summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/macro-assembler-x64.h
blob: d8f2fba42a7fa462d5a25d28dde012e4f63651e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_

#include "assembler.h"

namespace v8 {
namespace internal {

// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
  // No special flags.
  NO_ALLOCATION_FLAGS = 0,
  // Return the pointer to the allocated already tagged as a heap object.
  TAG_OBJECT = 1 << 0,
  // The content of the result register already contains the allocation top in
  // new space.
  RESULT_CONTAINS_TOP = 1 << 1
};

// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
static const Register kScratchRegister = { 10 };      // r10.
static const Register kSmiConstantRegister = { 15 };  // r15 (callee save).
static const Register kRootRegister = { 13 };         // r13 (callee save).
// Value of smi in kSmiConstantRegister.
static const int kSmiConstantRegisterValue = 1;

// Convenience for platform-independent signatures.
typedef Operand MemOperand;

// Forward declaration.
class JumpTarget;

struct SmiIndex {
  SmiIndex(Register index_register, ScaleFactor scale)
      : reg(index_register),
        scale(scale) {}
  Register reg;
  ScaleFactor scale;
};

// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  MacroAssembler(void* buffer, int size);

  void LoadRoot(Register destination, Heap::RootListIndex index);
  void CompareRoot(Register with, Heap::RootListIndex index);
  void CompareRoot(Operand with, Heap::RootListIndex index);
  void PushRoot(Heap::RootListIndex index);
  void StoreRoot(Register source, Heap::RootListIndex index);

  // ---------------------------------------------------------------------------
  // GC Support

  // For page containing |object| mark region covering |addr| dirty.
  // RecordWriteHelper only works if the object is not in new
  // space.
  void RecordWriteHelper(Register object,
                         Register addr,
                         Register scratch);

  // Check if object is in new space. The condition cc can be equal or
  // not_equal. If it is equal a jump will be done if the object is on new
  // space. The register scratch can be object itself, but it will be clobbered.
  template <typename LabelType>
  void InNewSpace(Register object,
                  Register scratch,
                  Condition cc,
                  LabelType* branch);

  // For page containing |object| mark region covering [object+offset]
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. If |offset| is zero, then the |scratch|
  // register contains the array index into the elements array
  // represented as an untagged 32-bit integer. All registers are
  // clobbered by the operation. RecordWrite filters out smis so it
  // does not update the write barrier if the value is a smi.
  void RecordWrite(Register object,
                   int offset,
                   Register value,
                   Register scratch);

  // For page containing |object| mark region covering [address]
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. All registers are clobbered by the
  // operation.  RecordWrite filters out smis so it does not update
  // the write barrier if the value is a smi.
  void RecordWrite(Register object,
                   Register address,
                   Register value);

  // For page containing |object| mark region covering [object+offset] dirty.
  // The value is known to not be a smi.
  // object is the object being stored into, value is the object being stored.
  // If offset is zero, then the scratch register contains the array index into
  // the elements array represented as an untagged 32-bit integer.
  // All registers are clobbered by the operation.
  void RecordWriteNonSmi(Register object,
                         int offset,
                         Register value,
                         Register scratch);

#ifdef ENABLE_DEBUGGER_SUPPORT
  // ---------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();
#endif

  // ---------------------------------------------------------------------------
  // Activation frames

  void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
  void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }

  void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
  void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }

  // Enter specific kind of exit frame; either in normal or
  // debug mode. Expects the number of arguments in register rax and
  // sets up the number of arguments in register rdi and the pointer
  // to the first argument in register rsi.
  //
  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
  // accessible via StackSpaceOperand.
  void EnterExitFrame(int arg_stack_space = 0);

  // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
  // memory (not GCed) on the stack accessible via StackSpaceOperand.
  void EnterApiExitFrame(int arg_stack_space);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax:rdx (untouched) and the pointer to the first
  // argument in register rsi.
  void LeaveExitFrame();

  // Leave the current exit frame. Expects/provides the return value in
  // register rax (untouched).
  void LeaveApiExitFrame();

  // Push and pop the registers that can hold pointers.
  void PushSafepointRegisters() { UNIMPLEMENTED(); }
  void PopSafepointRegisters() { UNIMPLEMENTED(); }
  static int SafepointRegisterStackIndex(int reg_code) {
    UNIMPLEMENTED();
    return 0;
  }

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(Register code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag);

  void InvokeCode(Handle<Code> code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  RelocInfo::Mode rmode,
                  InvokeFlag flag);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      const ParameterCount& actual,
                      InvokeFlag flag);

  void InvokeFunction(JSFunction* function,
                      const ParameterCount& actual,
                      InvokeFlag flag);

  // Invoke specified builtin JavaScript function. Adds an entry to
  // the unresolved list if the name does not resolve.
  void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag);

  // Store the function for the given builtin in the target register.
  void GetBuiltinFunction(Register target, Builtins::JavaScript id);

  // Store the code object for the given builtin in the target register.
  void GetBuiltinEntry(Register target, Builtins::JavaScript id);


  // ---------------------------------------------------------------------------
  // Smi tagging, untagging and operations on tagged smis.

  void InitializeSmiConstantRegister() {
    movq(kSmiConstantRegister,
         reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
         RelocInfo::NONE);
  }

  // Conversions between tagged smi values and non-tagged integer values.

