summaryrefslogtreecommitdiff
path: root/deps/v8/src/x87/macro-assembler-x87.h
blob: 743bebdfe7269c590fe33ac23439cd6329b3ad62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
#define V8_X87_MACRO_ASSEMBLER_X87_H_

#include "src/assembler.h"
#include "src/frames.h"
#include "src/globals.h"

namespace v8 {
namespace internal {

// Convenience for platform-independent signatures.  We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
  kPointersToHereMaybeInteresting,
  kPointersToHereAreAlwaysInteresting
};


enum RegisterValueType {
  REGISTER_VALUE_IS_SMI,
  REGISTER_VALUE_IS_INT32
};


#ifdef DEBUG
bool AreAliased(Register reg1,
                Register reg2,
                Register reg3 = no_reg,
                Register reg4 = no_reg,
                Register reg5 = no_reg,
                Register reg6 = no_reg,
                Register reg7 = no_reg,
                Register reg8 = no_reg);
#endif


// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  // The isolate parameter can be NULL if the macro assembler should
  // not use isolate-dependent functionality. In this case, it's the
  // responsibility of the caller to never invoke such function on the
  // macro assembler.
  MacroAssembler(Isolate* isolate, void* buffer, int size);

  void Load(Register dst, const Operand& src, Representation r);
  void Store(Register src, const Operand& dst, Representation r);

  // Operations on roots in the root-array.
  void LoadRoot(Register destination, Heap::RootListIndex index);
  void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
  void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
  // These methods can only be used with constant roots (i.e. non-writable
  // and not in new space).
  void CompareRoot(Register with, Heap::RootListIndex index);
  void CompareRoot(const Operand& with, Heap::RootListIndex index);

  // ---------------------------------------------------------------------------
  // GC Support
  enum RememberedSetFinalAction {
    kReturnAtEnd,
    kFallThroughAtEnd
  };

  // Record in the remembered set the fact that we have a pointer to new space
  // at the address pointed to by the addr register.  Only works if addr is not
  // in new space.
  void RememberedSetHelper(Register object,  // Used for debug code.
                           Register addr,
                           Register scratch,
                           RememberedSetFinalAction and_then);

  void CheckPageFlag(Register object,
                     Register scratch,
                     int mask,
                     Condition cc,
                     Label* condition_met,
                     Label::Distance condition_met_distance = Label::kFar);

  void CheckPageFlagForMap(
      Handle<Map> map,
      int mask,
      Condition cc,
      Label* condition_met,
      Label::Distance condition_met_distance = Label::kFar);

  void CheckMapDeprecated(Handle<Map> map,
                          Register scratch,
                          Label* if_deprecated);

  // Check if object is in new space.  Jumps if the object is not in new space.
  // The register scratch can be object itself, but scratch will be clobbered.
  void JumpIfNotInNewSpace(Register object,
                           Register scratch,
                           Label* branch,
                           Label::Distance distance = Label::kFar) {
    InNewSpace(object, scratch, zero, branch, distance);
  }

  // Check if object is in new space.  Jumps if the object is in new space.
  // The register scratch can be object itself, but it will be clobbered.
  void JumpIfInNewSpace(Register object,
                        Register scratch,
                        Label* branch,
                        Label::Distance distance = Label::kFar) {
    InNewSpace(object, scratch, not_zero, branch, distance);
  }

  // Check if an object has a given incremental marking color.  Also uses ecx!
  void HasColor(Register object,
                Register scratch0,
                Register scratch1,
                Label* has_color,
                Label::Distance has_color_distance,
                int first_bit,
                int second_bit);

  void JumpIfBlack(Register object,
                   Register scratch0,
                   Register scratch1,
                   Label* on_black,
                   Label::Distance on_black_distance = Label::kFar);

