summaryrefslogtreecommitdiff
path: root/deps/v8/test/cctest/heap/test-compaction.cc
blob: 96eca0f5aecbe2f9d1f021a299b7a2e68f025f04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/heap/mark-compact.h"
#include "src/heap/remembered-set.h"
#include "src/objects/objects-inl.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"

namespace v8 {
namespace internal {
namespace heap {

namespace {

void CheckInvariantsOfAbortedPage(Page* page) {
  // Check invariants:
  // 1) Markbits are cleared
  // 2) The page is not marked as evacuation candidate anymore
  // 3) The page is not marked as aborted compaction anymore.
  CHECK(page->heap()
            ->mark_compact_collector()
            ->non_atomic_marking_state()
            ->bitmap(page)
            ->IsClean());
  CHECK(!page->IsEvacuationCandidate());
  CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
}

void CheckAllObjectsOnPage(const std::vector<Handle<FixedArray>>& handles,
                           Page* page) {
  for (Handle<FixedArray> fixed_array : handles) {
    CHECK(Page::FromHeapObject(*fixed_array) == page);
  }
}

}  // namespace

HEAP_TEST(CompactionFullAbortedPage) {
  if (FLAG_never_compact) return;
  // Test the scenario where we reach OOM during compaction and the whole page
  // is aborted.

  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
  // we can reach the state of a half aborted page.
  ManualGCScope manual_gc_scope;
  FLAG_manual_evacuation_candidates_selection = true;
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  {
    HandleScope scope1(isolate);

    heap::SealCurrentObjects(heap);

    {
      HandleScope scope2(isolate);
      CHECK(heap->old_space()->Expand());
      auto compaction_page_handles = heap::CreatePadding(
          heap,
          static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
          AllocationType::kOld);
      Page* to_be_aborted_page =
          Page::FromHeapObject(*compaction_page_handles.front());
      to_be_aborted_page->SetFlag(
          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
      CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);

      heap->set_force_oom(true);
      CcTest::CollectAllGarbage();
      heap->mark_compact_collector()->EnsureSweepingCompleted();

      // Check that all handles still point to the same page, i.e., compaction
      // has been aborted on the page.
      for (Handle<FixedArray> object : compaction_page_handles) {
        CHECK_EQ(to_be_aborted_page, Page::FromHeapObject(*object));
      }
      CheckInvariantsOfAbortedPage(to_be_aborted_page);
    }
  }
}

namespace {

int GetObjectSize(int objects_per_page) {
  int allocatable =
      static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage());
  // Make sure that object_size is a multiple of kTaggedSize.
  int object_size =
      ((allocatable / kTaggedSize) / objects_per_page) * kTaggedSize;
  return Min(kMaxRegularHeapObjectSize, object_size);
}

}  // namespace

HEAP_TEST(CompactionPartiallyAbortedPage) {
  if (FLAG_never_compact) return;
  // Test the scenario where we reach OOM during compaction and parts of the
  // page have already been migrated to a new one.

  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
  // we can reach the state of a half aborted page.
  ManualGCScope manual_gc_scope;
  FLAG_manual_evacuation_candidates_selection = true;

  const int objects_per_page = 10;
  const int object_size = GetObjectSize(objects_per_page);

  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  {
    HandleScope scope1(isolate);

    heap::SealCurrentObjects(heap);

    {
      HandleScope scope2(isolate);
      // Fill another page with objects of size {object_size} (last one is
      // properly adjusted).
      CHECK(heap->old_space()->Expand());
      auto compaction_page_handles = heap::CreatePadding(
          heap,
          static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
          AllocationType::kOld, object_size);
      Page* to_be_aborted_page =
          Page::FromHeapObject(*compaction_page_handles.front());
      to_be_aborted_page->SetFlag(
          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
      CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);