  // Tag an integer value. The result must be known to be a valid smi value.
  // Only uses the low 32 bits of the src register. Sets the N and Z flags
  // based on the value of the resulting smi.
  void Integer32ToSmi(Register dst, Register src);

  // Stores an integer32 value into a memory field that already holds a smi.
  void Integer32ToSmiField(const Operand& dst, Register src);

  // Adds constant to src and tags the result as a smi.
  // Result must be a valid smi.
  void Integer64PlusConstantToSmi(Register dst, Register src, int constant);

  // Convert smi to 32-bit integer. I.e., not sign extended into
  // high 32 bits of destination.
  void SmiToInteger32(Register dst, Register src);
  void SmiToInteger32(Register dst, const Operand& src);

  // Convert smi to 64-bit integer (sign extended if necessary).
  void SmiToInteger64(Register dst, Register src);
  void SmiToInteger64(Register dst, const Operand& src);

  // Multiply a positive smi's integer value by a power of two.
  // Provides result as 64-bit integer value.
  void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
                                             Register src,
                                             int power);

  // Divide a positive smi's integer value by a power of two.
  // Provides result as 32-bit integer value.
  void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
                                           Register src,
                                           int power);


  // Simple comparison of smis.
  void SmiCompare(Register dst, Register src);
  void SmiCompare(Register dst, Smi* src);
  void SmiCompare(Register dst, const Operand& src);
  void SmiCompare(const Operand& dst, Register src);
  void SmiCompare(const Operand& dst, Smi* src);
  // Compare the int32 in src register to the value of the smi stored at dst.
  void SmiCompareInteger32(const Operand& dst, Register src);
  // Sets sign and zero flags depending on value of smi in register.
  void SmiTest(Register src);

  // Functions performing a check on a known or potential smi. Returns
  // a condition that is satisfied if the check is successful.

  // Is the value a tagged smi.
  Condition CheckSmi(Register src);

  // Is the value a non-negative tagged smi.
  Condition CheckNonNegativeSmi(Register src);

  // Are both values tagged smis.
  Condition CheckBothSmi(Register first, Register second);

  // Are both values non-negative tagged smis.
  Condition CheckBothNonNegativeSmi(Register first, Register second);

  // Are either value a tagged smi.
  Condition CheckEitherSmi(Register first,
                           Register second,
                           Register scratch = kScratchRegister);

  // Is the value the minimum smi value (since we are using
  // two's complement numbers, negating the value is known to yield
  // a non-smi value).
  Condition CheckIsMinSmi(Register src);

  // Checks whether an 32-bit integer value is a valid for conversion
  // to a smi.
  Condition CheckInteger32ValidSmiValue(Register src);

  // Checks whether an 32-bit unsigned integer value is a valid for
  // conversion to a smi.
  Condition CheckUInteger32ValidSmiValue(Register src);

  // Test-and-jump functions. Typically combines a check function
  // above with a conditional jump.

  // Jump if the value cannot be represented by a smi.
  template <typename LabelType>
  void JumpIfNotValidSmiValue(Register src, LabelType* on_invalid);

  // Jump if the unsigned integer value cannot be represented by a smi.
  template <typename LabelType>
  void JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid);

  // Jump to label if the value is a tagged smi.
  template <typename LabelType>
  void JumpIfSmi(Register src, LabelType* on_smi);

  // Jump to label if the value is not a tagged smi.
  template <typename LabelType>
  void JumpIfNotSmi(Register src, LabelType* on_not_smi);

  // Jump to label if the value is not a non-negative tagged smi.
  template <typename LabelType>
  void JumpUnlessNonNegativeSmi(Register src, LabelType* on_not_smi);

  // Jump to label if the value, which must be a tagged smi, has value equal
  // to the constant.
  template <typename LabelType>
  void JumpIfSmiEqualsConstant(Register src,
                               Smi* constant,
                               LabelType* on_equals);

  // Jump if either or both register are not smi values.
  template <typename LabelType>
  void JumpIfNotBothSmi(Register src1,
                        Register src2,
                        LabelType* on_not_both_smi);

  // Jump if either or both register are not non-negative smi values.
  template <typename LabelType>
  void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
                                    LabelType* on_not_both_smi);

  // Operations on tagged smi values.

  // Smis represent a subset of integers. The subset is always equivalent to
  // a two's complement interpretation of a fixed number of bits.