  // Checks the color of an object.  If the object is already grey or black
  // then we just fall through, since it is already live.  If it is white and
  // we can determine that it doesn't need to be scanned, then we just mark it
  // black and fall through.  For the rest we jump to the label so the
  // incremental marker can fix its assumptions.
  void EnsureNotWhite(Register object,
                      Register scratch1,
                      Register scratch2,
                      Label* object_is_white_and_not_data,
                      Label::Distance distance);

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object,
      int offset,
      Register value,
      Register scratch,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // As above, but the offset has the tag presubtracted.  For use with
  // Operand(reg, off).
  void RecordWriteContextSlot(
      Register context,
      int offset,
      Register value,
      Register scratch,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting) {
    RecordWriteField(context,
                     offset + kHeapObjectTag,
                     value,
                     scratch,
                     remembered_set_action,
                     smi_check,
                     pointers_to_here_check_for_value);
  }

  // Notify the garbage collector that we wrote a pointer into a fixed array.
  // |array| is the array being stored into, |value| is the
  // object being stored.  |index| is the array index represented as a
  // Smi. All registers are clobbered by the operation RecordWriteArray
  // filters out smis so it does not update the write barrier if the
  // value is a smi.
  void RecordWriteArray(
      Register array,
      Register value,
      Register index,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // For page containing |object| mark region covering |address|
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. The address and value registers are clobbered by the
  // operation. RecordWrite filters out smis so it does not update the
  // write barrier if the value is a smi.
  void RecordWrite(
      Register object,
      Register address,
      Register value,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // For page containing |object| mark the region covering the object's map
  // dirty. |object| is the object being stored into, |map| is the Map object
  // that was stored.
  void RecordWriteForMap(
      Register object,
      Handle<Map> map,
      Register scratch1,
      Register scratch2);

  // ---------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();

  // Generates function and stub prologue code.
  void StubPrologue();
  void Prologue(bool code_pre_aging);

  // Enter specific kind of exit frame. Expects the number of
  // arguments in register eax and sets up the number of arguments in
  // register edi and the pointer to the first argument in register
  // esi.
  void EnterExitFrame();

  void EnterApiExitFrame(int argc);

  // Leave the current exit frame. Expects the return value in
  // register eax:edx (untouched) and the pointer to the first
  // argument in register esi.
  void LeaveExitFrame();

  // Leave the current exit frame. Expects the return value in
  // register eax (untouched).
  void LeaveApiExitFrame(bool restore_context);

  // Find the function context up the context chain.
  void LoadContext(Register dst, int context_chain_length);

  // Conditionally load the cached Array transitioned map of type
  // transitioned_kind from the native context if the map in register
  // map_in_out is the cached Array map in the native context of
  // expected_kind.
  void LoadTransitionedArrayMapConditional(
      ElementsKind expected_kind,
      ElementsKind transitioned_kind,
      Register map_in_out,
      Register scratch,
      Label* no_map_match);

  // Load the global function with the given index.
  void LoadGlobalFunction(int index, Register function);

  // Load the initial map from the global function. The registers
  // function and map can be the same.
  void LoadGlobalFunctionInitialMap(Register function, Register map);

  // Push and pop the registers that can hold pointers.
  void PushSafepointRegisters() { pushad(); }
  void PopSafepointRegisters() { popad(); }
  // Store the value in register/immediate src in the safepoint
  // register stack slot for register dst.
  void StoreToSafepointRegisterSlot(Register dst, Register src);
  void StoreToSafepointRegisterSlot(Register dst, Immediate src);
  void LoadFromSafepointRegisterSlot(Register dst, Register src);

  void LoadHeapObject(Register result, Handle<HeapObject> object);
  void CmpHeapObject(Register reg, Handle<HeapObject> object);
  void PushHeapObject(Handle<HeapObject> object);

  void LoadObject(Register result, Handle<Object> object) {
    AllowDeferredHandleDereference heap_object_check;
    if (object->IsHeapObject()) {
      LoadHeapObject(result, Handle<HeapObject>::cast(object));
    } else {
      Move(result, Immediate(object));
    }
  }

  void CmpObject(Register reg, Handle<Object> object) {
    AllowDeferredHandleDereference heap_object_check;
    if (object->IsHeapObject()) {
      CmpHeapObject(reg, Handle<HeapObject>::cast(object));
    } else {
      cmp(reg, Immediate(object));
    }
  }

