summaryrefslogtreecommitdiff
path: root/deps/v8/test/unittests/compiler/typer-unittest.cc
blob: 5954dbc6388dcad5cf5e3fc4a6f52e9fbef8c17d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <functional>

#include "src/base/overflowing-math.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/operator-properties.h"
#include "src/compiler/simplified-operator.h"
#include "src/objects-inl.h"
#include "test/cctest/types-fuzz.h"
#include "test/unittests/compiler/graph-unittest.h"

namespace v8 {
namespace internal {
namespace compiler {

// TODO(titzer): generate a large set of deterministic inputs for these tests.
class TyperTest : public TypedGraphTest {
 public:
  TyperTest()
      : TypedGraphTest(3),
        broker_(isolate(), zone()),
        operation_typer_(&broker_, zone()),
        types_(zone(), isolate(), random_number_generator()),
        javascript_(zone()),
        simplified_(zone()) {
    context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
    rng_ = random_number_generator();

    integers.push_back(0);
    integers.push_back(0);
    integers.push_back(-1);
    integers.push_back(+1);
    integers.push_back(-V8_INFINITY);
    integers.push_back(+V8_INFINITY);
    for (int i = 0; i < 5; ++i) {
      double x = rng_->NextInt();
      integers.push_back(x);
      x *= rng_->NextInt();
      if (!IsMinusZero(x)) integers.push_back(x);
    }

    int32s.push_back(0);
    int32s.push_back(0);
    int32s.push_back(-1);
    int32s.push_back(+1);
    int32s.push_back(kMinInt);
    int32s.push_back(kMaxInt);
    for (int i = 0; i < 10; ++i) {
      int32s.push_back(rng_->NextInt());
    }
  }

  const int kRepetitions = 50;

  JSHeapBroker broker_;
  OperationTyper operation_typer_;
  Types types_;
  JSOperatorBuilder javascript_;
  SimplifiedOperatorBuilder simplified_;
  BinaryOperationHint const hints_ = BinaryOperationHint::kAny;
  Node* context_node_;
  v8::base::RandomNumberGenerator* rng_;
  std::vector<double> integers;
  std::vector<double> int32s;

  Type TypeUnaryOp(const Operator* op, Type type0) {
    Node* p0 = Parameter(0);
    NodeProperties::SetType(p0, type0);
    std::vector<Node*> inputs;
    inputs.push_back(p0);
    if (OperatorProperties::HasContextInput(op)) {
      inputs.push_back(context_node_);
    }
    for (int i = 0; i < OperatorProperties::GetFrameStateInputCount(op); i++) {
      inputs.push_back(EmptyFrameState());
    }
    for (int i = 0; i < op->EffectInputCount(); i++) {
      inputs.push_back(graph()->start());
    }
    for (int i = 0; i < op->ControlInputCount(); i++) {
      inputs.push_back(graph()->start());
    }
    Node* n = graph()->NewNode(op, static_cast<int>(inputs.size()),
                               &(inputs.front()));
    return NodeProperties::GetType(n);
  }

  Type TypeBinaryOp(const Operator* op, Type lhs, Type rhs) {
    Node* p0 = Parameter(0);
    Node* p1 = Parameter(1);
    NodeProperties::SetType(p0, lhs);
    NodeProperties::SetType(p1, rhs);
    std::vector<Node*> inputs;
    inputs.push_back(p0);
    inputs.push_back(p1);
    if (OperatorProperties::HasContextInput(op)) {
      inputs.push_back(context_node_);
    }
    for (int i = 0; i < OperatorProperties::GetFrameStateInputCount(op); i++) {
      inputs.push_back(EmptyFrameState());
    }
    for (int i = 0; i < op->EffectInputCount(); i++) {
      inputs.push_back(graph()->start());
    }
    for (int i = 0; i < op->ControlInputCount(); i++) {
      inputs.push_back(graph()->start());
    }
    Node* n = graph()->NewNode(op, static_cast<int>(inputs.size()),
                               &(inputs.front()));
    return NodeProperties::GetType(n);
  }

  Type RandomRange(bool int32 = false) {
    std::vector<double>& numbers = int32 ? int32s : integers;
    double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
    double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
    return NewRange(i, j);
  }