  // Optimistically adds an integer constant to a supposed smi.
  // If the src is not a smi, or the result is not a smi, jump to
  // the label.
  template <typename LabelType>
  void SmiTryAddConstant(Register dst,
                         Register src,
                         Smi* constant,
                         LabelType* on_not_smi_result);

  // Add an integer constant to a tagged smi, giving a tagged smi as result.
  // No overflow testing on the result is done.
  void SmiAddConstant(Register dst, Register src, Smi* constant);

  // Add an integer constant to a tagged smi, giving a tagged smi as result.
  // No overflow testing on the result is done.
  void SmiAddConstant(const Operand& dst, Smi* constant);

  // Add an integer constant to a tagged smi, giving a tagged smi as result,
  // or jumping to a label if the result cannot be represented by a smi.
  template <typename LabelType>
  void SmiAddConstant(Register dst,
                      Register src,
                      Smi* constant,
                      LabelType* on_not_smi_result);

  // Subtract an integer constant from a tagged smi, giving a tagged smi as
  // result. No testing on the result is done. Sets the N and Z flags
  // based on the value of the resulting integer.
  void SmiSubConstant(Register dst, Register src, Smi* constant);

  // Subtract an integer constant from a tagged smi, giving a tagged smi as
  // result, or jumping to a label if the result cannot be represented by a smi.
  template <typename LabelType>
  void SmiSubConstant(Register dst,
                      Register src,
                      Smi* constant,
                      LabelType* on_not_smi_result);

  // Negating a smi can give a negative zero or too large positive value.
  // NOTICE: This operation jumps on success, not failure!
  template <typename LabelType>
  void SmiNeg(Register dst,
              Register src,
              LabelType* on_smi_result);

  // Adds smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  template <typename LabelType>
  void SmiAdd(Register dst,
              Register src1,
              Register src2,
              LabelType* on_not_smi_result);

  void SmiAdd(Register dst,
              Register src1,
              Register src2);

  // Subtracts smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  template <typename LabelType>
  void SmiSub(Register dst,
              Register src1,
              Register src2,
              LabelType* on_not_smi_result);

  void SmiSub(Register dst,
              Register src1,
              Register src2);

  template <typename LabelType>
  void SmiSub(Register dst,
              Register src1,
              const Operand& src2,
              LabelType* on_not_smi_result);

  void SmiSub(Register dst,
              Register src1,
              const Operand& src2);

  // Multiplies smi values and return the result as a smi,
  // if possible.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  template <typename LabelType>
  void SmiMul(Register dst,
              Register src1,
              Register src2,
              LabelType* on_not_smi_result);

  // Divides one smi by another and returns the quotient.
  // Clobbers rax and rdx registers.
  template <typename LabelType>
  void SmiDiv(Register dst,
              Register src1,
              Register src2,
              LabelType* on_not_smi_result);

  // Divides one smi by another and returns the remainder.
  // Clobbers rax and rdx registers.
  template <typename LabelType>
  void SmiMod(Register dst,
              Register src1,
              Register src2,
              LabelType* on_not_smi_result);

  // Bitwise operations.
  void SmiNot(Register dst, Register src);
  void SmiAnd(Register dst, Register src1, Register src2);
  void SmiOr(Register dst, Register src1, Register src2);
  void SmiXor(Register dst, Register src1, Register src2);
  void SmiAndConstant(Register dst, Register src1, Smi* constant);
  void SmiOrConstant(Register dst, Register src1, Smi* constant);
  void SmiXorConstant(Register dst, Register src1, Smi* constant);

  void SmiShiftLeftConstant(Register dst,
                            Register src,
                            int shift_value);
  template <typename LabelType>
  void SmiShiftLogicalRightConstant(Register dst,
                                  Register src,
                                  int shift_value,
                                  LabelType* on_not_smi_result);
  void SmiShiftArithmeticRightConstant(Register dst,
                                       Register src,
                                       int shift_value);

  // Shifts a smi value to the left, and returns the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftLeft(Register dst,
                    Register src1,
                    Register src2);
  // Shifts a smi value to the right, shifting in zero bits at the top, and
  // returns the unsigned intepretation of the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  template <typename LabelType>
  void SmiShiftLogicalRight(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result);
  // Shifts a smi value to the right, sign extending the top, and
  // returns the signed intepretation of the result. That will always
  // be a valid smi value, since it's numerically smaller than the
  // original.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftArithmeticRight(Register dst,
                               Register src1,
                               Register src2);

  // Specialized operations

  // Select the non-smi register of two registers where exactly one is a
  // smi. If neither are smis, jump to the failure label.
  template <typename LabelType>
  void SelectNonSmi(Register dst,
                    Register src1,
                    Register src2,
                    LabelType* on_not_smis);

