summaryrefslogtreecommitdiff
path: root/deps/v8/src/x87/stub-cache-x87.cc
blob: 0fc450a56f43887f469ea9347e33df23b265146b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#if V8_TARGET_ARCH_X87

#include "src/codegen.h"
#include "src/ic-inl.h"
#include "src/stub-cache.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)


static void ProbeTable(Isolate* isolate,
                       MacroAssembler* masm,
                       Code::Flags flags,
                       StubCache::Table table,
                       Register name,
                       Register receiver,
                       // Number of the cache entry pointer-size scaled.
                       Register offset,
                       Register extra) {
  ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
  ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
  ExternalReference map_offset(isolate->stub_cache()->map_reference(table));

  Label miss;

  // Multiply by 3 because there are 3 fields per entry (name, code, map).
  __ lea(offset, Operand(offset, offset, times_2, 0));

  if (extra.is_valid()) {
    // Get the code entry from the cache.
    __ mov(extra, Operand::StaticArray(offset, times_1, value_offset));

    // Check that the key in the entry matches the name.
    __ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
    __ j(not_equal, &miss);

    // Check the map matches.
    __ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
    __ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
    __ j(not_equal, &miss);

    // Check that the flags match what we're looking for.
    __ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
    __ and_(offset, ~Code::kFlagsNotUsedInLookup);
    __ cmp(offset, flags);
    __ j(not_equal, &miss);

#ifdef DEBUG
    if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
      __ jmp(&miss);
    } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
      __ jmp(&miss);
    }
#endif

    // Jump to the first instruction in the code stub.
    __ add(extra, Immediate(Code::kHeaderSize - kHeapObjectTag));
    __ jmp(extra);

    __ bind(&miss);
  } else {
    // Save the offset on the stack.
    __ push(offset);

    // Check that the key in the entry matches the name.
    __ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
    __ j(not_equal, &miss);

    // Check the map matches.
    __ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
    __ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
    __ j(not_equal, &miss);

    // Restore offset register.
    __ mov(offset, Operand(esp, 0));

    // Get the code entry from the cache.
    __ mov(offset, Operand::StaticArray(offset, times_1, value_offset));

    // Check that the flags match what we're looking for.
    __ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
    __ and_(offset, ~Code::kFlagsNotUsedInLookup);
    __ cmp(offset, flags);
    __ j(not_equal, &miss);

#ifdef DEBUG
    if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
      __ jmp(&miss);
    } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
      __ jmp(&miss);
    }
#endif

    // Restore offset and re-load code entry from cache.
    __ pop(offset);
    __ mov(offset, Operand::StaticArray(offset, times_1, value_offset));

    // Jump to the first instruction in the code stub.
    __ add(offset, Immediate(Code::kHeaderSize - kHeapObjectTag));
    __ jmp(offset);

    // Pop at miss.
    __ bind(&miss);
    __ pop(offset);
  }
}


void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
    MacroAssembler* masm, Label* miss_label, Register receiver,
    Handle<Name> name, Register scratch0, Register scratch1) {
  DCHECK(name->IsUniqueName());
  DCHECK(!receiver.is(scratch0));
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->negative_lookups(), 1);
  __ IncrementCounter(counters->negative_lookups_miss(), 1);

  __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));

  const int kInterceptorOrAccessCheckNeededMask =
      (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);

  // Bail out if the receiver has a named interceptor or requires access checks.
  __ test_b(FieldOperand(scratch0, Map::kBitFieldOffset),
            kInterceptorOrAccessCheckNeededMask);
  __ j(not_zero, miss_label);

  // Check that receiver is a JSObject.
  __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
  __ j(below, miss_label);

  // Load properties array.
  Register properties = scratch0;
  __ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));

  // Check that the properties array is a dictionary.
  __ cmp(FieldOperand(properties, HeapObject::kMapOffset),
         Immediate(masm->isolate()->factory()->hash_table_map()));
  __ j(not_equal, miss_label);

  Label done;
  NameDictionaryLookupStub::GenerateNegativeLookup(masm,
                                                   miss_label,
                                                   &done,
                                                   properties,
                                                   name,
                                                   scratch1);
  __ bind(&done);
  __ DecrementCounter(counters->negative_lookups_miss(), 1);
}


void StubCache::GenerateProbe(MacroAssembler* masm,
                              Code::Flags flags,
                              Register receiver,
                              Register name,
                              Register scratch,
                              Register extra,
                              Register extra2,
                              Register extra3) {
  Label miss;

