summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/test-macro-assembler-mips.cc
blob: 97ddda12c56d6a1fdea8ac362d3f039b4142638f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
#include <iostream>  // NOLINT(readability/streams)

#include "src/api-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/objects-inl.h"
#include "src/simulator.h"
#include "src/v8.h"
#include "test/cctest/cctest.h"

namespace v8 {
namespace internal {

// TODO(mips): Refine these signatures per test case.
using F1 = Object*(int x, int p1, int p2, int p3, int p4);
using F3 = Object*(void* p, int p1, int p2, int p3, int p4);
using F4 = Object*(void* p0, void* p1, int p2, int p3, int p4);

#define __ masm->

TEST(BYTESWAP) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  struct T {
    uint32_t s4;
    uint32_t s2;
    uint32_t u2;
  };

  T t;
  uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE,    0x9F,
                            0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000};

  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);

  MacroAssembler* masm = &assembler;

  __ lw(a1, MemOperand(a0, offsetof(T, s4)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 4);
  __ sw(a1, MemOperand(a0, offsetof(T, s4)));

  __ lw(a1, MemOperand(a0, offsetof(T, s2)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, s2)));

  __ lw(a1, MemOperand(a0, offsetof(T, u2)));
  __ nop();
  __ ByteSwapUnsigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, u2)));

  __ jr(ra);
  __ nop();

  CodeDesc desc;
  masm->GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
  auto f = GeneratedCode<F3>::FromCode(*code);

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s4 = test_values[i];
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse(test_values[i]), t.s4);
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
}

static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
  v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
  v8::Context::Scope context_scope(context);

  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
  i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o),
                               o->GetIsolate());
  i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
  double value = a->get_scalar(0);
  CHECK(std::isnan(value) &&
        bit_cast<uint64_t>(value) ==
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}


TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
  masm->GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  auto f = GeneratedCode<F1>::FromCode(*code);
  for (int i = 0; i < kNumCases; ++i) {
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

  __ Push(ra);

  {
    __ BlockTrampolinePoolFor(kNumCases + 6 + 1);
    PredictableCodeSizeScope predictable(
        masm, kNumCases * kPointerSize + ((6 + 1) * kInstrSize));

    __ addiupc(at, 6 + 1);
    __ Lsa(at, at, a0, 2);
    __ lw(at, MemOperand(at));
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)).
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  masm->GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  auto f = GeneratedCode<F1>::FromCode(*code);
  for (int i = 0; i < kNumCases; ++i) {
    int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0));
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}

TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + kSwitchTableCases) - 20;

  int values[kSwitchTableCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kSwitchTableCases];
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

  __ GenerateSwitchTable(a0, kSwitchTableCases,
                         [&labels](size_t i) { return labels + i; });
  gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);

  for (int i = 0; i < kSwitchTableCases; ++i) {
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
  masm->GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef OBJECT_PRINT
  code->Print(std::cout);
#endif
  auto f = GeneratedCode<F1>::FromCode(*code);
  for (int i = 0; i < kSwitchTableCases; ++i) {
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}

static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assembler.GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());

  auto f = GeneratedCode<F1>::FromCode(*code);

  uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0));

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
                             {0x4, 0x1, 3, 0xC},
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4},

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> cvt_trunc_int32_test_values() {
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)

#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint32, var, test_vector)

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
  typedef RET_TYPE(F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, nullptr, 0,
                      v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assm;

  __ mtc1(a0, f4);
  GenerateConvertInstructionFunc(masm);
  __ mfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());

  auto f = GeneratedCode<F_CVT>::FromCode(*code);