  // Converts, if necessary, a smi to a combination of number and
  // multiplier to be used as a scaled index.
  // The src register contains a *positive* smi value. The shift is the
  // power of two to multiply the index value by (e.g.
  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
  // The returned index register may be either src or dst, depending
  // on what is most efficient. If src and dst are different registers,
  // src is always unchanged.
  SmiIndex SmiToIndex(Register dst, Register src, int shift);

  // Converts a positive smi to a negative index.
  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);

  // Basic Smi operations.
  void Move(Register dst, Smi* source) {
    LoadSmiConstant(dst, source);
  }

  void Move(const Operand& dst, Smi* source) {
    Register constant = GetSmiConstant(source);
    movq(dst, constant);
  }

  void Push(Smi* smi);
  void Test(const Operand& dst, Smi* source);

  // ---------------------------------------------------------------------------
  // String macros.
  template <typename LabelType>
  void JumpIfNotBothSequentialAsciiStrings(Register first_object,
                                           Register second_object,
                                           Register scratch1,
                                           Register scratch2,
                                           LabelType* on_not_both_flat_ascii);

  // Check whether the instance type represents a flat ascii string. Jump to the
  // label if not. If the instance type can be scratched specify same register
  // for both instance type and scratch.
  template <typename LabelType>
  void JumpIfInstanceTypeIsNotSequentialAscii(
      Register instance_type,
      Register scratch,
      LabelType *on_not_flat_ascii_string);

  template <typename LabelType>
  void JumpIfBothInstanceTypesAreNotSequentialAscii(
      Register first_object_instance_type,
      Register second_object_instance_type,
      Register scratch1,
      Register scratch2,
      LabelType* on_fail);

  // ---------------------------------------------------------------------------
  // Macro instructions.

  // Load a register with a long value as efficiently as possible.
  void Set(Register dst, int64_t x);
  void Set(const Operand& dst, int64_t x);

  // Move if the registers are not identical.
  void Move(Register target, Register source);

  // Handle support
  void Move(Register dst, Handle<Object> source);
  void Move(const Operand& dst, Handle<Object> source);
  void Cmp(Register dst, Handle<Object> source);
  void Cmp(const Operand& dst, Handle<Object> source);
  void Push(Handle<Object> source);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the rsp register.
  void Drop(int stack_elements);

  void Call(Label* target) { call(target); }

  // Control Flow
  void Jump(Address destination, RelocInfo::Mode rmode);
  void Jump(ExternalReference ext);
  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);

  void Call(Address destination, RelocInfo::Mode rmode);
  void Call(ExternalReference ext);
  void Call(Handle<Code> code_object, RelocInfo::Mode rmode);

  // Compare object type for heap object.
  // Always use unsigned comparisons: above and below, not less and greater.
  // Incoming register is heap_object and outgoing register is map.
  // They may be the same register, and may be kScratchRegister.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  // Always use unsigned comparisons: above and below, not less and greater.
  void CmpInstanceType(Register map, InstanceType type);

  // Check if the map of an object is equal to a specified map and
  // branch to label if not. Skip the smi check if not required
  // (object is known to be a heap object)
  void CheckMap(Register obj,
                Handle<Map> map,
                Label* fail,
                bool is_heap_object);

  // Check if the object in register heap_object is a string. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectStringType(Register heap_object,
                               Register map,
                               Register instance_type);

  // FCmp compares and pops the two values on top of the FPU stack.
  // The flag results are similar to integer cmp, but requires unsigned
  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
  void FCmp();

  // Abort execution if argument is not a number. Used in debug code.
  void AbortIfNotNumber(Register object);

  // Abort execution if argument is a smi. Used in debug code.
  void AbortIfSmi(Register object);

  // Abort execution if argument is not a smi. Used in debug code.
  void AbortIfNotSmi(Register object);

  // Abort execution if argument is not the root value with the given index.
  void AbortIfNotRootValue(Register src,
                           Heap::RootListIndex root_value_index,
                           const char* message);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new try handler and link into try handler chain.  The return
  // address must be pushed before calling this helper.
  void PushTryHandler(CodeLocation try_location, HandlerType type);

  // Unlink the stack handler on top of the stack from the try handler chain.
  void PopTryHandler();

  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, but the scratch register and kScratchRegister,
  // which must be different, are clobbered.
  void CheckAccessGlobalProxy(Register holder_reg,
                              Register scratch,
                              Label* miss);


  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space. If the new space is exhausted control
  // continues at the gc_required label. The allocated object is returned in
  // result and end of the new object is returned in result_end. The register
  // scratch can be passed as no_reg in which case an additional object
  // reference will be added to the reloc info. The returned pointers in result
  // and result_end have not yet been tagged as heap objects. If
  // result_contains_top_on_entry is true the content of result is known to be
  // the allocation top on entry (could be result_end from a previous call to
  // AllocateInNewSpace). If result_contains_top_on_entry is true scratch
  // should be no_reg as it is never used.
  void AllocateInNewSpace(int object_size,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  void AllocateInNewSpace(int header_size,
                          ScaleFactor element_size,
                          Register element_count,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  void AllocateInNewSpace(Register object_size,
                          Register result,
                          Register result_end,
                          Register scratch,
                          Label* gc_required,
                          AllocationFlags flags);