      {
        // Add another page that is filled with {num_objects} objects of size
        // {object_size}.
        HandleScope scope3(isolate);
        CHECK(heap->old_space()->Expand());
        const int num_objects = 3;
        std::vector<Handle<FixedArray>> page_to_fill_handles =
            heap::CreatePadding(heap, object_size * num_objects,
                                AllocationType::kOld, object_size);
        Page* page_to_fill =
            Page::FromAddress(page_to_fill_handles.front()->address());

        heap->set_force_oom(true);
        CcTest::CollectAllGarbage();
        heap->mark_compact_collector()->EnsureSweepingCompleted();

        bool migration_aborted = false;
        for (Handle<FixedArray> object : compaction_page_handles) {
          // Once compaction has been aborted, all following objects still have
          // to be on the initial page.
          CHECK(!migration_aborted ||
                (Page::FromHeapObject(*object) == to_be_aborted_page));
          if (Page::FromHeapObject(*object) == to_be_aborted_page) {
            // This object has not been migrated.
            migration_aborted = true;
          } else {
            CHECK_EQ(Page::FromHeapObject(*object), page_to_fill);
          }
        }
        // Check that we actually created a scenario with a partially aborted
        // page.
        CHECK(migration_aborted);
        CheckInvariantsOfAbortedPage(to_be_aborted_page);
      }
    }
  }
}

HEAP_TEST(CompactionPartiallyAbortedPageWithInvalidatedSlots) {
  if (FLAG_never_compact) return;
  // Test evacuating a page partially when it contains recorded
  // slots and invalidated objects.

  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
  // we can reach the state of a half aborted page.
  ManualGCScope manual_gc_scope;
  FLAG_manual_evacuation_candidates_selection = true;

  const int objects_per_page = 10;
  const int object_size = GetObjectSize(objects_per_page);

  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  {
    HandleScope scope1(isolate);

    heap::SealCurrentObjects(heap);

    {
      HandleScope scope2(isolate);
      // Fill another page with objects of size {object_size} (last one is
      // properly adjusted).
      CHECK(heap->old_space()->Expand());
      auto compaction_page_handles = heap::CreatePadding(
          heap,
          static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
          AllocationType::kOld, object_size);
      Page* to_be_aborted_page =
          Page::FromHeapObject(*compaction_page_handles.front());
      for (Handle<FixedArray> object : compaction_page_handles) {
        CHECK_EQ(Page::FromHeapObject(*object), to_be_aborted_page);

        for (int i = 0; i < object->length(); i++) {
          RememberedSet<OLD_TO_NEW>::Insert<AccessMode::ATOMIC>(
              to_be_aborted_page, object->RawFieldOfElementAt(i).address());
        }
      }
      // First object is going to be evacuated.
      to_be_aborted_page->RegisterObjectWithInvalidatedSlots<OLD_TO_NEW>(
          *compaction_page_handles.front());
      // Last object is NOT going to be evacuated.
      // This happens since not all objects fit on the only other page in the
      // old space, the GC isn't allowed to allocate another page.
      to_be_aborted_page->RegisterObjectWithInvalidatedSlots<OLD_TO_NEW>(
          *compaction_page_handles.back());
      to_be_aborted_page->SetFlag(
          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);

      {
        // Add another page that is filled with {num_objects} objects of size
        // {object_size}.
        HandleScope scope3(isolate);
        CHECK(heap->old_space()->Expand());
        const int num_objects = 3;
        std::vector<Handle<FixedArray>> page_to_fill_handles =
            heap::CreatePadding(heap, object_size * num_objects,
                                AllocationType::kOld, object_size);
        Page* page_to_fill =
            Page::FromAddress(page_to_fill_handles.front()->address());

        heap->set_force_oom(true);
        CcTest::CollectAllGarbage();
        heap->mark_compact_collector()->EnsureSweepingCompleted();

        CHECK_EQ(Page::FromHeapObject(*compaction_page_handles.front()),
                 page_to_fill);
        CHECK_EQ(Page::FromHeapObject(*compaction_page_handles.back()),
                 to_be_aborted_page);
      }
    }
  }
}

HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
  if (FLAG_never_compact) return;
  // Test the scenario where we reach OOM during compaction and parts of the
  // page have already been migrated to a new one. Objects on the aborted page
  // are linked together. This test makes sure that intra-aborted page pointers
  // get properly updated.