  // Assert that code is valid.  The multiplying code relies on the entry size
  // being 12.
  DCHECK(sizeof(Entry) == 12);

  // Assert the flags do not name a specific type.
  DCHECK(Code::ExtractTypeFromFlags(flags) == 0);

  // Assert that there are no register conflicts.
  DCHECK(!scratch.is(receiver));
  DCHECK(!scratch.is(name));
  DCHECK(!extra.is(receiver));
  DCHECK(!extra.is(name));
  DCHECK(!extra.is(scratch));

  // Assert scratch and extra registers are valid, and extra2/3 are unused.
  DCHECK(!scratch.is(no_reg));
  DCHECK(extra2.is(no_reg));
  DCHECK(extra3.is(no_reg));

  Register offset = scratch;
  scratch = no_reg;

  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &miss);

  // Get the map of the receiver and compute the hash.
  __ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
  __ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
  __ xor_(offset, flags);
  // We mask out the last two bits because they are not part of the hash and
  // they are always 01 for maps.  Also in the two 'and' instructions below.
  __ and_(offset, (kPrimaryTableSize - 1) << kCacheIndexShift);
  // ProbeTable expects the offset to be pointer scaled, which it is, because
  // the heap object tag size is 2 and the pointer size log 2 is also 2.
  DCHECK(kCacheIndexShift == kPointerSizeLog2);

  // Probe the primary table.
  ProbeTable(isolate(), masm, flags, kPrimary, name, receiver, offset, extra);

  // Primary miss: Compute hash for secondary probe.
  __ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
  __ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
  __ xor_(offset, flags);
  __ and_(offset, (kPrimaryTableSize - 1) << kCacheIndexShift);
  __ sub(offset, name);
  __ add(offset, Immediate(flags));
  __ and_(offset, (kSecondaryTableSize - 1) << kCacheIndexShift);

  // Probe the secondary table.
  ProbeTable(
      isolate(), masm, flags, kSecondary, name, receiver, offset, extra);

  // Cache miss: Fall-through and let caller handle the miss by
  // entering the runtime system.
  __ bind(&miss);
  __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}


void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
    MacroAssembler* masm, int index, Register prototype, Label* miss) {
  // Get the global function with the given index.
  Handle<JSFunction> function(
      JSFunction::cast(masm->isolate()->native_context()->get(index)));
  // Check we're still in the same context.
  Register scratch = prototype;
  const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
  __ mov(scratch, Operand(esi, offset));
  __ mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
  __ cmp(Operand(scratch, Context::SlotOffset(index)), function);
  __ j(not_equal, miss);

  // Load its initial map. The global functions all have initial maps.
  __ Move(prototype, Immediate(Handle<Map>(function->initial_map())));
  // Load the prototype from the initial map.
  __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}


void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
    MacroAssembler* masm, Register receiver, Register scratch1,
    Register scratch2, Label* miss_label) {
  __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
  __ mov(eax, scratch1);
  __ ret(0);
}


static void PushInterceptorArguments(MacroAssembler* masm,
                                     Register receiver,
                                     Register holder,
                                     Register name,
                                     Handle<JSObject> holder_obj) {
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
  __ push(name);
  Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
  DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
  Register scratch = name;
  __ mov(scratch, Immediate(interceptor));
  __ push(scratch);
  __ push(receiver);
  __ push(holder);
}


static void CompileCallLoadPropertyWithInterceptor(
    MacroAssembler* masm,
    Register receiver,
    Register holder,
    Register name,
    Handle<JSObject> holder_obj,
    IC::UtilityId id) {
  PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
  __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
                           NamedLoadHandlerCompiler::kInterceptorArgsLength);
}


// Generate call to api function.
// This function uses push() to generate smaller, faster code than
// the version above. It is an optimization that should will be removed
// when api call ICs are generated in hydrogen.
void PropertyHandlerCompiler::GenerateFastApiCall(
    MacroAssembler* masm, const CallOptimization& optimization,
    Handle<Map> receiver_map, Register receiver, Register scratch_in,
    bool is_store, int argc, Register* values) {
  // Copy return value.
  __ pop(scratch_in);
  // receiver
  __ push(receiver);
  // Write the arguments to stack frame.
  for (int i = 0; i < argc; i++) {
    Register arg = values[argc-1-i];
    DCHECK(!receiver.is(arg));
    DCHECK(!scratch_in.is(arg));
    __ push(arg);
  }
  __ push(scratch_in);
  // Stack now matches JSFunction abi.
  DCHECK(optimization.is_simple_api_call());

  // Abi for CallApiFunctionStub.
  Register callee = eax;
  Register call_data = ebx;
  Register holder = ecx;
  Register api_function_address = edx;
  Register scratch = edi;  // scratch_in is no longer valid.

