ = true;
  tasks_available_.Broadcast(scoped_lock);
}

}  // namespace node