summaryrefslogtreecommitdiff
path: root/deps/v8/third_party/antlr4/runtime/Cpp/runtime/src/atn/LexerATNSimulator.cpp
blob: 409a8dfed7f54b85599bb402f8233390e4c26988 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/* Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
 * Use of this file is governed by the BSD 3-clause license that
 * can be found in the LICENSE.txt file in the project root.
 */

#include "IntStream.h"
#include "Lexer.h"
#include "LexerNoViableAltException.h"
#include "Token.h"
#include "atn/ActionTransition.h"
#include "atn/OrderedATNConfigSet.h"
#include "atn/PredicateTransition.h"
#include "atn/RuleStopState.h"
#include "atn/RuleTransition.h"
#include "atn/SingletonPredictionContext.h"
#include "atn/TokensStartState.h"
#include "dfa/DFA.h"
#include "misc/Interval.h"

#include "atn/EmptyPredictionContext.h"
#include "atn/LexerATNConfig.h"
#include "atn/LexerActionExecutor.h"
#include "dfa/DFAState.h"

#include "atn/LexerATNSimulator.h"

#define DEBUG_ATN 0
#define DEBUG_DFA 0

using namespace antlr4;
using namespace antlr4::atn;
using namespace antlrcpp;

LexerATNSimulator::SimState::~SimState() {}

void LexerATNSimulator::SimState::reset() {
  index = INVALID_INDEX;
  line = 0;
  charPos = INVALID_INDEX;
  dfaState = nullptr;  // Don't delete. It's just a reference.
}

void LexerATNSimulator::SimState::InitializeInstanceFields() {
  index = INVALID_INDEX;
  line = 0;
  charPos = INVALID_INDEX;
}

int LexerATNSimulator::match_calls = 0;

LexerATNSimulator::LexerATNSimulator(const ATN& atn,
                                     std::vector<dfa::DFA>& decisionToDFA,
                                     PredictionContextCache& sharedContextCache)
    : LexerATNSimulator(nullptr, atn, decisionToDFA, sharedContextCache) {}

LexerATNSimulator::LexerATNSimulator(Lexer* recog, const ATN& atn,
                                     std::vector<dfa::DFA>& decisionToDFA,
                                     PredictionContextCache& sharedContextCache)
    : ATNSimulator(atn, sharedContextCache),
      _recog(recog),
      _decisionToDFA(decisionToDFA) {
  InitializeInstanceFields();
}

void LexerATNSimulator::copyState(LexerATNSimulator* simulator) {
  _charPositionInLine = simulator->_charPositionInLine;
  _line = simulator->_line;
  _mode = simulator->_mode;
  _startIndex = simulator->_startIndex;
}

size_t LexerATNSimulator::match(CharStream* input, size_t mode) {
  match_calls++;
  _mode = mode;
  ssize_t mark = input->mark();

  auto onExit = finally([input, mark] { input->release(mark); });

  _startIndex = input->index();
  _prevAccept.reset();
  const dfa::DFA& dfa = _decisionToDFA[mode];
  if (dfa.s0 == nullptr) {
    return matchATN(input);
  } else {
    return execATN(input, dfa.s0);
  }
}

void LexerATNSimulator::reset() {
  _prevAccept.reset();
  _startIndex = 0;
  _line = 1;
  _charPositionInLine = 0;
  _mode = Lexer::DEFAULT_MODE;
}

void LexerATNSimulator::clearDFA() {
  size_t size = _decisionToDFA.size();
  _decisionToDFA.clear();
  for (size_t d = 0; d < size; ++d) {
    _decisionToDFA.emplace_back(atn.getDecisionState(d), d);
  }
}

size_t LexerATNSimulator::matchATN(CharStream* input) {
  ATNState* startState = atn.modeToStartState[_mode];

  std::unique_ptr<ATNConfigSet> s0_closure =
      computeStartState(input, startState);

  bool suppressEdge = s0_closure->hasSemanticContext;
  s0_closure->hasSemanticContext = false;