  Type NewRange(double i, double j) {
    if (i > j) std::swap(i, j);
    return Type::Range(i, j, zone());
  }

  double RandomInt(double min, double max) {
    switch (rng_->NextInt(4)) {
      case 0:
        return min;
      case 1:
        return max;
      default:
        break;
    }
    if (min == +V8_INFINITY) return +V8_INFINITY;
    if (max == -V8_INFINITY) return -V8_INFINITY;
    if (min == -V8_INFINITY && max == +V8_INFINITY) {
      return rng_->NextInt() * static_cast<double>(rng_->NextInt());
    }
    double result = nearbyint(min + (max - min) * rng_->NextDouble());
    if (IsMinusZero(result)) return 0;
    if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
    DCHECK(min <= result && result <= max);
    return result;
  }

  double RandomInt(const RangeType* range) {
    return RandomInt(range->Min(), range->Max());
  }

  Type RandomSubtype(Type type) {
    Type subtype;
    do {
      subtype = types_.Fuzz();
    } while (!subtype.Is(type));
    return subtype;
  }

  // Careful, this function runs O(max_width^5) trials.
  template <class BinaryFunction>
  void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun,
                                    int max_width) {
    const int min_min = -2 - max_width / 2;
    const int max_min = 2 + max_width / 2;
    for (int width = 0; width < max_width; width++) {
      for (int lmin = min_min; lmin <= max_min; lmin++) {
        for (int rmin = min_min; rmin <= max_min; rmin++) {
          Type r1 = NewRange(lmin, lmin + width);
          Type r2 = NewRange(rmin, rmin + width);
          Type expected_type = TypeBinaryOp(op, r1, r2);

          for (int x1 = lmin; x1 < lmin + width; x1++) {
            for (int x2 = rmin; x2 < rmin + width; x2++) {
              double result_value = opfun(x1, x2);
              Type result_type = Type::NewConstant(
                  &broker_, isolate()->factory()->NewNumber(result_value),
                  zone());
              EXPECT_TRUE(result_type.Is(expected_type));
            }
          }
        }
      }
    }
  }

  template <class BinaryFunction>
  void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
    TestBinaryArithOpCloseToZero(op, opfun, 8);
    for (int i = 0; i < 100; ++i) {
      Type r1 = RandomRange();
      Type r2 = RandomRange();
      Type expected_type = TypeBinaryOp(op, r1, r2);
      for (int i = 0; i < 10; i++) {
        double x1 = RandomInt(r1.AsRange());
        double x2 = RandomInt(r2.AsRange());
        double result_value = opfun(x1, x2);
        Type result_type = Type::NewConstant(
            &broker_, isolate()->factory()->NewNumber(result_value), zone());
        EXPECT_TRUE(result_type.Is(expected_type));
      }
    }
    // Test extreme cases.
    double x1 = +1e-308;
    double x2 = -1e-308;
    Type r1 = Type::NewConstant(&broker_, isolate()->factory()->NewNumber(x1),
                                zone());
    Type r2 = Type::NewConstant(&broker_, isolate()->factory()->NewNumber(x2),
                                zone());
    Type expected_type = TypeBinaryOp(op, r1, r2);
    double result_value = opfun(x1, x2);
    Type result_type = Type::NewConstant(
        &broker_, isolate()->factory()->NewNumber(result_value), zone());
    EXPECT_TRUE(result_type.Is(expected_type));
  }

  template <class BinaryFunction>
  void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
    for (int i = 0; i < 100; ++i) {
      Type r1 = RandomRange();
      Type r2 = RandomRange();
      Type expected_type = TypeBinaryOp(op, r1, r2);
      for (int i = 0; i < 10; i++) {
        double x1 = RandomInt(r1.AsRange());
        double x2 = RandomInt(r2.AsRange());
        bool result_value = opfun(x1, x2);
        Type result_type = Type::NewConstant(
            &broker_,
            result_value ? isolate()->factory()->true_value()
                         : isolate()->factory()->false_value(),
            zone());
        EXPECT_TRUE(result_type.Is(expected_type));
      }
    }
  }

  template <class BinaryFunction>
  void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
    for (int i = 0; i < 100; ++i) {
      Type r1 = RandomRange(true);
      Type r2 = RandomRange(true);
      Type expected_type = TypeBinaryOp(op, r1, r2);
      for (int i = 0; i < 10; i++) {
        int32_t x1 = static_cast<int32_t>(RandomInt(r1.AsRange()));
        int32_t x2 = static_cast<int32_t>(RandomInt(r2.AsRange()));
        double result_value = opfun(x1, x2);
        Type result_type = Type::NewConstant(
            &broker_, isolate()->factory()->NewNumber(result_value), zone());
        EXPECT_TRUE(result_type.Is(expected_type));
      }
    }
  }

  typedef std::function<Type(Type)> UnaryTyper;
  typedef std::function<Type(Type, Type)> BinaryTyper;

  void TestUnaryMonotonicity(UnaryTyper typer, Type upper1 = Type::Any()) {
    Type type1 = Type::Intersect(types_.Fuzz(), upper1, zone());
    DCHECK(type1.Is(upper1));
    Type type = typer(type1);

