summaryrefslogtreecommitdiff
path: root/deps/v8/test/fuzzer/wasm-compile.cc
blob: 0b01ce23575613688c0c90aba76007db9aab35e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "include/v8.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/ostreams.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"

#define WASM_CODE_FUZZER_HASH_SEED 83

typedef uint8_t byte;

using namespace v8::internal::wasm;

namespace {

class DataRange {
  const uint8_t* data_;
  size_t size_;

 public:
  DataRange(const uint8_t* data, size_t size) : data_(data), size_(size) {}

  size_t size() const { return size_; }

  std::pair<DataRange, DataRange> split(uint32_t index) const {
    return std::make_pair(DataRange(data_, index),
                          DataRange(data_ + index, size() - index));
  }

  std::pair<DataRange, DataRange> split() {
    uint16_t index = get<uint16_t>();
    if (size() > 0) {
      index = index % size();
    } else {
      index = 0;
    }
    return split(index);
  }

  template <typename T>
  T get() {
    if (size() == 0) {
      return T();
    } else {
      // We want to support the case where we have less than sizeof(T) bytes
      // remaining in the slice. For example, if we emit an i32 constant, it's
      // okay if we don't have a full four bytes available, we'll just use what
      // we have. We aren't concerned about endianness because we are generating
      // arbitrary expressions.
      const size_t num_bytes = std::min(sizeof(T), size());
      T result = T();
      memcpy(&result, data_, num_bytes);
      data_ += num_bytes;
      size_ -= num_bytes;
      return result;
    }
  }
};

class WasmGenerator {
  template <WasmOpcode Op, ValueType... Args>
  std::function<void(DataRange)> op() {
    return [this](DataRange data) {
      Generate<Args...>(data);
      builder_->Emit(Op);
    };
  }

  template <ValueType T>
  std::function<void(DataRange)> block() {
    return [this](DataRange data) {
      blocks_.push_back(T);
      builder_->EmitWithU8(
          kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));
      Generate<T>(data);
      builder_->Emit(kExprEnd);
      blocks_.pop_back();
    };
  }

  template <ValueType T>
  std::function<void(DataRange)> block_br() {
    return [this](DataRange data) {
      blocks_.push_back(T);
      builder_->EmitWithU8(
          kExprBlock, static_cast<uint8_t>(WasmOpcodes::ValueTypeCodeFor(T)));

      const uint32_t target_block = data.get<uint32_t>() % blocks_.size();
      const ValueType break_type = blocks_[target_block];

      Generate(break_type, data);
      builder_->EmitWithVarInt(kExprBr, target_block);
      builder_->Emit(kExprEnd);
      blocks_.pop_back();
    };
  }

 public:
  WasmGenerator(v8::internal::wasm::WasmFunctionBuilder* fn) : builder_(fn) {}

  void Generate(ValueType type, DataRange data);

  template <ValueType T>
  void Generate(DataRange data);

  template <ValueType T1, ValueType T2, ValueType... Ts>
  void Generate(DataRange data) {
    const auto parts = data.split();
    Generate<T1>(parts.first);
    Generate<T2, Ts...>(parts.second);
  }

 private:
  v8::internal::wasm::WasmFunctionBuilder* builder_;
  std::vector<ValueType> blocks_;
};

template <>
void WasmGenerator::Generate<kWasmI32>(DataRange data) {
  if (data.size() <= sizeof(uint32_t)) {
    builder_->EmitI32Const(data.get<uint32_t>());
  } else {
    const std::function<void(DataRange)> alternates[] = {
        op<kExprI32Eqz, kWasmI32>(),  //
        op<kExprI32Eq, kWasmI32, kWasmI32>(),
        op<kExprI32Ne, kWasmI32, kWasmI32>(),
        op<kExprI32LtS, kWasmI32, kWasmI32>(),
        op<kExprI32LtU, kWasmI32, kWasmI32>(),
        op<kExprI32GeS, kWasmI32, kWasmI32>(),
        op<kExprI32GeU, kWasmI32, kWasmI32>(),

        op<kExprI64Eqz, kWasmI64>(),  //
        op<kExprI64Eq, kWasmI64, kWasmI64>(),
        op<kExprI64Ne, kWasmI64, kWasmI64>(),
        op<kExprI64LtS, kWasmI64, kWasmI64>(),
        op<kExprI64LtU, kWasmI64, kWasmI64>(),
        op<kExprI64GeS, kWasmI64, kWasmI64>(),
        op<kExprI64GeU, kWasmI64, kWasmI64>(),

