summaryrefslogtreecommitdiff
path: root/deps/v8/test/unittests/base/platform/time-unittest.cc
blob: 8b81eb90d666956f9299a595797d5fdf8049524d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/base/platform/time.h"

#if V8_OS_MACOSX
#include <mach/mach_time.h>
#endif
#if V8_OS_POSIX
#include <sys/time.h>
#endif

#if V8_OS_WIN
#include "src/base/win32-headers.h"
#endif

#include <vector>

#include "src/base/platform/elapsed-timer.h"
#include "src/base/platform/platform.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace v8 {
namespace base {

TEST(TimeDelta, FromAndIn) {
  EXPECT_EQ(TimeDelta::FromDays(2), TimeDelta::FromHours(48));
  EXPECT_EQ(TimeDelta::FromHours(3), TimeDelta::FromMinutes(180));
  EXPECT_EQ(TimeDelta::FromMinutes(2), TimeDelta::FromSeconds(120));
  EXPECT_EQ(TimeDelta::FromSeconds(2), TimeDelta::FromMilliseconds(2000));
  EXPECT_EQ(TimeDelta::FromMilliseconds(2), TimeDelta::FromMicroseconds(2000));
  EXPECT_EQ(static_cast<int>(13), TimeDelta::FromDays(13).InDays());
  EXPECT_EQ(static_cast<int>(13), TimeDelta::FromHours(13).InHours());
  EXPECT_EQ(static_cast<int>(13), TimeDelta::FromMinutes(13).InMinutes());
  EXPECT_EQ(static_cast<int64_t>(13), TimeDelta::FromSeconds(13).InSeconds());
  EXPECT_DOUBLE_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF());
  EXPECT_EQ(static_cast<int64_t>(13),
            TimeDelta::FromMilliseconds(13).InMilliseconds());
  EXPECT_DOUBLE_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF());
  EXPECT_EQ(static_cast<int64_t>(13),
            TimeDelta::FromMicroseconds(13).InMicroseconds());
}


#if V8_OS_MACOSX
TEST(TimeDelta, MachTimespec) {
  TimeDelta null = TimeDelta();
  EXPECT_EQ(null, TimeDelta::FromMachTimespec(null.ToMachTimespec()));
  TimeDelta delta1 = TimeDelta::FromMilliseconds(42);
  EXPECT_EQ(delta1, TimeDelta::FromMachTimespec(delta1.ToMachTimespec()));
  TimeDelta delta2 = TimeDelta::FromDays(42);
  EXPECT_EQ(delta2, TimeDelta::FromMachTimespec(delta2.ToMachTimespec()));
}
#endif


TEST(Time, JsTime) {
  Time t = Time::FromJsTime(700000.3);
  EXPECT_DOUBLE_EQ(700000.3, t.ToJsTime());
}


#if V8_OS_POSIX
TEST(Time, Timespec) {
  Time null;
  EXPECT_TRUE(null.IsNull());
  EXPECT_EQ(null, Time::FromTimespec(null.ToTimespec()));
  Time now = Time::Now();
  EXPECT_EQ(now, Time::FromTimespec(now.ToTimespec()));
  Time now_sys = Time::NowFromSystemTime();
  EXPECT_EQ(now_sys, Time::FromTimespec(now_sys.ToTimespec()));
  Time unix_epoch = Time::UnixEpoch();
  EXPECT_EQ(unix_epoch, Time::FromTimespec(unix_epoch.ToTimespec()));
  Time max = Time::Max();
  EXPECT_TRUE(max.IsMax());
  EXPECT_EQ(max, Time::FromTimespec(max.ToTimespec()));
}


TEST(Time, Timeval) {
  Time null;
  EXPECT_TRUE(null.IsNull());
  EXPECT_EQ(null, Time::FromTimeval(null.ToTimeval()));
  Time now = Time::Now();
  EXPECT_EQ(now, Time::FromTimeval(now.ToTimeval()));
  Time now_sys = Time::NowFromSystemTime();
  EXPECT_EQ(now_sys, Time::FromTimeval(now_sys.ToTimeval()));
  Time unix_epoch = Time::UnixEpoch();
  EXPECT_EQ(unix_epoch, Time::FromTimeval(unix_epoch.ToTimeval()));
  Time max = Time::Max();
  EXPECT_TRUE(max.IsMax());
  EXPECT_EQ(max, Time::FromTimeval(max.ToTimeval()));
}
#endif


#if V8_OS_WIN
TEST(Time, Filetime) {
  Time null;
  EXPECT_TRUE(null.IsNull());
  EXPECT_EQ(null, Time::FromFiletime(null.ToFiletime()));
  Time now = Time::Now();
  EXPECT_EQ(now, Time::FromFiletime(now.ToFiletime()));
  Time now_sys = Time::NowFromSystemTime();
  EXPECT_EQ(now_sys, Time::FromFiletime(now_sys.ToFiletime()));
  Time unix_epoch = Time::UnixEpoch();
  EXPECT_EQ(unix_epoch, Time::FromFiletime(unix_epoch.ToFiletime()));
  Time max = Time::Max();
  EXPECT_TRUE(max.IsMax());
  EXPECT_EQ(max, Time::FromFiletime(max.ToFiletime()));
}
#endif


namespace {

template <typename T>
static void ResolutionTest(T (*Now)(), TimeDelta target_granularity) {
  // We're trying to measure that intervals increment in a VERY small amount
  // of time -- according to the specified target granularity. Unfortunately,
  // if we happen to have a context switch in the middle of our test, the
  // context switch could easily exceed our limit. So, we iterate on this
  // several times. As long as we're able to detect the fine-granularity
  // timers at least once, then the test has succeeded.
  static const TimeDelta kExpirationTimeout = TimeDelta::FromSeconds(1);
  ElapsedTimer timer;
  timer.Start();
  TimeDelta delta;
  do {
    T start = Now();
    T now = start;
    // Loop until we can detect that the clock has changed. Non-HighRes timers
    // will increment in chunks, i.e. 15ms. By spinning until we see a clock
    // change, we detect the minimum time between measurements.
    do {
      now = Now();
      delta = now - start;
    } while (now <= start);
    EXPECT_NE(static_cast<int64_t>(0), delta.InMicroseconds());
  } while (delta > target_granularity && !timer.HasExpired(kExpirationTimeout));
  EXPECT_LE(delta, target_granularity);
}

