aboutsummaryrefslogtreecommitdiff
path: root/doc/api/crypto.markdown
blob: 837cf0945c05c853579ac76711005197d417de91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
## Crypto

Use `require('crypto')` to access this module.

The crypto module requires OpenSSL to be available on the underlying platform.
It offers a way of encapsulating secure credentials to be used as part
of a secure HTTPS net or http connection.

It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.

### crypto.createCredentials(details)

Creates a credentials object, with the optional details being a dictionary with keys:

* `key` : a string holding the PEM encoded private key
* `cert` : a string holding the PEM encoded certificate
* `ca` : either a string or list of strings of PEM encoded CA certificates to trust.
* `ciphers`: a string describing the ciphers to use or exclude. Consult
  <http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT> for details
  on the format.

If no 'ca' details are given, then node.js will use the default publicly trusted list of CAs as given in
<http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt>.


### crypto.createHash(algorithm)

Creates and returns a hash object, a cryptographic hash with the given algorithm
which can be used to generate hash digests.

`algorithm` is dependent on the available algorithms supported by the version
of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`, `'sha256'`, `'sha512'`, etc.
On recent releases, `openssl list-message-digest-algorithms` will display the available digest algorithms.

Example: this program that takes the sha1 sum of a file

    var filename = process.argv[2];
    var crypto = require('crypto');
    var fs = require('fs');

    var shasum = crypto.createHash('sha1');

    var s = fs.ReadStream(filename);
    s.on('data', function(d) {
      shasum.update(d);
    });

    s.on('end', function() {
      var d = shasum.digest('hex');
      console.log(d + '  ' + filename);
    });

### hash.update(data, [input_encoding])

Updates the hash content with the given `data`, the encoding of which is given
in `input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'binary'`.
This can be called many times with new data as it is streamed.

### hash.digest([encoding])

Calculates the digest of all of the passed data to be hashed.
The `encoding` can be `'hex'`, `'binary'` or `'base64'`.
Defaults to `'binary'`.

Note: `hash` object can not be used after `digest()` method been called.


### crypto.createHmac(algorithm, key)

Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key.

`algorithm` is dependent on the available algorithms supported by OpenSSL - see createHash above.
`key` is the hmac key to be used.

### hmac.update(data)

Update the hmac content with the given `data`.
This can be called many times with new data as it is streamed.

### hmac.digest([encoding])

Calculates the digest of all of the passed data to the hmac.
The `encoding` can be `'hex'`, `'binary'` or `'base64'`.
Defaults to `'binary'`.

Note: `hmac` object can not be used after `digest()` method been called.


### crypto.createCipher(algorithm, password)

Creates and returns a cipher object, with the given algorithm and password.

`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc.
On recent releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
`password` is used to derive key and IV, which must be `'binary'` encoded
string (See the [Buffers](buffers.html) for more information).

### crypto.createCipheriv(algorithm, key, iv)

Creates and returns a cipher object, with the given algorithm, key and iv.

`algorithm` is the same as the `createCipher()`. `key` is a raw key used in
algorithm. `iv` is an Initialization vector. `key` and `iv` must be `'binary'`
encoded string (See the [Buffers](buffers.html) for more information).

### cipher.update(data, [input_encoding], [output_encoding])

Updates the cipher with `data`, the encoding of which is given in
`input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'binary'`.

The `output_encoding` specifies the output format of the enciphered data,
and can be `'binary'`, `'base64'` or `'hex'`. Defaults to `'binary'`.

Returns the enciphered contents, and can be called many times with new data as it is streamed.

### cipher.final([output_encoding])

Returns any remaining enciphered contents, with `output_encoding` being one of:
`'binary'`, `'base64'` or `'hex'`. Defaults to `'binary'`.

Note: `cipher` object can not be used after `final()` method been called.

### cipher.setAutoPadding(auto_padding=true)

You can disable automatic padding of the input data to block size. If `auto_padding` is false,
the length of the entire input data must be a multiple of the cipher's block size or `final` will fail.
Useful for non-standard padding, e.g. using `0x0` instead of PKCS padding. You must call this before `cipher.final`.


### crypto.createDecipher(algorithm, password)

Creates and returns a decipher object, with the given algorithm and key.
This is the mirror of the [createCipher()](#crypto.createCipher) above.

### crypto.createDecipheriv(algorithm, key, iv)

Creates and returns a decipher object, with the given algorithm, key and iv.
This is the mirror of the [createCipheriv()](#crypto.createCipheriv) above.

### decipher.update(data, [input_encoding], [output_encoding])

Updates the decipher with `data`, which is encoded in `'binary'`, `'base64'`
or `'hex'`. Defaults to `'binary'`.

The `output_decoding` specifies in what format to return the deciphered
plaintext: `'binary'`, `'ascii'` or `'utf8'`. Defaults to `'binary'`.

### decipher.final([output_encoding])

Returns any remaining plaintext which is deciphered,
with `output_encoding` being one of: `'binary'`, `'ascii'` or `'utf8'`.
Defaults to `'binary'`.

Note: `decipher` object can not be used after `final()` method been called.

### decipher.setAutoPadding(auto_padding=true)

You can disable auto padding if the data has been encrypted without standard block padding to prevent
`decipher.final` from checking and removing it. Can only work if the input data's length is a multiple of the
ciphers block size. You must call this before streaming data to `decipher.update`.