        op<kExprF32Eq, kWasmF32, kWasmF32>(),
        op<kExprF32Ne, kWasmF32, kWasmF32>(),
        op<kExprF32Lt, kWasmF32, kWasmF32>(),
        op<kExprF32Ge, kWasmF32, kWasmF32>(),

        op<kExprF64Eq, kWasmF64, kWasmF64>(),
        op<kExprF64Ne, kWasmF64, kWasmF64>(),
        op<kExprF64Lt, kWasmF64, kWasmF64>(),
        op<kExprF64Ge, kWasmF64, kWasmF64>(),

        op<kExprI32Add, kWasmI32, kWasmI32>(),
        op<kExprI32Sub, kWasmI32, kWasmI32>(),
        op<kExprI32Mul, kWasmI32, kWasmI32>(),

        op<kExprI32DivS, kWasmI32, kWasmI32>(),
        op<kExprI32DivU, kWasmI32, kWasmI32>(),
        op<kExprI32RemS, kWasmI32, kWasmI32>(),
        op<kExprI32RemU, kWasmI32, kWasmI32>(),

        op<kExprI32And, kWasmI32, kWasmI32>(),
        op<kExprI32Ior, kWasmI32, kWasmI32>(),
        op<kExprI32Xor, kWasmI32, kWasmI32>(),
        op<kExprI32Shl, kWasmI32, kWasmI32>(),
        op<kExprI32ShrU, kWasmI32, kWasmI32>(),
        op<kExprI32ShrS, kWasmI32, kWasmI32>(),
        op<kExprI32Ror, kWasmI32, kWasmI32>(),
        op<kExprI32Rol, kWasmI32, kWasmI32>(),

        op<kExprI32Clz, kWasmI32>(),  //
        op<kExprI32Ctz, kWasmI32>(),  //
        op<kExprI32Popcnt, kWasmI32>(),

        op<kExprI32ConvertI64, kWasmI64>(),  //
        op<kExprI32SConvertF32, kWasmF32>(),
        op<kExprI32UConvertF32, kWasmF32>(),
        op<kExprI32SConvertF64, kWasmF64>(),
        op<kExprI32UConvertF64, kWasmF64>(),
        op<kExprI32ReinterpretF32, kWasmF32>(),

        block<kWasmI32>(),
        block_br<kWasmI32>()};

    static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
                  "Too many alternates. Replace with a bigger type if needed.");
    const auto which = data.get<uint8_t>();

    alternates[which % arraysize(alternates)](data);
  }
}

template <>
void WasmGenerator::Generate<kWasmI64>(DataRange data) {
  if (data.size() <= sizeof(uint64_t)) {
    const uint8_t bytes[] = {WASM_I64V(data.get<uint64_t>())};
    builder_->EmitCode(bytes, arraysize(bytes));
  } else {
    const std::function<void(DataRange)> alternates[] = {
        op<kExprI64Add, kWasmI64, kWasmI64>(),
        op<kExprI64Sub, kWasmI64, kWasmI64>(),
        op<kExprI64Mul, kWasmI64, kWasmI64>(),

        op<kExprI64DivS, kWasmI64, kWasmI64>(),
        op<kExprI64DivU, kWasmI64, kWasmI64>(),
        op<kExprI64RemS, kWasmI64, kWasmI64>(),
        op<kExprI64RemU, kWasmI64, kWasmI64>(),

        op<kExprI64And, kWasmI64, kWasmI64>(),
        op<kExprI64Ior, kWasmI64, kWasmI64>(),
        op<kExprI64Xor, kWasmI64, kWasmI64>(),
        op<kExprI64Shl, kWasmI64, kWasmI64>(),
        op<kExprI64ShrU, kWasmI64, kWasmI64>(),
        op<kExprI64ShrS, kWasmI64, kWasmI64>(),
        op<kExprI64Ror, kWasmI64, kWasmI64>(),
        op<kExprI64Rol, kWasmI64, kWasmI64>(),

        op<kExprI64Clz, kWasmI64>(),
        op<kExprI64Ctz, kWasmI64>(),
        op<kExprI64Popcnt, kWasmI64>(),

