aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/zone.cc
blob: 5a7245bd44b86a53bc52c19a445b38ed156d92f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/zone.h"

#include <cstring>

#include "src/v8.h"

#ifdef V8_USE_ADDRESS_SANITIZER
#include <sanitizer/asan_interface.h>
#endif  // V8_USE_ADDRESS_SANITIZER

namespace v8 {
namespace internal {

namespace {

#if V8_USE_ADDRESS_SANITIZER

const size_t kASanRedzoneBytes = 24;  // Must be a multiple of 8.

#else

#define ASAN_POISON_MEMORY_REGION(start, size) \
  do {                                         \
    USE(start);                                \
    USE(size);                                 \
  } while (false)

#define ASAN_UNPOISON_MEMORY_REGION(start, size) \
  do {                                           \
    USE(start);                                  \
    USE(size);                                   \
  } while (false)

const size_t kASanRedzoneBytes = 0;

#endif  // V8_USE_ADDRESS_SANITIZER

}  // namespace


// Segments represent chunks of memory: They have starting address
// (encoded in the this pointer) and a size in bytes. Segments are
// chained together forming a LIFO structure with the newest segment
// available as segment_head_. Segments are allocated using malloc()
// and de-allocated using free().

class Segment {
 public:
  void Initialize(Segment* next, size_t size) {
    next_ = next;
    size_ = size;
  }

  Segment* next() const { return next_; }
  void clear_next() { next_ = nullptr; }

  size_t size() const { return size_; }
  size_t capacity() const { return size_ - sizeof(Segment); }

  Address start() const { return address(sizeof(Segment)); }
  Address end() const { return address(size_); }

 private:
  // Computes the address of the nth byte in this segment.
  Address address(size_t n) const { return Address(this) + n; }

  Segment* next_;
  size_t size_;
};


Zone::Zone()
    : allocation_size_(0),
      segment_bytes_allocated_(0),
      position_(0),
      limit_(0),
      segment_head_(nullptr) {}


Zone::~Zone() {
  DeleteAll();
  DeleteKeptSegment();

  DCHECK(segment_bytes_allocated_ == 0);
}


void* Zone::New(size_t size) {
  // Round up the requested size to fit the alignment.
  size = RoundUp(size, kAlignment);

  // If the allocation size is divisible by 8 then we return an 8-byte aligned
  // address.
  if (kPointerSize == 4 && kAlignment == 4) {
    position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
  } else {
    DCHECK(kAlignment >= kPointerSize);
  }

  // Check if the requested size is available without expanding.
  Address result = position_;

  const size_t size_with_redzone = size + kASanRedzoneBytes;
  if (limit_ < position_ + size_with_redzone) {
    result = NewExpand(size_with_redzone);
  } else {
    position_ += size_with_redzone;
  }

  Address redzone_position = result + size;
  DCHECK(redzone_position + kASanRedzoneBytes == position_);
  ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);

  // Check that the result has the proper alignment and return it.
  DCHECK(IsAddressAligned(result, kAlignment, 0));
  allocation_size_ += size;
  return reinterpret_cast<void*>(result);
}


void Zone::DeleteAll() {
#ifdef DEBUG
  // Constant byte value used for zapping dead memory in debug mode.
  static const unsigned char kZapDeadByte = 0xcd;
#endif

  // Find a segment with a suitable size to keep around.
  Segment* keep = nullptr;
  // Traverse the chained list of segments, zapping (in debug mode)
  // and freeing every segment except the one we wish to keep.
  for (Segment* current = segment_head_; current;) {
    Segment* next = current->next();
    if (!keep && current->size() <= kMaximumKeptSegmentSize) {
      // Unlink the segment we wish to keep from the list.
      keep = current;
      keep->clear_next();
    } else {
      size_t size = current->size();
#ifdef DEBUG
      // Un-poison first so the zapping doesn't trigger ASan complaints.
      ASAN_UNPOISON_MEMORY_REGION(current, size);
      // Zap the entire current segment (including the header).
      memset(current, kZapDeadByte, size);
#endif
      DeleteSegment(current, size);
    }
    current = next;
  }