    Type subtype1 = RandomSubtype(type1);
    Type subtype = typer(subtype1);

    EXPECT_TRUE(subtype.Is(type));
  }

  void TestBinaryMonotonicity(BinaryTyper typer, Type upper1 = Type::Any(),
                              Type upper2 = Type::Any()) {
    Type type1 = Type::Intersect(types_.Fuzz(), upper1, zone());
    DCHECK(type1.Is(upper1));
    Type type2 = Type::Intersect(types_.Fuzz(), upper2, zone());
    DCHECK(type2.Is(upper2));
    Type type = typer(type1, type2);

    Type subtype1 = RandomSubtype(type1);
    Type subtype2 = RandomSubtype(type2);
    Type subtype = typer(subtype1, subtype2);

    EXPECT_TRUE(subtype.Is(type));
  }

  void TestUnaryMonotonicity(const Operator* op, Type upper1 = Type::Any()) {
    UnaryTyper typer = [&](Type type1) { return TypeUnaryOp(op, type1); };
    for (int i = 0; i < kRepetitions; ++i) {
      TestUnaryMonotonicity(typer, upper1);
    }
  }

  void TestBinaryMonotonicity(const Operator* op, Type upper1 = Type::Any(),
                              Type upper2 = Type::Any()) {
    BinaryTyper typer = [&](Type type1, Type type2) {
      return TypeBinaryOp(op, type1, type2);
    };
    for (int i = 0; i < kRepetitions; ++i) {
      TestBinaryMonotonicity(typer, upper1, upper2);
    }
  }
};


namespace {

int32_t shift_left(int32_t x, int32_t y) { return x << (y & 0x1F); }
int32_t shift_right(int32_t x, int32_t y) { return x >> (y & 0x1F); }
int32_t bit_or(int32_t x, int32_t y) { return x | y; }
int32_t bit_and(int32_t x, int32_t y) { return x & y; }
int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
double divide_double_double(double x, double y) { return base::Divide(x, y); }
double modulo_double_double(double x, double y) { return Modulo(x, y); }

}  // namespace


//------------------------------------------------------------------------------
// Soundness
//   For simplicity, we currently only test soundness on expression operators
//   that have a direct equivalent in C++.  Also, testing is currently limited
//   to ranges as input types.

TEST_F(TyperTest, TypeJSAdd) {
  TestBinaryArithOp(javascript_.Add(hints_), std::plus<double>());
}

TEST_F(TyperTest, TypeJSSubtract) {
  TestBinaryArithOp(javascript_.Subtract(), std::minus<double>());
}

TEST_F(TyperTest, TypeJSMultiply) {
  TestBinaryArithOp(javascript_.Multiply(), std::multiplies<double>());
}

TEST_F(TyperTest, TypeJSDivide) {
  TestBinaryArithOp(javascript_.Divide(), divide_double_double);
}

TEST_F(TyperTest, TypeJSModulus) {
  TestBinaryArithOp(javascript_.Modulus(), modulo_double_double);
}

TEST_F(TyperTest, TypeJSBitwiseOr) {
  TestBinaryBitOp(javascript_.BitwiseOr(), bit_or);
}

TEST_F(TyperTest, TypeJSBitwiseAnd) {
  TestBinaryBitOp(javascript_.BitwiseAnd(), bit_and);
}

TEST_F(TyperTest, TypeJSBitwiseXor) {
  TestBinaryBitOp(javascript_.BitwiseXor(), bit_xor);
}

TEST_F(TyperTest, TypeJSShiftLeft) {
  TestBinaryBitOp(javascript_.ShiftLeft(), shift_left);
}

TEST_F(TyperTest, TypeJSShiftRight) {
  TestBinaryBitOp(javascript_.ShiftRight(), shift_right);
}

TEST_F(TyperTest, TypeJSLessThan) {
  TestBinaryCompareOp(javascript_.LessThan(CompareOperationHint::kAny),
                      std::less<double>());
}

TEST_F(TyperTest, TypeNumberLessThan) {
  TestBinaryCompareOp(simplified_.NumberLessThan(), std::less<double>());
}

TEST_F(TyperTest, TypeSpeculativeNumberLessThan) {
  TestBinaryCompareOp(simplified_.SpeculativeNumberLessThan(
                          NumberOperationHint::kNumberOrOddball),
                      std::less<double>());
}