        block<kWasmI64>(),
        block_br<kWasmI64>()};

    static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
                  "Too many alternates. Replace with a bigger type if needed.");
    const auto which = data.get<uint8_t>();

    alternates[which % arraysize(alternates)](data);
  }
}

template <>
void WasmGenerator::Generate<kWasmF32>(DataRange data) {
  if (data.size() <= sizeof(uint32_t)) {
    const uint32_t i = data.get<uint32_t>();
    builder_->Emit(kExprF32Const);
    builder_->EmitCode(reinterpret_cast<const uint8_t*>(&i), sizeof(i));
  } else {
    const std::function<void(DataRange)> alternates[] = {
        op<kExprF32Add, kWasmF32, kWasmF32>(),
        op<kExprF32Sub, kWasmF32, kWasmF32>(),
        op<kExprF32Mul, kWasmF32, kWasmF32>(),

        block<kWasmF32>(), block_br<kWasmF32>()};

    static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
                  "Too many alternates. Replace with a bigger type if needed.");
    const auto which = data.get<uint8_t>();

    alternates[which % arraysize(alternates)](data);
  }
}

template <>
void WasmGenerator::Generate<kWasmF64>(DataRange data) {
  if (data.size() <= sizeof(uint64_t)) {
    // TODO (eholk): generate full 64-bit constants
    uint64_t i = 0;
    while (data.size() > 0) {
      i <<= 8;
      i |= data.get<uint8_t>();
    }
    builder_->Emit(kExprF64Const);
    builder_->EmitCode(reinterpret_cast<uint8_t*>(&i), sizeof(i));
  } else {
    const std::function<void(DataRange)> alternates[] = {
        op<kExprF64Add, kWasmF64, kWasmF64>(),
        op<kExprF64Sub, kWasmF64, kWasmF64>(),
        op<kExprF64Mul, kWasmF64, kWasmF64>(),

        block<kWasmF64>(), block_br<kWasmF64>()};

    static_assert(arraysize(alternates) < std::numeric_limits<uint8_t>::max(),
                  "Too many alternates. Replace with a bigger type if needed.");
    const auto which = data.get<uint8_t>();

    alternates[which % arraysize(alternates)](data);
  }
}

void WasmGenerator::Generate(ValueType type, DataRange data) {
  switch (type) {
    case kWasmI32:
      return Generate<kWasmI32>(data);
    case kWasmI64:
      return Generate<kWasmI64>(data);
    case kWasmF32:
      return Generate<kWasmF32>(data);
    case kWasmF64:
      return Generate<kWasmF64>(data);
    default:
      UNREACHABLE();
  }
}
}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
  // Save the flag so that we can change it and restore it later.
  bool generate_test = v8::internal::FLAG_wasm_code_fuzzer_gen_test;
  if (generate_test) {
    v8::internal::OFStream os(stdout);

    os << "// Copyright 2017 the V8 project authors. All rights reserved."
       << std::endl;
    os << "// Use of this source code is governed by a BSD-style license that "
          "can be"
       << std::endl;
    os << "// found in the LICENSE file." << std::endl;
    os << std::endl;
    os << "load(\"test/mjsunit/wasm/wasm-constants.js\");" << std::endl;
    os << "load(\"test/mjsunit/wasm/wasm-module-builder.js\");" << std::endl;
    os << std::endl;
    os << "(function() {" << std::endl;
    os << "  var builder = new WasmModuleBuilder();" << std::endl;
    os << "  builder.addMemory(16, 32, false);" << std::endl;
    os << "  builder.addFunction(\"test\", kSig_i_iii)" << std::endl;
    os << "    .addBodyWithEnd([" << std::endl;
  }
  v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
  v8::Isolate* isolate = support->GetIsolate();
  v8::internal::Isolate* i_isolate =
      reinterpret_cast<v8::internal::Isolate*>(isolate);

  // Clear any pending exceptions from a prior run.
  if (i_isolate->has_pending_exception()) {
    i_isolate->clear_pending_exception();
  }

  v8::Isolate::Scope isolate_scope(isolate);
  v8::HandleScope handle_scope(isolate);
  v8::Context::Scope context_scope(support->GetContext());
  v8::TryCatch try_catch(isolate);

  v8::internal::AccountingAllocator allocator;
  v8::internal::Zone zone(&allocator, ZONE_NAME);