  // If we have found a segment we want to keep, we must recompute the
  // variables 'position' and 'limit' to prepare for future allocate
  // attempts. Otherwise, we must clear the position and limit to
  // force a new segment to be allocated on demand.
  if (keep) {
    Address start = keep->start();
    position_ = RoundUp(start, kAlignment);
    limit_ = keep->end();
    // Un-poison so we can re-use the segment later.
    ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
#ifdef DEBUG
    // Zap the contents of the kept segment (but not the header).
    memset(start, kZapDeadByte, keep->capacity());
#endif
  } else {
    position_ = limit_ = 0;
  }

  allocation_size_ = 0;
  // Update the head segment to be the kept segment (if any).
  segment_head_ = keep;
}


void Zone::DeleteKeptSegment() {
#ifdef DEBUG
  // Constant byte value used for zapping dead memory in debug mode.
  static const unsigned char kZapDeadByte = 0xcd;
#endif

  DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
  if (segment_head_ != nullptr) {
    size_t size = segment_head_->size();
#ifdef DEBUG
    // Un-poison first so the zapping doesn't trigger ASan complaints.
    ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
    // Zap the entire kept segment (including the header).
    memset(segment_head_, kZapDeadByte, size);
#endif
    DeleteSegment(segment_head_, size);
    segment_head_ = nullptr;
  }

  DCHECK(segment_bytes_allocated_ == 0);
}


// Creates a new segment, sets it size, and pushes it to the front
// of the segment chain. Returns the new segment.
Segment* Zone::NewSegment(size_t size) {
  Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
  segment_bytes_allocated_ += size;
  if (result != nullptr) {
    result->Initialize(segment_head_, size);
    segment_head_ = result;
  }
  return result;
}


// Deletes the given segment. Does not touch the segment chain.
void Zone::DeleteSegment(Segment* segment, size_t size) {
  segment_bytes_allocated_ -= size;
  Malloced::Delete(segment);
}


Address Zone::NewExpand(size_t size) {
  // Make sure the requested size is already properly aligned and that
  // there isn't enough room in the Zone to satisfy the request.
  DCHECK_EQ(size, RoundDown(size, kAlignment));
  DCHECK_LT(limit_, position_ + size);

  // Compute the new segment size. We use a 'high water mark'
  // strategy, where we increase the segment size every time we expand
  // except that we employ a maximum segment size when we delete. This
  // is to avoid excessive malloc() and free() overhead.
  Segment* head = segment_head_;
  const size_t old_size = (head == nullptr) ? 0 : head->size();
  static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
  const size_t new_size_no_overhead = size + (old_size << 1);
  size_t new_size = kSegmentOverhead + new_size_no_overhead;
  const size_t min_new_size = kSegmentOverhead + size;
  // Guard against integer overflow.
  if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
    V8::FatalProcessOutOfMemory("Zone");
    return nullptr;
  }
  if (new_size < kMinimumSegmentSize) {
    new_size = kMinimumSegmentSize;
  } else if (new_size > kMaximumSegmentSize) {
    // Limit the size of new segments to avoid growing the segment size
    // exponentially, thus putting pressure on contiguous virtual address space.
    // All the while making sure to allocate a segment large enough to hold the
    // requested size.
    new_size = Max(min_new_size, kMaximumSegmentSize);
  }
  if (new_size > INT_MAX) {
    V8::FatalProcessOutOfMemory("Zone");
    return nullptr;
  }
  Segment* segment = NewSegment(new_size);
  if (segment == nullptr) {
    V8::FatalProcessOutOfMemory("Zone");
    return nullptr;
  }

  // Recompute 'top' and 'limit' based on the new segment.
  Address result = RoundUp(segment->start(), kAlignment);
  position_ = result + size;
  // Check for address overflow.
  // (Should not happen since the segment is guaranteed to accomodate
  // size bytes + header and alignment padding)
  DCHECK_GE(reinterpret_cast<uintptr_t>(position_),
            reinterpret_cast<uintptr_t>(result));
  limit_ = segment->end();
  DCHECK(position_ <= limit_);
  return result;
}

}  // namespace internal
}  // namespace v8