TEST_F(TyperTest, TypeJSLessThanOrEqual) {
  TestBinaryCompareOp(javascript_.LessThanOrEqual(CompareOperationHint::kAny),
                      std::less_equal<double>());
}

TEST_F(TyperTest, TypeNumberLessThanOrEqual) {
  TestBinaryCompareOp(simplified_.NumberLessThanOrEqual(),
                      std::less_equal<double>());
}

TEST_F(TyperTest, TypeSpeculativeNumberLessThanOrEqual) {
  TestBinaryCompareOp(simplified_.SpeculativeNumberLessThanOrEqual(
                          NumberOperationHint::kNumberOrOddball),
                      std::less_equal<double>());
}

TEST_F(TyperTest, TypeJSGreaterThan) {
  TestBinaryCompareOp(javascript_.GreaterThan(CompareOperationHint::kAny),
                      std::greater<double>());
}


TEST_F(TyperTest, TypeJSGreaterThanOrEqual) {
  TestBinaryCompareOp(
      javascript_.GreaterThanOrEqual(CompareOperationHint::kAny),
      std::greater_equal<double>());
}

TEST_F(TyperTest, TypeJSEqual) {
  TestBinaryCompareOp(javascript_.Equal(CompareOperationHint::kAny),
                      std::equal_to<double>());
}

TEST_F(TyperTest, TypeNumberEqual) {
  TestBinaryCompareOp(simplified_.NumberEqual(), std::equal_to<double>());
}

TEST_F(TyperTest, TypeSpeculativeNumberEqual) {
  TestBinaryCompareOp(
      simplified_.SpeculativeNumberEqual(NumberOperationHint::kNumberOrOddball),
      std::equal_to<double>());
}

// For numbers there's no difference between strict and non-strict equality.
TEST_F(TyperTest, TypeJSStrictEqual) {
  TestBinaryCompareOp(javascript_.StrictEqual(CompareOperationHint::kAny),
                      std::equal_to<double>());
}

//------------------------------------------------------------------------------
// Typer Monotonicity

// JS UNOPs without hint
#define TEST_MONOTONICITY(name)                \
  TEST_F(TyperTest, Monotonicity_##name) {     \
    TestUnaryMonotonicity(javascript_.name()); \
  }
TEST_MONOTONICITY(ToLength)
TEST_MONOTONICITY(ToName)
TEST_MONOTONICITY(ToNumber)
TEST_MONOTONICITY(ToObject)
TEST_MONOTONICITY(ToString)
#undef TEST_MONOTONICITY

// JS BINOPs with CompareOperationHint
#define TEST_MONOTONICITY(name)                                           \
  TEST_F(TyperTest, Monotonicity_##name) {                                \
    TestBinaryMonotonicity(javascript_.name(CompareOperationHint::kAny)); \
  }
TEST_MONOTONICITY(Equal)
TEST_MONOTONICITY(StrictEqual)
TEST_MONOTONICITY(LessThan)
TEST_MONOTONICITY(GreaterThan)
TEST_MONOTONICITY(LessThanOrEqual)
TEST_MONOTONICITY(GreaterThanOrEqual)
#undef TEST_MONOTONICITY

// JS BINOPs with BinaryOperationHint
#define TEST_MONOTONICITY(name)                                          \
  TEST_F(TyperTest, Monotonicity_##name) {                               \
    TestBinaryMonotonicity(javascript_.name(BinaryOperationHint::kAny)); \
  }
TEST_MONOTONICITY(Add)
#undef TEST_MONOTONICITY

TEST_F(TyperTest, Monotonicity_InstanceOf) {
  TestBinaryMonotonicity(javascript_.InstanceOf(VectorSlotPair()));
}

// JS BINOPS without hint
#define TEST_MONOTONICITY(name)                 \
  TEST_F(TyperTest, Monotonicity_##name) {      \
    TestBinaryMonotonicity(javascript_.name()); \
  }
TEST_MONOTONICITY(BitwiseOr)
TEST_MONOTONICITY(BitwiseXor)
TEST_MONOTONICITY(BitwiseAnd)
TEST_MONOTONICITY(ShiftLeft)
TEST_MONOTONICITY(ShiftRight)
TEST_MONOTONICITY(ShiftRightLogical)
TEST_MONOTONICITY(Subtract)
TEST_MONOTONICITY(Multiply)
TEST_MONOTONICITY(Divide)
TEST_MONOTONICITY(Modulus)
TEST_MONOTONICITY(OrdinaryHasInstance)
#undef TEST_MONOTONICITY