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(Register code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag,
                  const CallWrapper& call_wrapper) {
    InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
  }

  void InvokeCode(const Operand& code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag,
                  const CallWrapper& call_wrapper);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InvokeFunction(Register function,
                      const ParameterCount& expected,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InvokeFunction(Handle<JSFunction> function,
                      const ParameterCount& expected,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  // Invoke specified builtin JavaScript function. Adds an entry to
  // the unresolved list if the name does not resolve.
  void InvokeBuiltin(Builtins::JavaScript id,
                     InvokeFlag flag,
                     const CallWrapper& call_wrapper = NullCallWrapper());

  // Store the function for the given builtin in the target register.
  void GetBuiltinFunction(Register target, Builtins::JavaScript id);

  // Store the code object for the given builtin in the target register.
  void GetBuiltinEntry(Register target, Builtins::JavaScript id);

  // Expression support
  // Support for constant splitting.
  bool IsUnsafeImmediate(const Immediate& x);
  void SafeMove(Register dst, const Immediate& x);
  void SafePush(const Immediate& x);

  // Compare object type for heap object.
  // Incoming register is heap_object and outgoing register is map.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  void CmpInstanceType(Register map, InstanceType type);

  // Check if a map for a JSObject indicates that the object has fast elements.
  // Jump to the specified label if it does not.
  void CheckFastElements(Register map,
                         Label* fail,
                         Label::Distance distance = Label::kFar);

  // Check if a map for a JSObject indicates that the object can have both smi
  // and HeapObject elements.  Jump to the specified label if it does not.
  void CheckFastObjectElements(Register map,
                               Label* fail,
                               Label::Distance distance = Label::kFar);

  // Check if a map for a JSObject indicates that the object has fast smi only
  // elements.  Jump to the specified label if it does not.
  void CheckFastSmiElements(Register map,
                            Label* fail,
                            Label::Distance distance = Label::kFar);

  // Check to see if maybe_number can be stored as a double in
  // FastDoubleElements. If it can, store it at the index specified by key in
  // the FastDoubleElements array elements, otherwise jump to fail.
  void StoreNumberToDoubleElements(Register maybe_number,
                                   Register elements,
                                   Register key,
                                   Register scratch,
                                   Label* fail,
                                   int offset = 0);

  // Compare an object's map with the specified map.
  void CompareMap(Register obj, Handle<Map> map);

  // Check if the map of an object is equal to a specified map and branch to
  // label if not. Skip the smi check if not required (object is known to be a
  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
  // against maps that are ElementsKind transition maps of the specified map.
  void CheckMap(Register obj,
                Handle<Map> map,
                Label* fail,
                SmiCheckType smi_check_type);

  // Check if the map of an object is equal to a specified map and branch to a
  // specified target if equal. Skip the smi check if not required (object is
  // known to be a heap object)
  void DispatchMap(Register obj,
                   Register unused,
                   Handle<Map> map,
                   Handle<Code> success,
                   SmiCheckType smi_check_type);

  // Check if the object in register heap_object is a string. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectStringType(Register heap_object,
                               Register map,
                               Register instance_type);

  // Check if the object in register heap_object is a name. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectNameType(Register heap_object,
                             Register map,
                             Register instance_type);

  // Check if a heap object's type is in the JSObject range, not including
  // JSFunction.  The object's map will be loaded in the map register.
  // Any or all of the three registers may be the same.
  // The contents of the scratch register will always be overwritten.
  void IsObjectJSObjectType(Register heap_object,
                            Register map,
                            Register scratch,
                            Label* fail);

  // The contents of the scratch register will be overwritten.
  void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);