  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
  // we can reach the state of a half aborted page.
  ManualGCScope manual_gc_scope;
  FLAG_manual_evacuation_candidates_selection = true;

  const int objects_per_page = 10;
  const int object_size = GetObjectSize(objects_per_page);

  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  {
    HandleScope scope1(isolate);
    Handle<FixedArray> root_array =
        isolate->factory()->NewFixedArray(10, AllocationType::kOld);

    heap::SealCurrentObjects(heap);

    Page* to_be_aborted_page = nullptr;
    {
      HandleScope temporary_scope(isolate);
      // Fill a fresh page with objects of size {object_size} (last one is
      // properly adjusted).
      CHECK(heap->old_space()->Expand());
      std::vector<Handle<FixedArray>> compaction_page_handles =
          heap::CreatePadding(
              heap,
              static_cast<int>(
                  MemoryChunkLayout::AllocatableMemoryInDataPage()),
              AllocationType::kOld, object_size);
      to_be_aborted_page =
          Page::FromHeapObject(*compaction_page_handles.front());
      to_be_aborted_page->SetFlag(
          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
      for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
        compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
      }
      root_array->set(0, *compaction_page_handles.back());
      CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
    }
    {
      // Add another page that is filled with {num_objects} objects of size
      // {object_size}.
      HandleScope scope3(isolate);
      CHECK(heap->old_space()->Expand());
      const int num_objects = 2;
      int used_memory = object_size * num_objects;
      std::vector<Handle<FixedArray>> page_to_fill_handles =
          heap::CreatePadding(heap, used_memory, AllocationType::kOld,
                              object_size);
      Page* page_to_fill = Page::FromHeapObject(*page_to_fill_handles.front());

      heap->set_force_oom(true);
      CcTest::CollectAllGarbage();
      heap->mark_compact_collector()->EnsureSweepingCompleted();

      // The following check makes sure that we compacted "some" objects, while
      // leaving others in place.
      bool in_place = true;
      Handle<FixedArray> current = root_array;
      while (current->get(0) != ReadOnlyRoots(heap).undefined_value()) {
        current =
            Handle<FixedArray>(FixedArray::cast(current->get(0)), isolate);
        CHECK(current->IsFixedArray());
        if (Page::FromHeapObject(*current) != to_be_aborted_page) {
          in_place = false;
        }
        bool on_aborted_page =
            Page::FromHeapObject(*current) == to_be_aborted_page;
        bool on_fill_page = Page::FromHeapObject(*current) == page_to_fill;
        CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
      }
      // Check that we at least migrated one object, as otherwise the test would
      // not trigger.
      CHECK(!in_place);
      CheckInvariantsOfAbortedPage(to_be_aborted_page);
    }
  }
}


HEAP_TEST(CompactionPartiallyAbortedPageWithStoreBufferEntries) {
  if (FLAG_never_compact) return;
  // Test the scenario where we reach OOM during compaction and parts of the
  // page have already been migrated to a new one. Objects on the aborted page
  // are linked together and the very first object on the aborted page points
  // into new space. The test verifies that the store buffer entries are
  // properly cleared and rebuilt after aborting a page. Failing to do so can
  // result in other objects being allocated in the free space where their
  // payload looks like a valid new space pointer.

  // Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
  // we can reach the state of a half aborted page.
  ManualGCScope manual_gc_scope;
  FLAG_manual_evacuation_candidates_selection = true;

  const int objects_per_page = 10;
  const int object_size = GetObjectSize(objects_per_page);

  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Heap* heap = isolate->heap();
  {
    HandleScope scope1(isolate);
    Handle<FixedArray> root_array =
        isolate->factory()->NewFixedArray(10, AllocationType::kOld);
    heap::SealCurrentObjects(heap);

    Page* to_be_aborted_page = nullptr;
    {
      HandleScope temporary_scope(isolate);
      // Fill another page with objects of size {object_size} (last one is
      // properly adjusted).
      CHECK(heap->old_space()->Expand());
      auto compaction_page_handles = heap::CreatePadding(
          heap,
          static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
          AllocationType::kOld, object_size);
      // Sanity check that we have enough space for linking up arrays.
      CHECK_GE(compaction_page_handles.front()->length(), 2);
      to_be_aborted_page =
          Page::FromHeapObject(*compaction_page_handles.front());
      to_be_aborted_page->SetFlag(
          MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);

      for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
        compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
      }
      root_array->set(0, *compaction_page_handles.back());
      Handle<FixedArray> new_space_array =
          isolate->factory()->NewFixedArray(1, AllocationType::kYoung);
      CHECK(Heap::InYoungGeneration(*new_space_array));
      compaction_page_handles.front()->set(1, *new_space_array);
      CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
    }

    {
      // Add another page that is filled with {num_objects} objects of size
      // {object_size}.
      HandleScope scope3(isolate);
      CHECK(heap->old_space()->Expand());
      const int num_objects = 2;
      int used_memory = object_size * num_objects;
      std::vector<Handle<FixedArray>> page_to_fill_handles =
          heap::CreatePadding(heap, used_memory, AllocationType::kOld,
                              object_size);
      Page* page_to_fill = Page::FromHeapObject(*page_to_fill_handles.front());

      heap->set_force_oom(true);
      CcTest::CollectAllGarbage();
      heap->mark_compact_collector()->EnsureSweepingCompleted();

      // The following check makes sure that we compacted "some" objects, while
      // leaving others in place.
      bool in_place = true;
      Handle<FixedArray> current = root_array;
      while (current->get(0) != ReadOnlyRoots(heap).undefined_value()) {
        current =
            Handle<FixedArray>(FixedArray::cast(current->get(0)), isolate);
        CHECK(!Heap::InYoungGeneration(*current));
        CHECK(current->IsFixedArray());
        if (Page::FromHeapObject(*current) != to_be_aborted_page) {
          in_place = false;
        }
        bool on_aborted_page =
            Page::FromHeapObject(*current) == to_be_aborted_page;
        bool on_fill_page = Page::FromHeapObject(*current) == page_to_fill;
        CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
      }
      // Check that we at least migrated one object, as otherwise the test would
      // not trigger.
      CHECK(!in_place);
      CheckInvariantsOfAbortedPage(to_be_aborted_page);

      // Allocate a new object in new space.
      Handle<FixedArray> holder =
          isolate->factory()->NewFixedArray(10, AllocationType::kYoung);
      // Create a broken address that looks like a tagged pointer to a new space
      // object.
      Address broken_address = holder->address() + 2 * kTaggedSize + 1;
      // Convert it to a vector to create a string from it.
      Vector<const uint8_t> string_to_broken_addresss(
          reinterpret_cast<const uint8_t*>(&broken_address), kTaggedSize);

      Handle<String> string;
      do {
        // We know that the interesting slot will be on the aborted page and
        // hence we allocate until we get our string on the aborted page.
        // We used slot 1 in the fixed size array which corresponds to the
        // the first word in the string. Since the first object definitely
        // migrated we can just allocate until we hit the aborted page.
        string = isolate->factory()
                     ->NewStringFromOneByte(string_to_broken_addresss,
                                            AllocationType::kOld)
                     .ToHandleChecked();
      } while (Page::FromHeapObject(*string) != to_be_aborted_page);

      // If store buffer entries are not properly filtered/reset for aborted
      // pages we have now a broken address at an object slot in old space and
      // the following scavenge will crash.
      CcTest::CollectGarbage(NEW_SPACE);
    }
  }
}

}  // namespace heap
}  // namespace internal
}  // namespace v8