// SIMPLIFIED UNOPs without hint
#define TEST_MONOTONICITY(name)                \
  TEST_F(TyperTest, Monotonicity_##name) {     \
    TestUnaryMonotonicity(simplified_.name()); \
  }
TEST_MONOTONICITY(ObjectIsDetectableCallable)
TEST_MONOTONICITY(ObjectIsNaN)
TEST_MONOTONICITY(ObjectIsNonCallable)
TEST_MONOTONICITY(ObjectIsNumber)
TEST_MONOTONICITY(ObjectIsReceiver)
TEST_MONOTONICITY(ObjectIsSmi)
TEST_MONOTONICITY(ObjectIsString)
TEST_MONOTONICITY(ObjectIsSymbol)
TEST_MONOTONICITY(ObjectIsUndetectable)
TEST_MONOTONICITY(TypeOf)
TEST_MONOTONICITY(ToBoolean)
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs without hint, with Number input restriction
#define TEST_MONOTONICITY(name)                                \
  TEST_F(TyperTest, Monotonicity_##name) {                     \
    TestBinaryMonotonicity(simplified_.name(), Type::Number(), \
                           Type::Number());                    \
  }
SIMPLIFIED_NUMBER_BINOP_LIST(TEST_MONOTONICITY);
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs without hint, without input restriction
#define TEST_MONOTONICITY(name)                 \
  TEST_F(TyperTest, Monotonicity_##name) {      \
    TestBinaryMonotonicity(simplified_.name()); \
  }
TEST_MONOTONICITY(NumberLessThan)
TEST_MONOTONICITY(NumberLessThanOrEqual)
TEST_MONOTONICITY(NumberEqual)
TEST_MONOTONICITY(ReferenceEqual)
TEST_MONOTONICITY(StringEqual)
TEST_MONOTONICITY(StringLessThan)
TEST_MONOTONICITY(StringLessThanOrEqual)
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs with NumberOperationHint, without input restriction
#define TEST_MONOTONICITY(name)                                             \
  TEST_F(TyperTest, Monotonicity_##name) {                                  \
    TestBinaryMonotonicity(simplified_.name(NumberOperationHint::kNumber)); \
  }
TEST_MONOTONICITY(SpeculativeNumberEqual)
TEST_MONOTONICITY(SpeculativeNumberLessThan)
TEST_MONOTONICITY(SpeculativeNumberLessThanOrEqual)
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs with NumberOperationHint, without input restriction
#define TEST_MONOTONICITY(name)                                             \
  TEST_F(TyperTest, Monotonicity_##name) {                                  \
    TestBinaryMonotonicity(simplified_.name(NumberOperationHint::kNumber)); \
  }
SIMPLIFIED_SPECULATIVE_NUMBER_BINOP_LIST(TEST_MONOTONICITY)
#undef TEST_MONOTONICITY

//------------------------------------------------------------------------------
// OperationTyper Monotonicity

// SIMPLIFIED UNOPs with Number input restriction
#define TEST_MONOTONICITY(name)                      \
  TEST_F(TyperTest, Monotonicity_Operation_##name) { \
    UnaryTyper typer = [&](Type type1) {             \
      return operation_typer_.name(type1);           \
    };                                               \
    for (int i = 0; i < kRepetitions; ++i) {         \
      TestUnaryMonotonicity(typer, Type::Number());  \
    }                                                \
  }
SIMPLIFIED_NUMBER_UNOP_LIST(TEST_MONOTONICITY)
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs with Number input restriction
#define TEST_MONOTONICITY(name)                                      \
  TEST_F(TyperTest, Monotonicity_Operation_##name) {                 \
    BinaryTyper typer = [&](Type type1, Type type2) {                \
      return operation_typer_.name(type1, type2);                    \
    };                                                               \
    for (int i = 0; i < kRepetitions; ++i) {                         \
      TestBinaryMonotonicity(typer, Type::Number(), Type::Number()); \
    }                                                                \
  }
SIMPLIFIED_NUMBER_BINOP_LIST(TEST_MONOTONICITY)
#undef TEST_MONOTONICITY

// SIMPLIFIED BINOPs without input restriction
#define TEST_MONOTONICITY(name)                       \
  TEST_F(TyperTest, Monotonicity_Operation_##name) {  \
    BinaryTyper typer = [&](Type type1, Type type2) { \
      return operation_typer_.name(type1, type2);     \
    };                                                \
    for (int i = 0; i < kRepetitions; ++i) {          \
      TestBinaryMonotonicity(typer);                  \
    }                                                 \
  }
SIMPLIFIED_SPECULATIVE_NUMBER_BINOP_LIST(TEST_MONOTONICITY)
#undef TEST_MONOTONICITY

}  // namespace compiler
}  // namespace internal
}  // namespace v8