  // Undo allocation in new space. The object passed and objects allocated after
  // it will no longer be allocated. Make sure that no pointers are left to the
  // object(s) no longer allocated as they would be invalid when allocation is
  // un-done.
  void UndoAllocationInNewSpace(Register object);

  // Allocate a heap number in new space with undefined value. Returns
  // tagged pointer in result register, or jumps to gc_required if new
  // space is full.
  void AllocateHeapNumber(Register result,
                          Register scratch,
                          Label* gc_required);

  // Allocate a sequential string. All the header fields of the string object
  // are initialized.
  void AllocateTwoByteString(Register result,
                             Register length,
                             Register scratch1,
                             Register scratch2,
                             Register scratch3,
                             Label* gc_required);
  void AllocateAsciiString(Register result,
                           Register length,
                           Register scratch1,
                           Register scratch2,
                           Register scratch3,
                           Label* gc_required);

  // Allocate a raw cons string object. Only the map field of the result is
  // initialized.
  void AllocateConsString(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required);
  void AllocateAsciiConsString(Register result,
                               Register scratch1,
                               Register scratch2,
                               Label* gc_required);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Check if result is zero and op is negative.
  void NegativeZeroTest(Register result, Register op, Label* then_label);

  // Check if result is zero and op is negative in code using jump targets.
  void NegativeZeroTest(CodeGenerator* cgen,
                        Register result,
                        Register op,
                        JumpTarget* then_target);

  // Check if result is zero and any of op1 and op2 are negative.
  // Register scratch is destroyed, and it must be different from op2.
  void NegativeZeroTest(Register result, Register op1, Register op2,
                        Register scratch, Label* then_label);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other register may be
  // clobbered.
  void TryGetFunctionPrototype(Register function,
                               Register result,
                               Label* miss);

  // Generates code for reporting that an illegal operation has
  // occurred.
  void IllegalOperation(int num_arguments);

  // Picks out an array index from the hash field.
  // Register use:
  //   hash - holds the index's hash. Clobbered.
  //   index - holds the overwritten index on exit.
  void IndexFromHash(Register hash, Register index);

  // Find the function context up the context chain.
  void LoadContext(Register dst, int context_chain_length);

  // Load the global function with the given index.
  void LoadGlobalFunction(int index, Register function);

  // Load the initial map from the global function. The registers
  // function and map can be the same.
  void LoadGlobalFunctionInitialMap(Register function, Register map);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.
  void CallStub(CodeStub* stub);

  // Call a code stub and return the code object called.  Try to generate
  // the code if necessary.  Do not perform a GC but instead return a retry
  // after GC failure.
  MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub);

  // Tail call a code stub (jump).
  void TailCallStub(CodeStub* stub);

  // Tail call a code stub (jump) and return the code object called.  Try to
  // generate the code if necessary.  Do not perform a GC but instead return
  // a retry after GC failure.
  MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub);

  // Return from a code stub after popping its arguments.
  void StubReturn(int argc);

  // Call a runtime routine.
  void CallRuntime(Runtime::Function* f, int num_arguments);

  // Call a runtime function, returning the CodeStub object called.
  // Try to generate the stub code if necessary.  Do not perform a GC
  // but instead return a retry after GC failure.
  MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::Function* f,
                                              int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId id, int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id,
                                              int num_arguments);

  // Convenience function: call an external reference.
  void CallExternalReference(const ExternalReference& ext,
                             int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToExternalReference, but also takes care of passing the number
  // of parameters.
  void TailCallExternalReference(const ExternalReference& ext,
                                 int num_arguments,
                                 int result_size);

  MUST_USE_RESULT MaybeObject* TryTailCallExternalReference(
      const ExternalReference& ext, int num_arguments, int result_size);

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid,
                       int num_arguments,
                       int result_size);

  MUST_USE_RESULT  MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid,
                                                   int num_arguments,
                                                   int result_size);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& ext, int result_size);

  // Jump to a runtime routine.
  MaybeObject* TryJumpToExternalReference(const ExternalReference& ext,
                                          int result_size);

  // Prepares stack to put arguments (aligns and so on).
  // WIN64 calling convention requires to put the pointer to the return value
  // slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn).
  // Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
  // inside the exit frame (not GCed) accessible via StackSpaceOperand.
  void PrepareCallApiFunction(int arg_stack_space);