  dfa::DFAState* next = addDFAState(s0_closure.release());
  if (!suppressEdge) {
    _decisionToDFA[_mode].s0 = next;
  }

  size_t predict = execATN(input, next);

  return predict;
}

size_t LexerATNSimulator::execATN(CharStream* input, dfa::DFAState* ds0) {
  if (ds0->isAcceptState) {
    // allow zero-length tokens
    // ml: in Java code this method uses 3 params. The first is a member var of
    // the class anyway (_prevAccept), so why pass it here?
    captureSimState(input, ds0);
  }

  size_t t = input->LA(1);
  dfa::DFAState* s = ds0;  // s is current/from DFA state

  while (true) {  // while more work
    // As we move src->trg, src->trg, we keep track of the previous trg to
    // avoid looking up the DFA state again, which is expensive.
    // If the previous target was already part of the DFA, we might
    // be able to avoid doing a reach operation upon t. If s!=null,
    // it means that semantic predicates didn't prevent us from
    // creating a DFA state. Once we know s!=null, we check to see if
    // the DFA state has an edge already for t. If so, we can just reuse
    // it's configuration set; there's no point in re-computing it.
    // This is kind of like doing DFA simulation within the ATN
    // simulation because DFA simulation is really just a way to avoid
    // computing reach/closure sets. Technically, once we know that
    // we have a previously added DFA state, we could jump over to
    // the DFA simulator. But, that would mean popping back and forth
    // a lot and making things more complicated algorithmically.
    // This optimization makes a lot of sense for loops within DFA.
    // A character will take us back to an existing DFA state
    // that already has lots of edges out of it. e.g., .* in comments.
    dfa::DFAState* target = getExistingTargetState(s, t);
    if (target == nullptr) {
      target = computeTargetState(input, s, t);
    }

    if (target == ERROR_STATE.get()) {
      break;
    }

    // If this is a consumable input element, make sure to consume before
    // capturing the accept state so the input index, line, and char
    // position accurately reflect the state of the interpreter at the
    // end of the token.
    if (t != Token::EOF) {
      consume(input);
    }

    if (target->isAcceptState) {
      captureSimState(input, target);
      if (t == Token::EOF) {
        break;
      }
    }

    t = input->LA(1);
    s = target;  // flip; current DFA target becomes new src/from state
  }

  return failOrAccept(input, s->configs.get(), t);
}

dfa::DFAState* LexerATNSimulator::getExistingTargetState(dfa::DFAState* s,
                                                         size_t t) {
  dfa::DFAState* retval = nullptr;
  _edgeLock.readLock();
  if (t <= MAX_DFA_EDGE) {
    auto iterator = s->edges.find(t - MIN_DFA_EDGE);
#if DEBUG_ATN == 1
    if (iterator != s->edges.end()) {
      std::cout << std::string("reuse state ") << s->stateNumber
                << std::string(" edge to ") << iterator->second->stateNumber
                << std::endl;
    }
#endif

    if (iterator != s->edges.end()) retval = iterator->second;
  }
  _edgeLock.readUnlock();
  return retval;
}

dfa::DFAState* LexerATNSimulator::computeTargetState(CharStream* input,
                                                     dfa::DFAState* s,
                                                     size_t t) {
  OrderedATNConfigSet* reach =
      new OrderedATNConfigSet(); /* mem-check: deleted on error or managed by
                                    new DFA state. */

  // if we don't find an existing DFA state
  // Fill reach starting from closure, following t transitions
  getReachableConfigSet(input, s->configs.get(), reach, t);

  if (reach->isEmpty()) {  // we got nowhere on t from s
    if (!reach->hasSemanticContext) {
      // we got nowhere on t, don't throw out this knowledge; it'd
      // cause a failover from DFA later.
      delete reach;
      addDFAEdge(s, t, ERROR_STATE.get());
    }