}  // namespace


TEST(Time, NowResolution) {
  // We assume that Time::Now() has at least 16ms resolution.
  static const TimeDelta kTargetGranularity = TimeDelta::FromMilliseconds(16);
  ResolutionTest<Time>(&Time::Now, kTargetGranularity);
}


TEST(TimeTicks, NowResolution) {
  // We assume that TimeTicks::Now() has at least 16ms resolution.
  static const TimeDelta kTargetGranularity = TimeDelta::FromMilliseconds(16);
  ResolutionTest<TimeTicks>(&TimeTicks::Now, kTargetGranularity);
}


TEST(TimeTicks, HighResolutionNowResolution) {
  if (!TimeTicks::IsHighResolutionClockWorking()) return;

  // We assume that TimeTicks::HighResolutionNow() has sub-ms resolution.
  static const TimeDelta kTargetGranularity = TimeDelta::FromMilliseconds(1);
  ResolutionTest<TimeTicks>(&TimeTicks::HighResolutionNow, kTargetGranularity);
}


TEST(TimeTicks, IsMonotonic) {
  TimeTicks previous_normal_ticks;
  TimeTicks previous_highres_ticks;
  ElapsedTimer timer;
  timer.Start();
  while (!timer.HasExpired(TimeDelta::FromMilliseconds(100))) {
    TimeTicks normal_ticks = TimeTicks::Now();
    TimeTicks highres_ticks = TimeTicks::HighResolutionNow();
    EXPECT_GE(normal_ticks, previous_normal_ticks);
    EXPECT_GE((normal_ticks - previous_normal_ticks).InMicroseconds(), 0);
    EXPECT_GE(highres_ticks, previous_highres_ticks);
    EXPECT_GE((highres_ticks - previous_highres_ticks).InMicroseconds(), 0);
    previous_normal_ticks = normal_ticks;
    previous_highres_ticks = highres_ticks;
  }
}


#if V8_OS_ANDROID
#define MAYBE_ThreadNow DISABLED_ThreadNow
#else
#define MAYBE_ThreadNow ThreadNow
#endif
TEST(ThreadTicks, MAYBE_ThreadNow) {
  if (ThreadTicks::IsSupported()) {
    ThreadTicks::WaitUntilInitialized();
    TimeTicks begin = TimeTicks::Now();
    ThreadTicks begin_thread = ThreadTicks::Now();
    // Make sure that ThreadNow value is non-zero.
    EXPECT_GT(begin_thread, ThreadTicks());
    // Sleep for 10 milliseconds to get the thread de-scheduled.
    OS::Sleep(base::TimeDelta::FromMilliseconds(10));
    ThreadTicks end_thread = ThreadTicks::Now();
    TimeTicks end = TimeTicks::Now();
    TimeDelta delta = end - begin;
    TimeDelta delta_thread = end_thread - begin_thread;
    // Make sure that some thread time have elapsed.
    EXPECT_GT(delta_thread.InMicroseconds(), 0);
    // But the thread time is at least 9ms less than clock time.
    TimeDelta difference = delta - delta_thread;
    EXPECT_GE(difference.InMicroseconds(), 9000);
  }
}


#if V8_OS_WIN
TEST(TimeTicks, TimerPerformance) {
  // Verify that various timer mechanisms can always complete quickly.
  // Note:  This is a somewhat arbitrary test.
  const int kLoops = 10000;

  typedef TimeTicks (*TestFunc)();
  struct TestCase {
    TestFunc func;
    const char *description;
  };
  // Cheating a bit here:  assumes sizeof(TimeTicks) == sizeof(Time)
  // in order to create a single test case list.
  static_assert(sizeof(TimeTicks) == sizeof(Time),
                "TimeTicks and Time must be the same size");
  std::vector<TestCase> cases;
  cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
  cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});

  if (ThreadTicks::IsSupported()) {
    ThreadTicks::WaitUntilInitialized();
    cases.push_back(
        {reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
  }

  for (const auto& test_case : cases) {
    TimeTicks start = TimeTicks::Now();
    for (int index = 0; index < kLoops; index++)
      test_case.func();
    TimeTicks stop = TimeTicks::Now();
    // Turning off the check for acceptible delays.  Without this check,
    // the test really doesn't do much other than measure.  But the
    // measurements are still useful for testing timers on various platforms.
    // The reason to remove the check is because the tests run on many
    // buildbots, some of which are VMs.  These machines can run horribly
    // slow, and there is really no value for checking against a max timer.
    // const int kMaxTime = 35;  // Maximum acceptible milliseconds for test.
    // EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
    printf("%s: %1.2fus per call\n", test_case.description,
           (stop - start).InMillisecondsF() * 1000 / kLoops);
  }
}
#endif  // V8_OS_WIN

}  // namespace base
}  // namespace v8