  // Calls an API function. Allocates HandleScope, extracts
  // returned value from handle and propagates exceptions.
  // Clobbers r12, r14, rbx and caller-save registers. Restores context.
  // On return removes stack_space * kPointerSize (GCed).
  MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn(
      ApiFunction* function, int stack_space);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in esp[0], esp[4],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // The number of slots reserved for arguments depends on platform. On Windows
  // stack slots are reserved for the arguments passed in registers. On other
  // platforms stack slots are only reserved for the arguments actually passed
  // on the stack.
  void PrepareCallCFunction(int num_arguments);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  // Calculate the number of stack slots to reserve for arguments when calling a
  // C function.
  int ArgumentStackSlotsForCFunctionCall(int num_arguments);

  // ---------------------------------------------------------------------------
  // Utilities

  void Ret();

  Handle<Object> CodeObject() { return code_object_; }


  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, const char* msg);

  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cc, const char* msg);

  // Print a message to stdout and abort execution.
  void Abort(const char* msg);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
  bool allow_stub_calls() { return allow_stub_calls_; }

 private:
  bool generating_stub_;
  bool allow_stub_calls_;

  // Returns a register holding the smi value. The register MUST NOT be
  // modified. It may be the "smi 1 constant" register.
  Register GetSmiConstant(Smi* value);

  // Moves the smi value to the destination register.
  void LoadSmiConstant(Register dst, Smi* value);

  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;

  // Helper functions for generating invokes.
  template <typename LabelType>
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Handle<Code> code_constant,
                      Register code_register,
                      LabelType* done,
                      InvokeFlag flag);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void LeaveFrame(StackFrame::Type type);

  void EnterExitFramePrologue(bool save_rax);

  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
  // accessible via StackSpaceOperand.
  void EnterExitFrameEpilogue(int arg_stack_space);

  void LeaveExitFrameEpilogue();

  // Allocation support helpers.
  // Loads the top of new-space into the result register.
  // Otherwise the address of the new-space top is loaded into scratch (if
  // scratch is valid), and the new-space top is loaded into result.
  void LoadAllocationTopHelper(Register result,
                               Register scratch,
                               AllocationFlags flags);
  // Update allocation top with value in result_end register.
  // If scratch is valid, it contains the address of the allocation top.
  void UpdateAllocationTopHelper(Register result_end, Register scratch);

  // Helper for PopHandleScope.  Allowed to perform a GC and returns
  // NULL if gc_allowed.  Does not perform a GC if !gc_allowed, and
  // possibly returns a failure object indicating an allocation failure.
  Object* PopHandleScopeHelper(Register saved,
                               Register scratch,
                               bool gc_allowed);
};


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
 public:
  CodePatcher(byte* address, int size);
  virtual ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

 private:
  byte* address_;  // The address of the code being patched.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};


// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}


// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
                                   Register index,
                                   ScaleFactor scale,
                                   int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}


static inline Operand ContextOperand(Register context, int index) {
  return Operand(context, Context::SlotOffset(index));
}


static inline Operand GlobalObjectOperand() {
  return ContextOperand(rsi, Context::GLOBAL_INDEX);
}


// Provides access to exit frame stack space (not GCed).
static inline Operand StackSpaceOperand(int index) {
#ifdef _WIN64
  const int kShaddowSpace = 4;
  return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
#else
  return Operand(rsp, index * kPointerSize);
#endif
}



#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) {                                               \
    byte* x64_coverage_function =                                         \
        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
    masm->pushfd();                                                       \
    masm->pushad();                                                       \
    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
    masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY);          \
    masm->pop(rax);                                                       \
    masm->popad();                                                        \
    masm->popfd();                                                        \
  }                                                                       \
  masm->
#else
#define ACCESS_MASM(masm) masm->
#endif

// -----------------------------------------------------------------------------
// Template implementations.

static int kSmiShift = kSmiTagSize + kSmiShiftSize;


template <typename LabelType>
void MacroAssembler::SmiNeg(Register dst,
                            Register src,
                            LabelType* on_smi_result) {
  if (dst.is(src)) {
    ASSERT(!dst.is(kScratchRegister));
    movq(kScratchRegister, src);
    neg(dst);  // Low 32 bits are retained as zero by negation.
    // Test if result is zero or Smi::kMinValue.
    cmpq(dst, kScratchRegister);
    j(not_equal, on_smi_result);
    movq(src, kScratchRegister);
  } else {
    movq(dst, src);
    neg(dst);
    cmpq(dst, src);
    // If the result is zero or Smi::kMinValue, negation failed to create a smi.
    j(not_equal, on_smi_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiAdd(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result) {
  ASSERT_NOT_NULL(on_not_smi_result);
  ASSERT(!dst.is(src2));
  if (dst.is(src1)) {
    movq(kScratchRegister, src1);
    addq(kScratchRegister, src2);
    j(overflow, on_not_smi_result);
    movq(dst, kScratchRegister);
  } else {
    movq(dst, src1);
    addq(dst, src2);
    j(overflow, on_not_smi_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiSub(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result) {
  ASSERT_NOT_NULL(on_not_smi_result);
  ASSERT(!dst.is(src2));
  if (dst.is(src1)) {
    cmpq(dst, src2);
    j(overflow, on_not_smi_result);
    subq(dst, src2);
  } else {
    movq(dst, src1);
    subq(dst, src2);
    j(overflow, on_not_smi_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiSub(Register dst,
                            Register src1,
                            const Operand& src2,
                            LabelType* on_not_smi_result) {
  ASSERT_NOT_NULL(on_not_smi_result);
  if (dst.is(src1)) {
    movq(kScratchRegister, src2);
    cmpq(src1, kScratchRegister);
    j(overflow, on_not_smi_result);
    subq(src1, kScratchRegister);
  } else {
    movq(dst, src1);
    subq(dst, src2);
    j(overflow, on_not_smi_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiMul(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result) {
  ASSERT(!dst.is(src2));
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));