    // stop when we can't match any more char
    return ERROR_STATE.get();
  }

  // Add an edge from s to target DFA found/created for reach
  return addDFAEdge(s, t, reach);
}

size_t LexerATNSimulator::failOrAccept(CharStream* input, ATNConfigSet* reach,
                                       size_t t) {
  if (_prevAccept.dfaState != nullptr) {
    Ref<LexerActionExecutor> lexerActionExecutor =
        _prevAccept.dfaState->lexerActionExecutor;
    accept(input, lexerActionExecutor, _startIndex, _prevAccept.index,
           _prevAccept.line, _prevAccept.charPos);
    return _prevAccept.dfaState->prediction;
  } else {
    // if no accept and EOF is first char, return EOF
    if (t == Token::EOF && input->index() == _startIndex) {
      return Token::EOF;
    }

    throw LexerNoViableAltException(_recog, input, _startIndex, reach);
  }
}

void LexerATNSimulator::getReachableConfigSet(CharStream* input,
                                              ATNConfigSet* closure_,
                                              ATNConfigSet* reach, size_t t) {
  // this is used to skip processing for configs which have a lower priority
  // than a config that already reached an accept state for the same rule
  size_t skipAlt = ATN::INVALID_ALT_NUMBER;

  for (auto c : closure_->configs) {
    bool currentAltReachedAcceptState = c->alt == skipAlt;
    if (currentAltReachedAcceptState &&
        (std::static_pointer_cast<LexerATNConfig>(c))
            ->hasPassedThroughNonGreedyDecision()) {
      continue;
    }

#if DEBUG_ATN == 1
    std::cout << "testing " << getTokenName((int)t) << " at "
              << c->toString(true) << std::endl;
#endif

    size_t n = c->state->transitions.size();
    for (size_t ti = 0; ti < n; ti++) {  // for each transition
      Transition* trans = c->state->transitions[ti];
      ATNState* target = getReachableTarget(trans, (int)t);
      if (target != nullptr) {
        Ref<LexerActionExecutor> lexerActionExecutor =
            std::static_pointer_cast<LexerATNConfig>(c)
                ->getLexerActionExecutor();
        if (lexerActionExecutor != nullptr) {
          lexerActionExecutor = lexerActionExecutor->fixOffsetBeforeMatch(
              (int)input->index() - (int)_startIndex, lexerActionExecutor);
        }

        bool treatEofAsEpsilon = t == Token::EOF;
        Ref<LexerATNConfig> config = std::make_shared<LexerATNConfig>(
            std::static_pointer_cast<LexerATNConfig>(c), target,
            lexerActionExecutor);

        if (closure(input, config, reach, currentAltReachedAcceptState, true,
                    treatEofAsEpsilon)) {
          // any remaining configs for this alt have a lower priority than
          // the one that just reached an accept state.
          skipAlt = c->alt;
          break;
        }
      }
    }
  }
}

void LexerATNSimulator::accept(
    CharStream* input, const Ref<LexerActionExecutor>& lexerActionExecutor,
    size_t /*startIndex*/, size_t index, size_t line, size_t charPos) {
#if DEBUG_ATN == 1
  std::cout << "ACTION ";
  std::cout << toString(lexerActionExecutor) << std::endl;
#endif

  // seek to after last char in token
  input->seek(index);
  _line = line;
  _charPositionInLine = (int)charPos;

  if (lexerActionExecutor != nullptr && _recog != nullptr) {
    lexerActionExecutor->execute(_recog, input, _startIndex);
  }
}

atn::ATNState* LexerATNSimulator::getReachableTarget(Transition* trans,
                                                     size_t t) {
  if (trans->matches(t, Lexer::MIN_CHAR_VALUE, Lexer::MAX_CHAR_VALUE)) {
    return trans->target;
  }

  return nullptr;
}

std::unique_ptr<ATNConfigSet> LexerATNSimulator::computeStartState(
    CharStream* input, ATNState* p) {
  Ref<PredictionContext> initialContext =
      PredictionContext::EMPTY;  // ml: the purpose of this assignment is
                                 // unclear
  std::unique_ptr<ATNConfigSet> configs(new OrderedATNConfigSet());
  for (size_t i = 0; i < p->transitions.size(); i++) {
    ATNState* target = p->transitions[i]->target;
    Ref<LexerATNConfig> c =
        std::make_shared<LexerATNConfig>(target, (int)(i + 1), initialContext);
    closure(input, c, configs.get(), false, false, false);
  }