  // FCmp is similar to integer cmp, but requires unsigned
  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
  void FCmp();

  void ClampUint8(Register reg);

  void SlowTruncateToI(Register result_reg, Register input_reg,
      int offset = HeapNumber::kValueOffset - kHeapObjectTag);

  void TruncateHeapNumberToI(Register result_reg, Register input_reg);
  void TruncateX87TOSToI(Register result_reg);

  void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
      Label* conversion_failed, Label::Distance dst = Label::kFar);

  void TaggedToI(Register result_reg, Register input_reg,
      MinusZeroMode minus_zero_mode, Label* lost_precision);

  // Smi tagging support.
  void SmiTag(Register reg) {
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagSize == 1);
    add(reg, reg);
  }
  void SmiUntag(Register reg) {
    sar(reg, kSmiTagSize);
  }

  // Modifies the register even if it does not contain a Smi!
  void SmiUntag(Register reg, Label* is_smi) {
    STATIC_ASSERT(kSmiTagSize == 1);
    sar(reg, kSmiTagSize);
    STATIC_ASSERT(kSmiTag == 0);
    j(not_carry, is_smi);
  }

  void LoadUint32NoSSE2(Register src);

  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value,
                        Label* smi_label,
                        Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(zero, smi_label, distance);
  }
  // Jump if the operand is a smi.
  inline void JumpIfSmi(Operand value,
                        Label* smi_label,
                        Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(zero, smi_label, distance);
  }
  // Jump if register contain a non-smi.
  inline void JumpIfNotSmi(Register value,
                           Label* not_smi_label,
                           Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(not_zero, not_smi_label, distance);
  }

  void LoadInstanceDescriptors(Register map, Register descriptors);
  void EnumLength(Register dst, Register map);
  void NumberOfOwnDescriptors(Register dst, Register map);

  template<typename Field>
  void DecodeField(Register reg) {
    static const int shift = Field::kShift;
    static const int mask = Field::kMask >> Field::kShift;
    if (shift != 0) {
      sar(reg, shift);
    }
    and_(reg, Immediate(mask));
  }

  template<typename Field>
  void DecodeFieldToSmi(Register reg) {
    static const int shift = Field::kShift;
    static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
    STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
    STATIC_ASSERT(kSmiTag == 0);
    if (shift < kSmiTagSize) {
      shl(reg, kSmiTagSize - shift);
    } else if (shift > kSmiTagSize) {
      sar(reg, shift - kSmiTagSize);
    }
    and_(reg, Immediate(mask));
  }

  // Abort execution if argument is not a number, enabled via --debug-code.
  void AssertNumber(Register object);

  // Abort execution if argument is not a smi, enabled via --debug-code.
  void AssertSmi(Register object);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);

  // Abort execution if argument is not a string, enabled via --debug-code.
  void AssertString(Register object);

  // Abort execution if argument is not a name, enabled via --debug-code.
  void AssertName(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new try handler and link it into try handler chain.
  void PushTryHandler(StackHandler::Kind kind, int handler_index);

  // Unlink the stack handler on top of the stack from the try handler chain.
  void PopTryHandler();

  // Throw to the top handler in the try hander chain.
  void Throw(Register value);

  // Throw past all JS frames to the top JS entry frame.
  void ThrowUncatchable(Register value);

  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, but the scratch register is clobbered.
  void CheckAccessGlobalProxy(Register holder_reg,
                              Register scratch1,
                              Register scratch2,
                              Label* miss);

  void GetNumberHash(Register r0, Register scratch);

  void LoadFromNumberDictionary(Label* miss,
                                Register elements,
                                Register key,
                                Register r0,
                                Register r1,
                                Register r2,
                                Register result);