  // Put holder in place.
  CallOptimization::HolderLookup holder_lookup;
  Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
      receiver_map,
      &holder_lookup);
  switch (holder_lookup) {
    case CallOptimization::kHolderIsReceiver:
      __ Move(holder, receiver);
      break;
    case CallOptimization::kHolderFound:
      __ LoadHeapObject(holder, api_holder);
     break;
    case CallOptimization::kHolderNotFound:
      UNREACHABLE();
      break;
  }

  Isolate* isolate = masm->isolate();
  Handle<JSFunction> function = optimization.constant_function();
  Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
  Handle<Object> call_data_obj(api_call_info->data(), isolate);

  // Put callee in place.
  __ LoadHeapObject(callee, function);

  bool call_data_undefined = false;
  // Put call_data in place.
  if (isolate->heap()->InNewSpace(*call_data_obj)) {
    __ mov(scratch, api_call_info);
    __ mov(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset));
  } else if (call_data_obj->IsUndefined()) {
    call_data_undefined = true;
    __ mov(call_data, Immediate(isolate->factory()->undefined_value()));
  } else {
    __ mov(call_data, call_data_obj);
  }

  // Put api_function_address in place.
  Address function_address = v8::ToCData<Address>(api_call_info->callback());
  __ mov(api_function_address, Immediate(function_address));

  // Jump to stub.
  CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
  __ TailCallStub(&stub);
}


// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
    MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
    Register scratch, Label* miss) {
  Handle<PropertyCell> cell =
      JSGlobalObject::EnsurePropertyCell(global, name);
  DCHECK(cell->value()->IsTheHole());
  Handle<Oddball> the_hole = masm->isolate()->factory()->the_hole_value();
  if (masm->serializer_enabled()) {
    __ mov(scratch, Immediate(cell));
    __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
           Immediate(the_hole));
  } else {
    __ cmp(Operand::ForCell(cell), Immediate(the_hole));
  }
  __ j(not_equal, miss);
}


void PropertyAccessCompiler::GenerateTailCall(MacroAssembler* masm,
                                              Handle<Code> code) {
  __ jmp(code, RelocInfo::CODE_TARGET);
}


#undef __
#define __ ACCESS_MASM(masm())


void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
                                                    Handle<Name> name) {
  if (!label->is_unused()) {
    __ bind(label);
    __ mov(this->name(), Immediate(name));
  }
}


// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void NamedStoreHandlerCompiler::GenerateStoreTransition(
    Handle<Map> transition, Handle<Name> name, Register receiver_reg,
    Register storage_reg, Register value_reg, Register scratch1,
    Register scratch2, Register unused, Label* miss_label, Label* slow) {
  int descriptor = transition->LastAdded();
  DescriptorArray* descriptors = transition->instance_descriptors();
  PropertyDetails details = descriptors->GetDetails(descriptor);
  Representation representation = details.representation();
  DCHECK(!representation.IsNone());

  if (details.type() == CONSTANT) {
    Handle<Object> constant(descriptors->GetValue(descriptor), isolate());
    __ CmpObject(value_reg, constant);
    __ j(not_equal, miss_label);
  } else if (representation.IsSmi()) {
      __ JumpIfNotSmi(value_reg, miss_label);
  } else if (representation.IsHeapObject()) {
    __ JumpIfSmi(value_reg, miss_label);
    HeapType* field_type = descriptors->GetFieldType(descriptor);
    HeapType::Iterator<Map> it = field_type->Classes();
    if (!it.Done()) {
      Label do_store;
      while (true) {
        __ CompareMap(value_reg, it.Current());
        it.Advance();
        if (it.Done()) {
          __ j(not_equal, miss_label);
          break;
        }
        __ j(equal, &do_store, Label::kNear);
      }
      __ bind(&do_store);
    }
  } else if (representation.IsDouble()) {
    Label do_store, heap_number;
    __ AllocateHeapNumber(storage_reg, scratch1, scratch2, slow, MUTABLE);

    __ JumpIfNotSmi(value_reg, &heap_number);
    __ SmiUntag(value_reg);
    __ push(value_reg);
    __ fild_s(Operand(esp, 0));
    __ pop(value_reg);
    __ SmiTag(value_reg);
    __ jmp(&do_store);