  return configs;
}

bool LexerATNSimulator::closure(CharStream* input,
                                const Ref<LexerATNConfig>& config,
                                ATNConfigSet* configs,
                                bool currentAltReachedAcceptState,
                                bool speculative, bool treatEofAsEpsilon) {
#if DEBUG_ATN == 1
  std::cout << "closure(" << config->toString(true) << ")" << std::endl;
#endif

  if (is<RuleStopState*>(config->state)) {
#if DEBUG_ATN == 1
    if (_recog != nullptr) {
      std::cout << "closure at "
                << _recog->getRuleNames()[config->state->ruleIndex]
                << " rule stop " << config << std::endl;
    } else {
      std::cout << "closure at rule stop " << config << std::endl;
    }
#endif

    if (config->context == nullptr || config->context->hasEmptyPath()) {
      if (config->context == nullptr || config->context->isEmpty()) {
        configs->add(config);
        return true;
      } else {
        configs->add(std::make_shared<LexerATNConfig>(
            config, config->state, PredictionContext::EMPTY));
        currentAltReachedAcceptState = true;
      }
    }

    if (config->context != nullptr && !config->context->isEmpty()) {
      for (size_t i = 0; i < config->context->size(); i++) {
        if (config->context->getReturnState(i) !=
            PredictionContext::EMPTY_RETURN_STATE) {
          std::weak_ptr<PredictionContext> newContext =
              config->context->getParent(i);  // "pop" return state
          ATNState* returnState =
              atn.states[config->context->getReturnState(i)];
          Ref<LexerATNConfig> c = std::make_shared<LexerATNConfig>(
              config, returnState, newContext.lock());
          currentAltReachedAcceptState =
              closure(input, c, configs, currentAltReachedAcceptState,
                      speculative, treatEofAsEpsilon);
        }
      }
    }

    return currentAltReachedAcceptState;
  }

  // optimization
  if (!config->state->epsilonOnlyTransitions) {
    if (!currentAltReachedAcceptState ||
        !config->hasPassedThroughNonGreedyDecision()) {
      configs->add(config);
    }
  }

  ATNState* p = config->state;
  for (size_t i = 0; i < p->transitions.size(); i++) {
    Transition* t = p->transitions[i];
    Ref<LexerATNConfig> c = getEpsilonTarget(input, config, t, configs,
                                             speculative, treatEofAsEpsilon);
    if (c != nullptr) {
      currentAltReachedAcceptState =
          closure(input, c, configs, currentAltReachedAcceptState, speculative,
                  treatEofAsEpsilon);
    }
  }

  return currentAltReachedAcceptState;
}

Ref<LexerATNConfig> LexerATNSimulator::getEpsilonTarget(
    CharStream* input, const Ref<LexerATNConfig>& config, Transition* t,
    ATNConfigSet* configs, bool speculative, bool treatEofAsEpsilon) {
  Ref<LexerATNConfig> c = nullptr;
  switch (t->getSerializationType()) {
    case Transition::RULE: {
      RuleTransition* ruleTransition = static_cast<RuleTransition*>(t);
      Ref<PredictionContext> newContext = SingletonPredictionContext::create(
          config->context, ruleTransition->followState->stateNumber);
      c = std::make_shared<LexerATNConfig>(config, t->target, newContext);
      break;
    }

    case Transition::PRECEDENCE:
      throw UnsupportedOperationException(
          "Precedence predicates are not supported in lexers.");

    case Transition::PREDICATE: {
      /*  Track traversing semantic predicates. If we traverse,
       we cannot add a DFA state for this "reach" computation
       because the DFA would not test the predicate again in the
       future. Rather than creating collections of semantic predicates
       like v3 and testing them on prediction, v4 will test them on the
       fly all the time using the ATN not the DFA. This is slower but
       semantically it's not used that often. One of the key elements to
       this predicate mechanism is not adding DFA states that see
       predicates immediately afterwards in the ATN. For example,

       a : ID {p1}? | ID {p2}? ;

       should create the start state for rule 'a' (to save start state
       competition), but should not create target of ID state. The
       collection of ATN states the following ID references includes
       states reached by traversing predicates. Since this is when we
       test them, we cannot cash the DFA state target of ID.
       */
      PredicateTransition* pt = static_cast<PredicateTransition*>(t);