  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space or old pointer space. If the given space
  // is exhausted control continues at the gc_required label. The allocated
  // object is returned in result and end of the new object is returned in
  // result_end. The register scratch can be passed as no_reg in which case
  // an additional object reference will be added to the reloc info. The
  // returned pointers in result and result_end have not yet been tagged as
  // heap objects. If result_contains_top_on_entry is true the content of
  // result is known to be the allocation top on entry (could be result_end
  // from a previous call). If result_contains_top_on_entry is true scratch
  // should be no_reg as it is never used.
  void Allocate(int object_size,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  void Allocate(int header_size,
                ScaleFactor element_size,
                Register element_count,
                RegisterValueType element_count_type,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  void Allocate(Register object_size,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  // Undo allocation in new space. The object passed and objects allocated after
  // it will no longer be allocated. Make sure that no pointers are left to the
  // object(s) no longer allocated as they would be invalid when allocation is
  // un-done.
  void UndoAllocationInNewSpace(Register object);

  // Allocate a heap number in new space with undefined value. The
  // register scratch2 can be passed as no_reg; the others must be
  // valid registers. Returns tagged pointer in result register, or
  // jumps to gc_required if new space is full.
  void AllocateHeapNumber(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required,
                          MutableMode mode = IMMUTABLE);

  // Allocate a sequential string. All the header fields of the string object
  // are initialized.
  void AllocateTwoByteString(Register result,
                             Register length,
                             Register scratch1,
                             Register scratch2,
                             Register scratch3,
                             Label* gc_required);
  void AllocateAsciiString(Register result,
                           Register length,
                           Register scratch1,
                           Register scratch2,
                           Register scratch3,
                           Label* gc_required);
  void AllocateAsciiString(Register result,
                           int length,
                           Register scratch1,
                           Register scratch2,
                           Label* gc_required);

  // Allocate a raw cons string object. Only the map field of the result is
  // initialized.
  void AllocateTwoByteConsString(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required);
  void AllocateAsciiConsString(Register result,
                               Register scratch1,
                               Register scratch2,
                               Label* gc_required);

  // Allocate a raw sliced string object. Only the map field of the result is
  // initialized.
  void AllocateTwoByteSlicedString(Register result,
                            Register scratch1,
                            Register scratch2,
                            Label* gc_required);
  void AllocateAsciiSlicedString(Register result,
                                 Register scratch1,
                                 Register scratch2,
                                 Label* gc_required);

  // Copy memory, byte-by-byte, from source to destination.  Not optimized for
  // long or aligned copies.
  // The contents of index and scratch are destroyed.
  void CopyBytes(Register source,
                 Register destination,
                 Register length,
                 Register scratch);

  // Initialize fields with filler values.  Fields starting at |start_offset|
  // not including end_offset are overwritten with the value in |filler|.  At
  // the end the loop, |start_offset| takes the value of |end_offset|.
  void InitializeFieldsWithFiller(Register start_offset,
                                  Register end_offset,
                                  Register filler);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Check a boolean-bit of a Smi field.
  void BooleanBitTest(Register object, int field_offset, int bit_index);

  // Check if result is zero and op is negative.
  void NegativeZeroTest(Register result, Register op, Label* then_label);

  // Check if result is zero and any of op1 and op2 are negative.
  // Register scratch is destroyed, and it must be different from op2.
  void NegativeZeroTest(Register result, Register op1, Register op2,
                        Register scratch, Label* then_label);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other registers may be
  // clobbered.
  void TryGetFunctionPrototype(Register function,
                               Register result,
                               Register scratch,
                               Label* miss,
                               bool miss_on_bound_function = false);

  // Picks out an array index from the hash field.
  // Register use:
  //   hash - holds the index's hash. Clobbered.
  //   index - holds the overwritten index on exit.
  void IndexFromHash(Register hash, Register index);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.  Generate the code if necessary.
  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());

  // Tail call a code stub (jump).  Generate the code if necessary.
  void TailCallStub(CodeStub* stub);