  if (dst.is(src1)) {
    NearLabel failure, zero_correct_result;
    movq(kScratchRegister, src1);  // Create backup for later testing.
    SmiToInteger64(dst, src1);
    imul(dst, src2);
    j(overflow, &failure);

    // Check for negative zero result.  If product is zero, and one
    // argument is negative, go to slow case.
    NearLabel correct_result;
    testq(dst, dst);
    j(not_zero, &correct_result);

    movq(dst, kScratchRegister);
    xor_(dst, src2);
    j(positive, &zero_correct_result);  // Result was positive zero.

    bind(&failure);  // Reused failure exit, restores src1.
    movq(src1, kScratchRegister);
    jmp(on_not_smi_result);

    bind(&zero_correct_result);
    xor_(dst, dst);

    bind(&correct_result);
  } else {
    SmiToInteger64(dst, src1);
    imul(dst, src2);
    j(overflow, on_not_smi_result);
    // Check for negative zero result.  If product is zero, and one
    // argument is negative, go to slow case.
    NearLabel correct_result;
    testq(dst, dst);
    j(not_zero, &correct_result);
    // One of src1 and src2 is zero, the check whether the other is
    // negative.
    movq(kScratchRegister, src1);
    xor_(kScratchRegister, src2);
    j(negative, on_not_smi_result);
    bind(&correct_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiTryAddConstant(Register dst,
                                       Register src,
                                       Smi* constant,
                                       LabelType* on_not_smi_result) {
  // Does not assume that src is a smi.
  ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
  ASSERT_EQ(0, kSmiTag);
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src.is(kScratchRegister));

  JumpIfNotSmi(src, on_not_smi_result);
  Register tmp = (dst.is(src) ? kScratchRegister : dst);
  LoadSmiConstant(tmp, constant);
  addq(tmp, src);
  j(overflow, on_not_smi_result);
  if (dst.is(src)) {
    movq(dst, tmp);
  }
}


template <typename LabelType>
void MacroAssembler::SmiAddConstant(Register dst,
                                    Register src,
                                    Smi* constant,
                                    LabelType* on_not_smi_result) {
  if (constant->value() == 0) {
    if (!dst.is(src)) {
      movq(dst, src);
    }
  } else if (dst.is(src)) {
    ASSERT(!dst.is(kScratchRegister));

    LoadSmiConstant(kScratchRegister, constant);
    addq(kScratchRegister, src);
    j(overflow, on_not_smi_result);
    movq(dst, kScratchRegister);
  } else {
    LoadSmiConstant(dst, constant);
    addq(dst, src);
    j(overflow, on_not_smi_result);
  }
}


template <typename LabelType>
void MacroAssembler::SmiSubConstant(Register dst,
                                    Register src,
                                    Smi* constant,
                                    LabelType* on_not_smi_result) {
  if (constant->value() == 0) {
    if (!dst.is(src)) {
      movq(dst, src);
    }
  } else if (dst.is(src)) {
    ASSERT(!dst.is(kScratchRegister));
    if (constant->value() == Smi::kMinValue) {
      // Subtracting min-value from any non-negative value will overflow.
      // We test the non-negativeness before doing the subtraction.
      testq(src, src);
      j(not_sign, on_not_smi_result);
      LoadSmiConstant(kScratchRegister, constant);
      subq(dst, kScratchRegister);
    } else {
      // Subtract by adding the negation.
      LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
      addq(kScratchRegister, dst);
      j(overflow, on_not_smi_result);
      movq(dst, kScratchRegister);
    }
  } else {
    if (constant->value() == Smi::kMinValue) {
      // Subtracting min-value from any non-negative value will overflow.
      // We test the non-negativeness before doing the subtraction.
      testq(src, src);
      j(not_sign, on_not_smi_result);
      LoadSmiConstant(dst, constant);
      // Adding and subtracting the min-value gives the same result, it only
      // differs on the overflow bit, which we don't check here.
      addq(dst, src);
    } else {
      // Subtract by adding the negation.
      LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
      addq(dst, src);
      j(overflow, on_not_smi_result);
    }
  }
}


template <typename LabelType>
void MacroAssembler::SmiDiv(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result) {
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src2.is(rax));
  ASSERT(!src2.is(rdx));
  ASSERT(!src1.is(rdx));