#if DEBUG_ATN == 1
      std::cout << "EVAL rule " << pt->ruleIndex << ":" << pt->predIndex
                << std::endl;
#endif

      configs->hasSemanticContext = true;
      if (evaluatePredicate(input, pt->ruleIndex, pt->predIndex, speculative)) {
        c = std::make_shared<LexerATNConfig>(config, t->target);
      }
      break;
    }

    case Transition::ACTION:
      if (config->context == nullptr || config->context->hasEmptyPath()) {
        // execute actions anywhere in the start rule for a token.
        //
        // TO_DO: if the entry rule is invoked recursively, some
        // actions may be executed during the recursive call. The
        // problem can appear when hasEmptyPath() is true but
        // isEmpty() is false. In this case, the config needs to be
        // split into two contexts - one with just the empty path
        // and another with everything but the empty path.
        // Unfortunately, the current algorithm does not allow
        // getEpsilonTarget to return two configurations, so
        // additional modifications are needed before we can support
        // the split operation.
        Ref<LexerActionExecutor> lexerActionExecutor =
            LexerActionExecutor::append(
                config->getLexerActionExecutor(),
                atn.lexerActions[static_cast<ActionTransition*>(t)
                                     ->actionIndex]);
        c = std::make_shared<LexerATNConfig>(config, t->target,
                                             lexerActionExecutor);
        break;
      } else {
        // ignore actions in referenced rules
        c = std::make_shared<LexerATNConfig>(config, t->target);
        break;
      }

    case Transition::EPSILON:
      c = std::make_shared<LexerATNConfig>(config, t->target);
      break;

    case Transition::ATOM:
    case Transition::RANGE:
    case Transition::SET:
      if (treatEofAsEpsilon) {
        if (t->matches(Token::EOF, Lexer::MIN_CHAR_VALUE,
                       Lexer::MAX_CHAR_VALUE)) {
          c = std::make_shared<LexerATNConfig>(config, t->target);
          break;
        }
      }

      break;

    default
        :  // To silence the compiler. Other transition types are not used here.
      break;
  }

  return c;
}

bool LexerATNSimulator::evaluatePredicate(CharStream* input, size_t ruleIndex,
                                          size_t predIndex, bool speculative) {
  // assume true if no recognizer was provided
  if (_recog == nullptr) {
    return true;
  }

  if (!speculative) {
    return _recog->sempred(nullptr, ruleIndex, predIndex);
  }

  size_t savedCharPositionInLine = _charPositionInLine;
  size_t savedLine = _line;
  size_t index = input->index();
  ssize_t marker = input->mark();

  auto onExit =
      finally([this, input, savedCharPositionInLine, savedLine, index, marker] {
        _charPositionInLine = savedCharPositionInLine;
        _line = savedLine;
        input->seek(index);
        input->release(marker);
      });

  consume(input);
  return _recog->sempred(nullptr, ruleIndex, predIndex);
}

void LexerATNSimulator::captureSimState(CharStream* input,
                                        dfa::DFAState* dfaState) {
  _prevAccept.index = input->index();
  _prevAccept.line = _line;
  _prevAccept.charPos = _charPositionInLine;
  _prevAccept.dfaState = dfaState;
}

