summaryrefslogtreecommitdiff
path: root/deps/v8/test/unittests/heap/spaces-unittest.cc
blob: c5acc6c43e17dddae6fe51fb8f2920f6abae2ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/spaces-inl.h"
#include "test/unittests/test-utils.h"

namespace v8 {
namespace internal {

using SpacesTest = TestWithIsolate;

TEST_F(SpacesTest, CompactionSpaceMerge) {
  Heap* heap = i_isolate()->heap();
  OldSpace* old_space = heap->old_space();
  EXPECT_TRUE(old_space != nullptr);

  CompactionSpace* compaction_space =
      new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE);
  EXPECT_TRUE(compaction_space != nullptr);

  for (Page* p : *old_space) {
    // Unlink free lists from the main space to avoid reusing the memory for
    // compaction spaces.
    old_space->UnlinkFreeListCategories(p);
  }

  // Cannot loop until "Available()" since we initially have 0 bytes available
  // and would thus neither grow, nor be able to allocate an object.
  const int kNumObjects = 10;
  const int kNumObjectsPerPage =
      compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
  const int kExpectedPages =
      (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
  for (int i = 0; i < kNumObjects; i++) {
    HeapObject object =
        compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
            .ToObjectChecked();
    heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
                               ClearRecordedSlots::kNo);
  }
  int pages_in_old_space = old_space->CountTotalPages();
  int pages_in_compaction_space = compaction_space->CountTotalPages();
  EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
  old_space->MergeCompactionSpace(compaction_space);
  EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
            old_space->CountTotalPages());

  delete compaction_space;
}

TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
  constexpr Address address1 = Page::kPageSize;
  HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
  MemoryChunk* chunk1 = MemoryChunk::FromHeapObject(object1);
  heap_internals::MemoryChunk* slim_chunk1 =
      heap_internals::MemoryChunk::FromHeapObject(object1);
  EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
  constexpr Address address2 = 2 * Page::kPageSize - 1;
  HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
  MemoryChunk* chunk2 = MemoryChunk::FromHeapObject(object2);
  heap_internals::MemoryChunk* slim_chunk2 =
      heap_internals::MemoryChunk::FromHeapObject(object2);
  EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
}

TEST_F(SpacesTest, WriteBarrierIsMarking) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_FALSE(slim_chunk->IsMarking());
  chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
  EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_TRUE(slim_chunk->IsMarking());
  chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
  EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_FALSE(slim_chunk->IsMarking());
}

TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
  chunk->SetFlag(MemoryChunk::TO_PAGE);
  EXPECT_TRUE(chunk->InYoungGeneration());
  EXPECT_TRUE(slim_chunk->InYoungGeneration());
  chunk->ClearFlag(MemoryChunk::TO_PAGE);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
}

TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
  chunk->SetFlag(MemoryChunk::FROM_PAGE);
  EXPECT_TRUE(chunk->InYoungGeneration());
  EXPECT_TRUE(slim_chunk->InYoungGeneration());
  chunk->ClearFlag(MemoryChunk::FROM_PAGE);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
}

TEST_F(SpacesTest, CodeRangeAddressReuse) {
  CodeRangeAddressHint hint;
  // Create code ranges.
  Address code_range1 = hint.GetAddressHint(100);
  Address code_range2 = hint.GetAddressHint(200);
  Address code_range3 = hint.GetAddressHint(100);

  // Since the addresses are random, we cannot check that they are different.

  // Free two code ranges.
  hint.NotifyFreedCodeRange(code_range1, 100);
  hint.NotifyFreedCodeRange(code_range2, 200);

  // The next two code ranges should reuse the freed addresses.
  Address code_range4 = hint.GetAddressHint(100);
  EXPECT_EQ(code_range4, code_range1);
  Address code_range5 = hint.GetAddressHint(200);
  EXPECT_EQ(code_range5, code_range2);

  // Free the third code range and check address reuse.
  hint.NotifyFreedCodeRange(code_range3, 100);
  Address code_range6 = hint.GetAddressHint(100);
  EXPECT_EQ(code_range6, code_range3);
}

// Tests that FreeListMany::SelectFreeListCategoryType returns what it should.
TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) {
  FreeListMany free_list;

  // Testing that all sizes below 256 bytes get assigned the correct category
  for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) {
    FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
    if (cat == 0) {
      // If cat == 0, then we make sure that |size| doesn't fit in the 2nd
      // category.
      EXPECT_LT(size, free_list.categories_min[1]);
    } else {
      // Otherwise, size should fit in |cat|, but not in |cat+1|.
      EXPECT_LE(free_list.categories_min[cat], size);
      EXPECT_LT(size, free_list.categories_min[cat + 1]);
    }
  }

  // Testing every size above 256 would take long time, so test only some
  // "interesting cases": picking some number in the middle of the categories,
  // as well as at the categories' bounds.
  for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    // Adding size between this category's minimum and the next category
    if (cat != free_list.last_category_) {
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
      if (cat == free_list.last_category_) {
        // If cat == last_category, then we make sure that |size| indeeds fits
        // in the last category.
        EXPECT_LE(free_list.categories_min[cat], size);
      } else {
        // Otherwise, size should fit in |cat|, but not in |cat+1|.
        EXPECT_LE(free_list.categories_min[cat], size);
        EXPECT_LT(size, free_list.categories_min[cat + 1]);
      }
    }
  }
}

// Tests that FreeListMany::GuaranteedAllocatable returns what it should.
TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) {
  FreeListMany free_list;

  for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    if (cat != free_list.last_category_) {
      // Adding size between this category's minimum and the next category
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat_free =
          free_list.SelectFreeListCategoryType(size);
      size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size);
      if (cat_free == free_list.last_category_) {
        // If |cat_free| == last_category, then guaranteed_allocatable must
        // return the last category, because when allocating, the last category
        // is searched entirely.
        EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable),
                  free_list.last_category_);
      } else if (size < free_list.categories_min[0]) {
        // If size < free_list.categories_min[0], then the bytes are wasted, and
        // guaranteed_allocatable should return 0.
        EXPECT_EQ(guaranteed_allocatable, 0ul);
      } else {
        // Otherwise, |guaranteed_allocatable| is equal to the minimum of
        // |size|'s category (|cat_free|);
        EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable);
      }
    }
  }
}

// Tests that
// FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns
// what it should.
TEST_F(SpacesTest,
       FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) {
  FreeListManyCachedFastPath free_list;

  for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    // Adding size between this category's minimum and the next category
    if (cat != free_list.last_category_) {
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat =
          free_list.SelectFastAllocationFreeListCategoryType(size);
      if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) {
        // For tiny objects, the first category of the fast path should be
        // chosen.
        EXPECT_TRUE(cat == FreeListManyCachedFastPath::kFastPathFirstCategory);
      } else if (size >= free_list.categories_min[free_list.last_category_] -
                             FreeListManyCachedFastPath::kFastPathOffset) {
        // For objects close to the minimum of the last category, the last
        // category is chosen.
        EXPECT_EQ(cat, free_list.last_category_);
      } else {
        // For other objects, the chosen category must satisfy that its minimum
        // is at least |size|+1.85k.
        EXPECT_GE(free_list.categories_min[cat],
                  size + FreeListManyCachedFastPath::kFastPathOffset);
        // And the smaller categoriy's minimum is less than |size|+1.85k
        // (otherwise it would have been chosen instead).
        EXPECT_LT(free_list.categories_min[cat - 1],
                  size + FreeListManyCachedFastPath::kFastPathOffset);
      }
    }
  }
}

}  // namespace internal
}  // namespace v8