    __ bind(&heap_number);
    __ CheckMap(value_reg, isolate()->factory()->heap_number_map(), miss_label,
                DONT_DO_SMI_CHECK);
    __ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset));

    __ bind(&do_store);
    __ fstp_d(FieldOperand(storage_reg, HeapNumber::kValueOffset));
  }

  // Stub never generated for objects that require access checks.
  DCHECK(!transition->is_access_check_needed());

  // Perform map transition for the receiver if necessary.
  if (details.type() == FIELD &&
      Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) {
    // The properties must be extended before we can store the value.
    // We jump to a runtime call that extends the properties array.
    __ pop(scratch1);  // Return address.
    __ push(receiver_reg);
    __ push(Immediate(transition));
    __ push(value_reg);
    __ push(scratch1);
    __ TailCallExternalReference(
        ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
                          isolate()),
        3, 1);
    return;
  }

  // Update the map of the object.
  __ mov(scratch1, Immediate(transition));
  __ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);

  // Update the write barrier for the map field.
  __ RecordWriteField(receiver_reg,
                      HeapObject::kMapOffset,
                      scratch1,
                      scratch2,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  if (details.type() == CONSTANT) {
    DCHECK(value_reg.is(eax));
    __ ret(0);
    return;
  }

  int index = transition->instance_descriptors()->GetFieldIndex(
      transition->LastAdded());

  // Adjust for the number of properties stored in the object. Even in the
  // face of a transition we can use the old map here because the size of the
  // object and the number of in-object properties is not going to change.
  index -= transition->inobject_properties();

  SmiCheck smi_check = representation.IsTagged()
      ? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
  // TODO(verwaest): Share this code as a code stub.
  if (index < 0) {
    // Set the property straight into the object.
    int offset = transition->instance_size() + (index * kPointerSize);
    if (representation.IsDouble()) {
      __ mov(FieldOperand(receiver_reg, offset), storage_reg);
    } else {
      __ mov(FieldOperand(receiver_reg, offset), value_reg);
    }

    if (!representation.IsSmi()) {
      // Update the write barrier for the array address.
      if (!representation.IsDouble()) {
        __ mov(storage_reg, value_reg);
      }
      __ RecordWriteField(receiver_reg,
                          offset,
                          storage_reg,
                          scratch1,
                          EMIT_REMEMBERED_SET,
                          smi_check);
    }
  } else {
    // Write to the properties array.
    int offset = index * kPointerSize + FixedArray::kHeaderSize;
    // Get the properties array (optimistically).
    __ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
    if (representation.IsDouble()) {
      __ mov(FieldOperand(scratch1, offset), storage_reg);
    } else {
      __ mov(FieldOperand(scratch1, offset), value_reg);
    }

    if (!representation.IsSmi()) {
      // Update the write barrier for the array address.
      if (!representation.IsDouble()) {
        __ mov(storage_reg, value_reg);
      }
      __ RecordWriteField(scratch1,
                          offset,
                          storage_reg,
                          receiver_reg,
                          EMIT_REMEMBERED_SET,
                          smi_check);
    }
  }

  // Return the value (register eax).
  DCHECK(value_reg.is(eax));
  __ ret(0);
}


void NamedStoreHandlerCompiler::GenerateStoreField(LookupResult* lookup,
                                                   Register value_reg,
                                                   Label* miss_label) {
  DCHECK(lookup->representation().IsHeapObject());
  __ JumpIfSmi(value_reg, miss_label);
  HeapType::Iterator<Map> it = lookup->GetFieldType()->Classes();
  Label do_store;
  while (true) {
    __ CompareMap(value_reg, it.Current());
    it.Advance();
    if (it.Done()) {
      __ j(not_equal, miss_label);
      break;
    }
    __ j(equal, &do_store, Label::kNear);
  }
  __ bind(&do_store);

  StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
                      lookup->representation());
  GenerateTailCall(masm(), stub.GetCode());
}


Register PropertyHandlerCompiler::CheckPrototypes(
    Register object_reg, Register holder_reg, Register scratch1,
    Register scratch2, Handle<Name> name, Label* miss,
    PrototypeCheckType check) {
  Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));

  // Make sure there's no overlap between holder and object registers.
  DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
  DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
         && !scratch2.is(scratch1));

  // Keep track of the current object in register reg.
  Register reg = object_reg;
  int depth = 0;