  // Return from a code stub after popping its arguments.
  void StubReturn(int argc);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments);
  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId id) {
    const Runtime::Function* function = Runtime::FunctionForId(id);
    CallRuntime(function, function->nargs);
  }
  void CallRuntime(Runtime::FunctionId id, int num_arguments) {
    CallRuntime(Runtime::FunctionForId(id), num_arguments);
  }

  // Convenience function: call an external reference.
  void CallExternalReference(ExternalReference ref, int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToExternalReference, but also takes care of passing the number
  // of parameters.
  void TailCallExternalReference(const ExternalReference& ext,
                                 int num_arguments,
                                 int result_size);

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid,
                       int num_arguments,
                       int result_size);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in esp[0], esp[4],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_arguments, Register scratch);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  // Prepares stack to put arguments (aligns and so on). Reserves
  // space for return value if needed (assumes the return value is a handle).
  // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
  // etc. Saves context (esi). If space was reserved for return value then
  // stores the pointer to the reserved slot into esi.
  void PrepareCallApiFunction(int argc);

  // Calls an API function.  Allocates HandleScope, extracts returned value
  // from handle and propagates exceptions.  Clobbers ebx, edi and
  // caller-save registers.  Restores context.  On return removes
  // stack_space * kPointerSize (GCed).
  void CallApiFunctionAndReturn(Register function_address,
                                ExternalReference thunk_ref,
                                Operand thunk_last_arg,
                                int stack_space,
                                Operand return_value_operand,
                                Operand* context_restore_operand);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& ext);

  // ---------------------------------------------------------------------------
  // Utilities

  void Ret();

  // Return and drop arguments from stack, where the number of arguments
  // may be bigger than 2^16 - 1.  Requires a scratch register.
  void Ret(int bytes_dropped, Register scratch);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the esp register.
  void Drop(int element_count);

  void Call(Label* target) { call(target); }
  void Push(Register src) { push(src); }
  void Pop(Register dst) { pop(dst); }

  // Emit call to the code we are currently generating.
  void CallSelf() {
    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    call(self, RelocInfo::CODE_TARGET);
  }

  // Move if the registers are not identical.
  void Move(Register target, Register source);

  // Move a constant into a destination using the most efficient encoding.
  void Move(Register dst, const Immediate& x);
  void Move(const Operand& dst, const Immediate& x);

  // Push a handle value.
  void Push(Handle<Object> handle) { push(Immediate(handle)); }
  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }

  Handle<Object> CodeObject() {
    DCHECK(!code_object_.is_null());
    return code_object_;
  }

  // Insert code to verify that the x87 stack has the specified depth (0-7)
  void VerifyX87StackDepth(uint32_t depth);

  // Emit code for a truncating division by a constant. The dividend register is
  // unchanged, the result is in edx, and eax gets clobbered.
  void TruncatingDiv(Register dividend, int32_t divisor);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);
  void IncrementCounter(Condition cc, StatsCounter* counter, int value);
  void DecrementCounter(Condition cc, StatsCounter* counter, int value);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, BailoutReason reason);

  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cc, BailoutReason reason);

  // Print a message to stdout and abort execution.
  void Abort(BailoutReason reason);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_has_frame(bool value) { has_frame_ = value; }
  bool has_frame() { return has_frame_; }
  inline bool AllowThisStubCall(CodeStub* stub);

  // ---------------------------------------------------------------------------
  // String utilities.

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  void LookupNumberStringCache(Register object,
                               Register result,
                               Register scratch1,
                               Register scratch2,
                               Label* not_found);

  // Check whether the instance type represents a flat ASCII string. Jump to the
  // label if not. If the instance type can be scratched specify same register
  // for both instance type and scratch.
  void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
                                              Register scratch,
                                              Label* on_not_flat_ascii_string);

  // Checks if both objects are sequential ASCII strings, and jumps to label
  // if either is not.
  void JumpIfNotBothSequentialAsciiStrings(Register object1,
                                           Register object2,
                                           Register scratch1,
                                           Register scratch2,
                                           Label* on_not_flat_ascii_strings);