dfa::DFAState* LexerATNSimulator::addDFAEdge(dfa::DFAState* from, size_t t,
                                             ATNConfigSet* q) {
  /* leading to this call, ATNConfigSet.hasSemanticContext is used as a
   * marker indicating dynamic predicate evaluation makes this edge
   * dependent on the specific input sequence, so the static edge in the
   * DFA should be omitted. The target DFAState is still created since
   * execATN has the ability to resynchronize with the DFA state cache
   * following the predicate evaluation step.
   *
   * TJP notes: next time through the DFA, we see a pred again and eval.
   * If that gets us to a previously created (but dangling) DFA
   * state, we can continue in pure DFA mode from there.
   */
  bool suppressEdge = q->hasSemanticContext;
  q->hasSemanticContext = false;

  dfa::DFAState* to = addDFAState(q);

  if (suppressEdge) {
    return to;
  }

  addDFAEdge(from, t, to);
  return to;
}

void LexerATNSimulator::addDFAEdge(dfa::DFAState* p, size_t t,
                                   dfa::DFAState* q) {
  if (/*t < MIN_DFA_EDGE ||*/ t > MAX_DFA_EDGE) {  // MIN_DFA_EDGE is 0
    // Only track edges within the DFA bounds
    return;
  }

  _edgeLock.writeLock();
  p->edges[t - MIN_DFA_EDGE] = q;  // connect
  _edgeLock.writeUnlock();
}

dfa::DFAState* LexerATNSimulator::addDFAState(ATNConfigSet* configs) {
  /* the lexer evaluates predicates on-the-fly; by this point configs
   * should not contain any configurations with unevaluated predicates.
   */
  assert(!configs->hasSemanticContext);

  dfa::DFAState* proposed = new dfa::DFAState(std::unique_ptr<ATNConfigSet>(
      configs)); /* mem-check: managed by the DFA or deleted below */
  Ref<ATNConfig> firstConfigWithRuleStopState = nullptr;
  for (auto& c : configs->configs) {
    if (is<RuleStopState*>(c->state)) {
      firstConfigWithRuleStopState = c;
      break;
    }
  }

  if (firstConfigWithRuleStopState != nullptr) {
    proposed->isAcceptState = true;
    proposed->lexerActionExecutor =
        std::dynamic_pointer_cast<LexerATNConfig>(firstConfigWithRuleStopState)
            ->getLexerActionExecutor();
    proposed->prediction =
        atn.ruleToTokenType[firstConfigWithRuleStopState->state->ruleIndex];
  }

  dfa::DFA& dfa = _decisionToDFA[_mode];

  _stateLock.writeLock();
  if (!dfa.states.empty()) {
    auto iterator = dfa.states.find(proposed);
    if (iterator != dfa.states.end()) {
      delete proposed;
      _stateLock.writeUnlock();
      return *iterator;
    }
  }

  proposed->stateNumber = (int)dfa.states.size();
  proposed->configs->setReadonly(true);

  dfa.states.insert(proposed);
  _stateLock.writeUnlock();

  return proposed;
}

dfa::DFA& LexerATNSimulator::getDFA(size_t mode) {
  return _decisionToDFA[mode];
}

std::string LexerATNSimulator::getText(CharStream* input) {
  // index is first lookahead char, don't include.
  return input->getText(misc::Interval(_startIndex, input->index() - 1));
}

size_t LexerATNSimulator::getLine() const { return _line; }

void LexerATNSimulator::setLine(size_t line) { _line = line; }

size_t LexerATNSimulator::getCharPositionInLine() {
  return _charPositionInLine;
}

void LexerATNSimulator::setCharPositionInLine(size_t charPositionInLine) {
  _charPositionInLine = charPositionInLine;
}

void LexerATNSimulator::consume(CharStream* input) {
  size_t curChar = input->LA(1);
  if (curChar == '\n') {
    _line++;
    _charPositionInLine = 0;
  } else {
    _charPositionInLine++;
  }
  input->consume();
}

std::string LexerATNSimulator::getTokenName(size_t t) {
  if (t == Token::EOF) {
    return "EOF";
  }
  return std::string("'") + static_cast<char>(t) + std::string("'");
}

void LexerATNSimulator::InitializeInstanceFields() {
  _startIndex = 0;
  _line = 1;
  _charPositionInLine = 0;
  _mode = antlr4::Lexer::DEFAULT_MODE;
}