  Handle<JSObject> current = Handle<JSObject>::null();
  if (type()->IsConstant())
    current = Handle<JSObject>::cast(type()->AsConstant()->Value());
  Handle<JSObject> prototype = Handle<JSObject>::null();
  Handle<Map> current_map = receiver_map;
  Handle<Map> holder_map(holder()->map());
  // Traverse the prototype chain and check the maps in the prototype chain for
  // fast and global objects or do negative lookup for normal objects.
  while (!current_map.is_identical_to(holder_map)) {
    ++depth;

    // Only global objects and objects that do not require access
    // checks are allowed in stubs.
    DCHECK(current_map->IsJSGlobalProxyMap() ||
           !current_map->is_access_check_needed());

    prototype = handle(JSObject::cast(current_map->prototype()));
    if (current_map->is_dictionary_map() &&
        !current_map->IsJSGlobalObjectMap()) {
      DCHECK(!current_map->IsJSGlobalProxyMap());  // Proxy maps are fast.
      if (!name->IsUniqueName()) {
        DCHECK(name->IsString());
        name = factory()->InternalizeString(Handle<String>::cast(name));
      }
      DCHECK(current.is_null() ||
             current->property_dictionary()->FindEntry(name) ==
             NameDictionary::kNotFound);

      GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
                                       scratch1, scratch2);

      __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
      reg = holder_reg;  // From now on the object will be in holder_reg.
      __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
    } else {
      bool in_new_space = heap()->InNewSpace(*prototype);
      // Two possible reasons for loading the prototype from the map:
      // (1) Can't store references to new space in code.
      // (2) Handler is shared for all receivers with the same prototype
      //     map (but not necessarily the same prototype instance).
      bool load_prototype_from_map = in_new_space || depth == 1;
      if (depth != 1 || check == CHECK_ALL_MAPS) {
        __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
      }

      // Check access rights to the global object.  This has to happen after
      // the map check so that we know that the object is actually a global
      // object.
      // This allows us to install generated handlers for accesses to the
      // global proxy (as opposed to using slow ICs). See corresponding code
      // in LookupForRead().
      if (current_map->IsJSGlobalProxyMap()) {
        __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
      } else if (current_map->IsJSGlobalObjectMap()) {
        GenerateCheckPropertyCell(
            masm(), Handle<JSGlobalObject>::cast(current), name,
            scratch2, miss);
      }

      if (load_prototype_from_map) {
        // Save the map in scratch1 for later.
        __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
      }

      reg = holder_reg;  // From now on the object will be in holder_reg.

      if (load_prototype_from_map) {
        __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
      } else {
        __ mov(reg, prototype);
      }
    }

    // Go to the next object in the prototype chain.
    current = prototype;
    current_map = handle(current->map());
  }

  // Log the check depth.
  LOG(isolate(), IntEvent("check-maps-depth", depth + 1));

  if (depth != 0 || check == CHECK_ALL_MAPS) {
    // Check the holder map.
    __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
  }

  // Perform security check for access to the global object.
  DCHECK(current_map->IsJSGlobalProxyMap() ||
         !current_map->is_access_check_needed());
  if (current_map->IsJSGlobalProxyMap()) {
    __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
  }

  // Return the register containing the holder.
  return reg;
}


void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
  if (!miss->is_unused()) {
    Label success;
    __ jmp(&success);
    __ bind(miss);
    TailCallBuiltin(masm(), MissBuiltin(kind()));
    __ bind(&success);
  }
}


void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
  if (!miss->is_unused()) {
    Label success;
    __ jmp(&success);
    GenerateRestoreName(miss, name);
    TailCallBuiltin(masm(), MissBuiltin(kind()));
    __ bind(&success);
  }
}


void NamedLoadHandlerCompiler::GenerateLoadCallback(
    Register reg, Handle<ExecutableAccessorInfo> callback) {
  // Insert additional parameters into the stack frame above return address.
  DCHECK(!scratch3().is(reg));
  __ pop(scratch3());  // Get return address to place it below.