  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
}

TEST(cvt_s_w_Trunc_uw_s) {
  CcTest::InitializeVM();
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
    uint32_t input = *i;
    auto fn = [](MacroAssembler* masm) {
      __ cvt_s_w(f0, f4);
      __ Trunc_uw_s(f2, f0, f6);
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn));
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
    int32_t input = *i;
    auto fn = [](MacroAssembler* masm) {
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn));
  }
}

static const std::vector<int32_t> overflow_int32_test_values() {
  static const int32_t kValues[] = {
      static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000),
      static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB),
      static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF),
      static_cast<int32_t>(0xFFFFFFFF)};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(OverflowInstructions) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);

  struct T {
    int32_t lhs;
    int32_t rhs;
    int32_t output_add;
    int32_t output_add2;
    int32_t output_sub;
    int32_t output_sub2;
    int32_t output_mul;
    int32_t output_mul2;
    int32_t overflow_add;
    int32_t overflow_add2;
    int32_t overflow_sub;
    int32_t overflow_sub2;
    int32_t overflow_mul;
    int32_t overflow_mul2;
  };
  T t;

  FOR_INT32_INPUTS(i, overflow_int32_test_values) {
    FOR_INT32_INPUTS(j, overflow_int32_test_values) {
      int32_t ii = *i;
      int32_t jj = *j;
      int32_t expected_add, expected_sub, expected_mul;
      bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
      MacroAssembler assembler(isolate, nullptr, 0,
                               v8::internal::CodeObjectRequired::kYes);
      MacroAssembler* masm = &assembler;

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ AddOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ AddOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ SubOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ SubOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
          isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub);
      expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
      }
    }
  }
}


TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ LoadRoot(t8, RootIndex::kNanValue);
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
  __ bind(&back_mind_nan);
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
  __ bind(&back_maxd_nan);
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
  __ bind(&back_mins_nan);
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
  __ bind(&back_maxs_nan);
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
  masm->GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
  auto f = GeneratedCode<F3>::FromCode(*code);
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

    f.Call(&test, 0, 0, 0, 0);

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
  typedef int32_t(F_CVT)(char* x0, int x1, int x2, int x3, int x4);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, nullptr, 0,
                      v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());

  auto f = GeneratedCode<F_CVT>::FromCode(*code);

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
  f.Call(memory_buffer, 0, 0, 0, 0);
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
        CHECK_EQ(true,
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
      }
    }
  }
}

static const std::vector<uint32_t> sltu_test_values() {
  static const uint32_t kValues[] = {
      0,          1,          0x7FFE,     0x7FFF,     0x8000,
      0x8001,     0xFFFE,     0xFFFF,     0xFFFF7FFE, 0xFFFF7FFF,
      0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF,
  };
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) {
  typedef int32_t(F_CVT)(uint32_t x0, uint32_t x1, int x2, int x3, int x4);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
  MacroAssembler assm(isolate, nullptr, 0,
                      v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
  assm.GetCode(isolate, &desc);
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());

  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0));
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT32_INPUTS(i, sltu_test_values) {
    FOR_UINT32_INPUTS(j, sltu_test_values) {
      uint32_t rs = *i;
      uint32_t rd = *j;

      auto fn_1 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
    }
  }
}

template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ swc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
  __ Branch(&done_min_abc);

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
  __ Branch(&done_min_aab);

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
  __ Branch(&done_min_aba);

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
  __ Branch(&done_max_abc);

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
  __ Branch(&done_max_aab);

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
  __ Branch(&done_max_aba);

  CodeDesc desc;
  masm->GetCode(masm->isolate(), &desc);
  Handle<Code> code =
      masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef DEBUG
  StdoutStream os;
  code->Print(os);
#endif
  return GeneratedCode<F4>::FromCode(*code);
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
    f.Call(&inputs, &results, 0, 0, 0);                                      \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
  __ Branch(&done_min_abc);

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
  __ Branch(&done_min_aab);

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
  __ Branch(&done_min_aba);

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
  __ Branch(&done_max_abc);

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
  __ Branch(&done_max_aab);

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
  __ Branch(&done_max_aba);

  CodeDesc desc;
  masm->GetCode(masm->isolate(), &desc);
  Handle<Code> code =
      masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle<Code>());
#ifdef DEBUG
  StdoutStream os;
  code->Print(os);
#endif
  return GeneratedCode<F4>::FromCode(*code);
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  MacroAssembler assembler(isolate, nullptr, 0,
                           v8::internal::CodeObjectRequired::kYes);
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
    f.Call(&inputs, &results, 0, 0, 0);                                      \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

#undef __

}  // namespace internal
}  // namespace v8