  TestSignatures sigs;

  WasmModuleBuilder builder(&zone);

  v8::internal::wasm::WasmFunctionBuilder* f =
      builder.AddFunction(sigs.i_iii());

  WasmGenerator gen(f);
  gen.Generate<kWasmI32>(DataRange(data, static_cast<uint32_t>(size)));

  uint8_t end_opcode = kExprEnd;
  f->EmitCode(&end_opcode, 1);
  f->ExportAs(v8::internal::CStrVector("main"));

  ZoneBuffer buffer(&zone);
  builder.WriteTo(buffer);

  v8::internal::wasm::testing::SetupIsolateForWasmModule(i_isolate);

  v8::internal::HandleScope scope(i_isolate);

  ErrorThrower interpreter_thrower(i_isolate, "Interpreter");
  std::unique_ptr<const WasmModule> module(testing::DecodeWasmModuleForTesting(
      i_isolate, &interpreter_thrower, buffer.begin(), buffer.end(),
      v8::internal::wasm::ModuleOrigin::kWasmOrigin, true));

  // Clear the flag so that the WebAssembly code is not printed twice.
  v8::internal::FLAG_wasm_code_fuzzer_gen_test = false;
  if (module == nullptr) {
    if (generate_test) {
      v8::internal::OFStream os(stdout);
      os << "            ])" << std::endl;
      os << "            .exportFunc();" << std::endl;
      os << "  assertThrows(function() { builder.instantiate(); });"
         << std::endl;
      os << "})();" << std::endl;
    }
    return 0;
  }
  if (generate_test) {
    v8::internal::OFStream os(stdout);
    os << "            ])" << std::endl;
    os << "            .exportFunc();" << std::endl;
    os << "  var module = builder.instantiate();" << std::endl;
    os << "  module.exports.test(1, 2, 3);" << std::endl;
    os << "})();" << std::endl;
  }

  ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
  int32_t result_interpreted;
  bool possible_nondeterminism = false;
  {
    WasmVal args[] = {WasmVal(1), WasmVal(2), WasmVal(3)};
    result_interpreted = testing::InterpretWasmModule(
        i_isolate, &interpreter_thrower, module.get(), wire_bytes, 0, args,
        &possible_nondeterminism);
  }

  ErrorThrower compiler_thrower(i_isolate, "Compiler");
  v8::internal::Handle<v8::internal::JSObject> instance =
      testing::InstantiateModuleForTesting(i_isolate, &compiler_thrower,
                                           module.get(), wire_bytes);
  // Restore the flag.
  v8::internal::FLAG_wasm_code_fuzzer_gen_test = generate_test;
  if (!interpreter_thrower.error()) {
    CHECK(!instance.is_null());
  } else {
    return 0;
  }
  int32_t result_compiled;
  {
    v8::internal::Handle<v8::internal::Object> arguments[] = {
        v8::internal::handle(v8::internal::Smi::FromInt(1), i_isolate),
        v8::internal::handle(v8::internal::Smi::FromInt(2), i_isolate),
        v8::internal::handle(v8::internal::Smi::FromInt(3), i_isolate)};
    result_compiled = testing::CallWasmFunctionForTesting(
        i_isolate, instance, &compiler_thrower, "main", arraysize(arguments),
        arguments, v8::internal::wasm::ModuleOrigin::kWasmOrigin);
  }
  if (result_interpreted == bit_cast<int32_t>(0xdeadbeef) &&
      !possible_nondeterminism) {
    CHECK(i_isolate->has_pending_exception());
    i_isolate->clear_pending_exception();
  } else {
    // The WebAssembly spec allows the sign bit of NaN to be non-deterministic.
    // This sign bit may cause result_interpreted to be different than
    // result_compiled. Therefore we do not check the equality of the results
    // if the execution may have produced a NaN at some point.
    if (!possible_nondeterminism && (result_interpreted != result_compiled)) {
      printf("\nInterpreter returned 0x%x but compiled code returned 0x%x\n",
             result_interpreted, result_compiled);
      V8_Fatal(__FILE__, __LINE__, "WasmCodeFuzzerHash=%x",
               v8::internal::StringHasher::HashSequentialString(
                   data, static_cast<int>(size), WASM_CODE_FUZZER_HASH_SEED));
    }
  }
  return 0;
}