  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
  __ push(receiver());  // receiver
  // Push data from ExecutableAccessorInfo.
  if (isolate()->heap()->InNewSpace(callback->data())) {
    DCHECK(!scratch2().is(reg));
    __ mov(scratch2(), Immediate(callback));
    __ push(FieldOperand(scratch2(), ExecutableAccessorInfo::kDataOffset));
  } else {
    __ push(Immediate(Handle<Object>(callback->data(), isolate())));
  }
  __ push(Immediate(isolate()->factory()->undefined_value()));  // ReturnValue
  // ReturnValue default value
  __ push(Immediate(isolate()->factory()->undefined_value()));
  __ push(Immediate(reinterpret_cast<int>(isolate())));
  __ push(reg);  // holder

  // Save a pointer to where we pushed the arguments. This will be
  // passed as the const PropertyAccessorInfo& to the C++ callback.
  __ push(esp);

  __ push(name());  // name

  __ push(scratch3());  // Restore return address.

  // Abi for CallApiGetter
  Register getter_address = edx;
  Address function_address = v8::ToCData<Address>(callback->getter());
  __ mov(getter_address, Immediate(function_address));

  CallApiGetterStub stub(isolate());
  __ TailCallStub(&stub);
}


void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
  // Return the constant value.
  __ LoadObject(eax, value);
  __ ret(0);
}


void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg,
                                                       LookupResult* lookup,
                                                       Handle<Name> name) {
  DCHECK(holder()->HasNamedInterceptor());
  DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());

  // So far the most popular follow ups for interceptor loads are FIELD
  // and CALLBACKS, so inline only them, other cases may be added
  // later.
  bool compile_followup_inline = false;
  if (lookup->IsFound() && lookup->IsCacheable()) {
    if (lookup->IsField()) {
      compile_followup_inline = true;
    } else if (lookup->type() == CALLBACKS &&
               lookup->GetCallbackObject()->IsExecutableAccessorInfo()) {
      Handle<ExecutableAccessorInfo> callback(
          ExecutableAccessorInfo::cast(lookup->GetCallbackObject()));
      compile_followup_inline =
          callback->getter() != NULL &&
          ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), callback,
                                                           type());
    }
  }

  if (compile_followup_inline) {
    // Compile the interceptor call, followed by inline code to load the
    // property from further up the prototype chain if the call fails.
    // Check that the maps haven't changed.
    DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));

    // Preserve the receiver register explicitly whenever it is different from
    // the holder and it is needed should the interceptor return without any
    // result. The CALLBACKS case needs the receiver to be passed into C++ code,
    // the FIELD case might cause a miss during the prototype check.
    bool must_perfrom_prototype_check = *holder() != lookup->holder();
    bool must_preserve_receiver_reg = !receiver().is(holder_reg) &&
        (lookup->type() == CALLBACKS || must_perfrom_prototype_check);

    // Save necessary data before invoking an interceptor.
    // Requires a frame to make GC aware of pushed pointers.
    {
      FrameScope frame_scope(masm(), StackFrame::INTERNAL);

      if (must_preserve_receiver_reg) {
        __ push(receiver());
      }
      __ push(holder_reg);
      __ push(this->name());

      // Invoke an interceptor.  Note: map checks from receiver to
      // interceptor's holder has been compiled before (see a caller
      // of this method.)
      CompileCallLoadPropertyWithInterceptor(
          masm(), receiver(), holder_reg, this->name(), holder(),
          IC::kLoadPropertyWithInterceptorOnly);

      // Check if interceptor provided a value for property.  If it's
      // the case, return immediately.
      Label interceptor_failed;
      __ cmp(eax, factory()->no_interceptor_result_sentinel());
      __ j(equal, &interceptor_failed);
      frame_scope.GenerateLeaveFrame();
      __ ret(0);

      // Clobber registers when generating debug-code to provoke errors.
      __ bind(&interceptor_failed);
      if (FLAG_debug_code) {
        __ mov(receiver(), Immediate(BitCast<int32_t>(kZapValue)));
        __ mov(holder_reg, Immediate(BitCast<int32_t>(kZapValue)));
        __ mov(this->name(), Immediate(BitCast<int32_t>(kZapValue)));
      }

      __ pop(this->name());
      __ pop(holder_reg);
      if (must_preserve_receiver_reg) {
        __ pop(receiver());
      }

      // Leave the internal frame.
    }

    GenerateLoadPostInterceptor(holder_reg, name, lookup);
  } else {  // !compile_followup_inline
    // Call the runtime system to load the interceptor.
    // Check that the maps haven't changed.
    __ pop(scratch2());  // save old return address
    PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
                             holder());
    __ push(scratch2());  // restore old return address

    ExternalReference ref =
        ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptor),
                          isolate());
    __ TailCallExternalReference(
        ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
  }
}


Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
    Handle<JSObject> object, Handle<Name> name,
    Handle<ExecutableAccessorInfo> callback) {
  Register holder_reg = Frontend(receiver(), name);

  __ pop(scratch1());  // remove the return address
  __ push(receiver());
  __ push(holder_reg);
  __ Push(callback);
  __ Push(name);
  __ push(value());
  __ push(scratch1());  // restore return address

  // Do tail-call to the runtime system.
  ExternalReference store_callback_property =
      ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
  __ TailCallExternalReference(store_callback_property, 5, 1);

  // Return the generated code.
  return GetCode(kind(), Code::FAST, name);
}


#undef __
#define __ ACCESS_MASM(masm)


void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
    MacroAssembler* masm, Handle<HeapType> type, Register receiver,
    Handle<JSFunction> setter) {
  // ----------- S t a t e -------------
  //  -- esp[0] : return address
  // -----------------------------------
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Save value register, so we can restore it later.
    __ push(value());

    if (!setter.is_null()) {
      // Call the JavaScript setter with receiver and value on the stack.
      if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
        // Swap in the global receiver.
        __ mov(receiver,
               FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
      }
      __ push(receiver);
      __ push(value());
      ParameterCount actual(1);
      ParameterCount expected(setter);
      __ InvokeFunction(setter, expected, actual,
                        CALL_FUNCTION, NullCallWrapper());
    } else {
      // If we generate a global code snippet for deoptimization only, remember
      // the place to continue after deoptimization.
      masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
    }

    // We have to return the passed value, not the return value of the setter.
    __ pop(eax);

    // Restore context register.
    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
  }
  __ ret(0);
}


#undef __
#define __ ACCESS_MASM(masm())


Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
    Handle<Name> name) {
  __ pop(scratch1());  // remove the return address
  __ push(receiver());
  __ push(this->name());
  __ push(value());
  __ push(scratch1());  // restore return address

  // Do tail-call to the runtime system.
  ExternalReference store_ic_property = ExternalReference(
      IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
  __ TailCallExternalReference(store_ic_property, 3, 1);

  // Return the generated code.
  return GetCode(kind(), Code::FAST, name);
}


Handle<Code> PropertyICCompiler::CompileKeyedStorePolymorphic(
    MapHandleList* receiver_maps, CodeHandleList* handler_stubs,
    MapHandleList* transitioned_maps) {
  Label miss;
  __ JumpIfSmi(receiver(), &miss, Label::kNear);
  __ mov(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset));
  for (int i = 0; i < receiver_maps->length(); ++i) {
    __ cmp(scratch1(), receiver_maps->at(i));
    if (transitioned_maps->at(i).is_null()) {
      __ j(equal, handler_stubs->at(i));
    } else {
      Label next_map;
      __ j(not_equal, &next_map, Label::kNear);
      __ mov(transition_map(), Immediate(transitioned_maps->at(i)));
      __ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
      __ bind(&next_map);
    }
  }
  __ bind(&miss);
  TailCallBuiltin(masm(), MissBuiltin(kind()));

  // Return the generated code.
  return GetCode(kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC);
}


Register* PropertyAccessCompiler::load_calling_convention() {
  // receiver, name, scratch1, scratch2, scratch3, scratch4.
  Register receiver = LoadIC::ReceiverRegister();
  Register name = LoadIC::NameRegister();
  static Register registers[] = { receiver, name, ebx, eax, edi, no_reg };
  return registers;
}


Register* PropertyAccessCompiler::store_calling_convention() {
  // receiver, name, scratch1, scratch2, scratch3.
  Register receiver = StoreIC::ReceiverRegister();
  Register name = StoreIC::NameRegister();
  DCHECK(ebx.is(KeyedStoreIC::MapRegister()));
  static Register registers[] = { receiver, name, ebx, edi, no_reg };
  return registers;
}


Register NamedStoreHandlerCompiler::value() { return StoreIC::ValueRegister(); }


#undef __
#define __ ACCESS_MASM(masm)


void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
    MacroAssembler* masm, Handle<HeapType> type, Register receiver,
    Handle<JSFunction> getter) {
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    if (!getter.is_null()) {
      // Call the JavaScript getter with the receiver on the stack.
      if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
        // Swap in the global receiver.
        __ mov(receiver,
               FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
      }
      __ push(receiver);
      ParameterCount actual(0);
      ParameterCount expected(getter);
      __ InvokeFunction(getter, expected, actual,
                        CALL_FUNCTION, NullCallWrapper());
    } else {
      // If we generate a global code snippet for deoptimization only, remember
      // the place to continue after deoptimization.
      masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
    }