### crypto.createSign(algorithm)

Creates and returns a signing object, with the given algorithm.
On recent OpenSSL releases, `openssl list-public-key-algorithms` will display
the available signing algorithms. Examples are `'RSA-SHA256'`.

### signer.update(data)

Updates the signer object with data.
This can be called many times with new data as it is streamed.

### signer.sign(private_key, [output_format])

Calculates the signature on all the updated data passed through the signer.
`private_key` is a string containing the PEM encoded private key for signing.

Returns the signature in `output_format` which can be `'binary'`, `'hex'` or
`'base64'`. Defaults to `'binary'`.

Note: `signer` object can not be used after `sign()` method been called.


### crypto.createVerify(algorithm)

Creates and returns a verification object, with the given algorithm.
This is the mirror of the signing object above.

### verifier.update(data)

Updates the verifier object with data.
This can be called many times with new data as it is streamed.

### verifier.verify(object, signature, [signature_format])

Verifies the signed data by using the `object` and `signature`. `object` is  a
string containing a PEM encoded object, which can be one of RSA public key,
DSA public key, or X.509 certificate. `signature` is the previously calculated
signature for the data, in the `signature_format` which can be `'binary'`,
`'hex'` or `'base64'`. Defaults to `'binary'`.

Returns true or false depending on the validity of the signature for the data and public key.

Note: `verifier` object can not be used after `verify()` method been called.

### crypto.createDiffieHellman(prime_length)

Creates a Diffie-Hellman key exchange object and generates a prime of the
given bit length. The generator used is `2`.

### crypto.createDiffieHellman(prime, [encoding])

Creates a Diffie-Hellman key exchange object using the supplied prime. The
generator used is `2`. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
Defaults to `'binary'`.

### diffieHellman.generateKeys([encoding])

Generates private and public Diffie-Hellman key values, and returns the
public key in the specified encoding. This key should be transferred to the
other party. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
Defaults to `'binary'`.

### diffieHellman.computeSecret(other_public_key, [input_encoding], [output_encoding])

Computes the shared secret using `other_public_key` as the other party's
public key and returns the computed shared secret. Supplied key is
interpreted using specified `input_encoding`, and secret is encoded using
specified `output_encoding`. Encodings can be `'binary'`, `'hex'`, or
`'base64'`. The input encoding defaults to `'binary'`.
If no output encoding is given, the input encoding is used as output encoding.

### diffieHellman.getPrime([encoding])

Returns the Diffie-Hellman prime in the specified encoding, which can be
`'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.

### diffieHellman.getGenerator([encoding])

Returns the Diffie-Hellman prime in the specified encoding, which can be
`'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.

### diffieHellman.getPublicKey([encoding])

Returns the Diffie-Hellman public key in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.

### diffieHellman.getPrivateKey([encoding])

Returns the Diffie-Hellman private key in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.

### diffieHellman.setPublicKey(public_key, [encoding])

Sets the Diffie-Hellman public key. Key encoding can be `'binary'`, `'hex'`,
or `'base64'`. Defaults to `'binary'`.

### diffieHellman.setPrivateKey(public_key, [encoding])

Sets the Diffie-Hellman private key. Key encoding can be `'binary'`, `'hex'`,
or `'base64'`. Defaults to `'binary'`.

### crypto.getDiffieHellman(group_name)

Creates a predefined Diffie-Hellman key exchange object.
The supported groups are: `'modp1'`, `'modp2'`, `'modp5'`
(defined in [RFC 2412](http://www.rfc-editor.org/rfc/rfc2412.txt ))
and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'`
(defined in [RFC 3526](http://www.rfc-editor.org/rfc/rfc3526.txt )).
The returned object mimics the interface of objects created by
[crypto.createDiffieHellman()](#crypto.createDiffieHellman) above, but
will not allow to change the keys (with
[diffieHellman.setPublicKey()](#diffieHellman.setPublicKey) for example).
The advantage of using this routine is that the parties don't have to
generate nor exchange group modulus beforehand, saving both processor and
communication time.

Example (obtaining a shared secret):

    var crypto = require('crypto');
    var alice = crypto.getDiffieHellman('modp5');
    var bob = crypto.getDiffieHellman('modp5');

    alice.generateKeys();
    bob.generateKeys();

    var alice_secret = alice.computeSecret(bob.getPublicKey(), 'binary', 'hex');
    var bob_secret = bob.computeSecret(alice.getPublicKey(), 'binary', 'hex');

    /* alice_secret and bob_secret should be the same */
    console.log(alice_secret == bob_secret);

### pbkdf2(password, salt, iterations, keylen, callback)

Asynchronous PBKDF2 applies pseudorandom function HMAC-SHA1 to derive
a key of given length from the given password, salt and iterations.
The callback gets two arguments `(err, derivedKey)`.

### randomBytes(size, [callback])

Generates cryptographically strong pseudo-random data. Usage:

    // async
    crypto.randomBytes(256, function(ex, buf) {
      if (ex) throw ex;
      console.log('Have %d bytes of random data: %s', buf.length, buf);
    });

    // sync
    try {
      var buf = crypto.randomBytes(256);
      console.log('Have %d bytes of random data: %s', buf.length, buf);
    } catch (ex) {
      // handle error
    }