  // Checks if the given register or operand is a unique name
  void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
                           Label::Distance distance = Label::kFar) {
    JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
  }

  void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
                           Label::Distance distance = Label::kFar);

  void EmitSeqStringSetCharCheck(Register string,
                                 Register index,
                                 Register value,
                                 uint32_t encoding_mask);

  static int SafepointRegisterStackIndex(Register reg) {
    return SafepointRegisterStackIndex(reg.code());
  }

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void LeaveFrame(StackFrame::Type type);

  // Expects object in eax and returns map with validated enum cache
  // in eax.  Assumes that any other register can be used as a scratch.
  void CheckEnumCache(Label* call_runtime);

  // AllocationMemento support. Arrays may have an associated
  // AllocationMemento object that can be checked for in order to pretransition
  // to another type.
  // On entry, receiver_reg should point to the array object.
  // scratch_reg gets clobbered.
  // If allocation info is present, conditional code is set to equal.
  void TestJSArrayForAllocationMemento(Register receiver_reg,
                                       Register scratch_reg,
                                       Label* no_memento_found);

  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
                                         Register scratch_reg,
                                         Label* memento_found) {
    Label no_memento_found;
    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
                                    &no_memento_found);
    j(equal, memento_found);
    bind(&no_memento_found);
  }

  // Jumps to found label if a prototype map has dictionary elements.
  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
                                        Register scratch1, Label* found);

 private:
  bool generating_stub_;
  bool has_frame_;
  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Handle<Code> code_constant,
                      const Operand& code_operand,
                      Label* done,
                      bool* definitely_mismatches,
                      InvokeFlag flag,
                      Label::Distance done_distance,
                      const CallWrapper& call_wrapper = NullCallWrapper());

  void EnterExitFramePrologue();
  void EnterExitFrameEpilogue(int argc);

  void LeaveExitFrameEpilogue(bool restore_context);

  // Allocation support helpers.
  void LoadAllocationTopHelper(Register result,
                               Register scratch,
                               AllocationFlags flags);

  void UpdateAllocationTopHelper(Register result_end,
                                 Register scratch,
                                 AllocationFlags flags);

  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object,
                  Register scratch,
                  Condition cc,
                  Label* condition_met,
                  Label::Distance condition_met_distance = Label::kFar);

  // Helper for finding the mark bits for an address.  Afterwards, the
  // bitmap register points at the word with the mark bits and the mask
  // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
  // unchanged.
  inline void GetMarkBits(Register addr_reg,
                          Register bitmap_reg,
                          Register mask_reg);

  // Helper for throwing exceptions.  Compute a handler address and jump to
  // it.  See the implementation for register usage.
  void JumpToHandlerEntry();

  // Compute memory operands for safepoint stack slots.
  Operand SafepointRegisterSlot(Register reg);
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;
};


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
 public:
  CodePatcher(byte* address, int size);
  virtual ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

 private:
  byte* address_;  // The address of the code being patched.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};


// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}


// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object,
                            Register index,
                            ScaleFactor scale,
                            int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}


inline Operand FixedArrayElementOperand(Register array,
                                        Register index_as_smi,
                                        int additional_offset = 0) {
  int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
  return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
}


inline Operand ContextOperand(Register context, int index) {
  return Operand(context, Context::SlotOffset(index));
}


inline Operand GlobalObjectOperand() {
  return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
}


// Generates an Operand for saving parameters after PrepareCallApiFunction.
Operand ApiParameterOperand(int index);


#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) {                                               \
    byte* ia32_coverage_function =                                        \
        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
    masm->pushfd();                                                       \
    masm->pushad();                                                       \
    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
    masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
    masm->pop(eax);                                                       \
    masm->popad();                                                        \
    masm->popfd();                                                        \
  }                                                                       \
  masm->
#else
#define ACCESS_MASM(masm) masm->
#endif


} }  // namespace v8::internal

#endif  // V8_X87_MACRO_ASSEMBLER_X87_H_