    // Restore context register.
    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
  }
  __ ret(0);
}


#undef __
#define __ ACCESS_MASM(masm())


Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
    Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
  Label miss;

  FrontendHeader(receiver(), name, &miss);
  // Get the value from the cell.
  Register result = StoreIC::ValueRegister();
  if (masm()->serializer_enabled()) {
    __ mov(result, Immediate(cell));
    __ mov(result, FieldOperand(result, PropertyCell::kValueOffset));
  } else {
    __ mov(result, Operand::ForCell(cell));
  }

  // Check for deleted property if property can actually be deleted.
  if (is_configurable) {
    __ cmp(result, factory()->the_hole_value());
    __ j(equal, &miss);
  } else if (FLAG_debug_code) {
    __ cmp(result, factory()->the_hole_value());
    __ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
  }

  Counters* counters = isolate()->counters();
  __ IncrementCounter(counters->named_load_global_stub(), 1);
  // The code above already loads the result into the return register.
  __ ret(0);

  FrontendFooter(name, &miss);

  // Return the generated code.
  return GetCode(kind(), Code::NORMAL, name);
}


Handle<Code> PropertyICCompiler::CompilePolymorphic(TypeHandleList* types,
                                                    CodeHandleList* handlers,
                                                    Handle<Name> name,
                                                    Code::StubType type,
                                                    IcCheckType check) {
  Label miss;

  if (check == PROPERTY &&
      (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC)) {
    // In case we are compiling an IC for dictionary loads and stores, just
    // check whether the name is unique.
    if (name.is_identical_to(isolate()->factory()->normal_ic_symbol())) {
      __ JumpIfNotUniqueName(this->name(), &miss);
    } else {
      __ cmp(this->name(), Immediate(name));
      __ j(not_equal, &miss);
    }
  }

  Label number_case;
  Label* smi_target = IncludesNumberType(types) ? &number_case : &miss;
  __ JumpIfSmi(receiver(), smi_target);

  // Polymorphic keyed stores may use the map register
  Register map_reg = scratch1();
  DCHECK(kind() != Code::KEYED_STORE_IC ||
         map_reg.is(KeyedStoreIC::MapRegister()));
  __ mov(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset));
  int receiver_count = types->length();
  int number_of_handled_maps = 0;
  for (int current = 0; current < receiver_count; ++current) {
    Handle<HeapType> type = types->at(current);
    Handle<Map> map = IC::TypeToMap(*type, isolate());
    if (!map->is_deprecated()) {
      number_of_handled_maps++;
      __ cmp(map_reg, map);
      if (type->Is(HeapType::Number())) {
        DCHECK(!number_case.is_unused());
        __ bind(&number_case);
      }
      __ j(equal, handlers->at(current));
    }
  }
  DCHECK(number_of_handled_maps != 0);

  __ bind(&miss);
  TailCallBuiltin(masm(), MissBuiltin(kind()));

  // Return the generated code.
  InlineCacheState state =
      number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC;
  return GetCode(kind(), type, name, state);
}


#undef __
#define __ ACCESS_MASM(masm)


void ElementHandlerCompiler::GenerateLoadDictionaryElement(
    MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- ecx    : key
  //  -- edx    : receiver
  //  -- esp[0] : return address
  // -----------------------------------
  DCHECK(edx.is(LoadIC::ReceiverRegister()));
  DCHECK(ecx.is(LoadIC::NameRegister()));
  Label slow, miss;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.
  __ JumpIfNotSmi(ecx, &miss);
  __ mov(ebx, ecx);
  __ SmiUntag(ebx);
  __ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));

  // Push receiver on the stack to free up a register for the dictionary
  // probing.
  __ push(edx);
  __ LoadFromNumberDictionary(&slow, eax, ecx, ebx, edx, edi, eax);
  // Pop receiver before returning.
  __ pop(edx);
  __ ret(0);

  __ bind(&slow);
  __ pop(edx);

  // ----------- S t a t e -------------
  //  -- ecx    : key
  //  -- edx    : receiver
  //  -- esp[0] : return address
  // -----------------------------------
  TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow);

  __ bind(&miss);
  // ----------- S t a t e -------------
  //  -- ecx    : key
  //  -- edx    : receiver
  //  -- esp[0] : return address
  // -----------------------------------
  TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Miss);
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_X87