  // Check for 0 divisor (result is +/-Infinity).
  NearLabel positive_divisor;
  testq(src2, src2);
  j(zero, on_not_smi_result);

  if (src1.is(rax)) {
    movq(kScratchRegister, src1);
  }
  SmiToInteger32(rax, src1);
  // We need to rule out dividing Smi::kMinValue by -1, since that would
  // overflow in idiv and raise an exception.
  // We combine this with negative zero test (negative zero only happens
  // when dividing zero by a negative number).

  // We overshoot a little and go to slow case if we divide min-value
  // by any negative value, not just -1.
  NearLabel safe_div;
  testl(rax, Immediate(0x7fffffff));
  j(not_zero, &safe_div);
  testq(src2, src2);
  if (src1.is(rax)) {
    j(positive, &safe_div);
    movq(src1, kScratchRegister);
    jmp(on_not_smi_result);
  } else {
    j(negative, on_not_smi_result);
  }
  bind(&safe_div);

  SmiToInteger32(src2, src2);
  // Sign extend src1 into edx:eax.
  cdq();
  idivl(src2);
  Integer32ToSmi(src2, src2);
  // Check that the remainder is zero.
  testl(rdx, rdx);
  if (src1.is(rax)) {
    NearLabel smi_result;
    j(zero, &smi_result);
    movq(src1, kScratchRegister);
    jmp(on_not_smi_result);
    bind(&smi_result);
  } else {
    j(not_zero, on_not_smi_result);
  }
  if (!dst.is(src1) && src1.is(rax)) {
    movq(src1, kScratchRegister);
  }
  Integer32ToSmi(dst, rax);
}


template <typename LabelType>
void MacroAssembler::SmiMod(Register dst,
                            Register src1,
                            Register src2,
                            LabelType* on_not_smi_result) {
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));
  ASSERT(!src2.is(rax));
  ASSERT(!src2.is(rdx));
  ASSERT(!src1.is(rdx));
  ASSERT(!src1.is(src2));

  testq(src2, src2);
  j(zero, on_not_smi_result);

  if (src1.is(rax)) {
    movq(kScratchRegister, src1);
  }
  SmiToInteger32(rax, src1);
  SmiToInteger32(src2, src2);

  // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
  NearLabel safe_div;
  cmpl(rax, Immediate(Smi::kMinValue));
  j(not_equal, &safe_div);
  cmpl(src2, Immediate(-1));
  j(not_equal, &safe_div);
  // Retag inputs and go slow case.
  Integer32ToSmi(src2, src2);
  if (src1.is(rax)) {
    movq(src1, kScratchRegister);
  }
  jmp(on_not_smi_result);
  bind(&safe_div);

  // Sign extend eax into edx:eax.
  cdq();
  idivl(src2);
  // Restore smi tags on inputs.
  Integer32ToSmi(src2, src2);
  if (src1.is(rax)) {
    movq(src1, kScratchRegister);
  }
  // Check for a negative zero result.  If the result is zero, and the
  // dividend is negative, go slow to return a floating point negative zero.
  NearLabel smi_result;
  testl(rdx, rdx);
  j(not_zero, &smi_result);
  testq(src1, src1);
  j(negative, on_not_smi_result);
  bind(&smi_result);
  Integer32ToSmi(dst, rdx);
}


template <typename LabelType>
void MacroAssembler::SmiShiftLogicalRightConstant(
    Register dst, Register src, int shift_value, LabelType* on_not_smi_result) {
  // Logic right shift interprets its result as an *unsigned* number.
  if (dst.is(src)) {
    UNIMPLEMENTED();  // Not used.
  } else {
    movq(dst, src);
    if (shift_value == 0) {
      testq(dst, dst);
      j(negative, on_not_smi_result);
    }
    shr(dst, Immediate(shift_value + kSmiShift));
    shl(dst, Immediate(kSmiShift));
  }
}


template <typename LabelType>
void MacroAssembler::SmiShiftLogicalRight(Register dst,
                                          Register src1,
                                          Register src2,
                                          LabelType* on_not_smi_result) {
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));
  ASSERT(!dst.is(rcx));
  NearLabel result_ok;
  if (src1.is(rcx) || src2.is(rcx)) {
    movq(kScratchRegister, rcx);
  }
  if (!dst.is(src1)) {
    movq(dst, src1);
  }
  SmiToInteger32(rcx, src2);
  orl(rcx, Immediate(kSmiShift));
  shr_cl(dst);  // Shift is rcx modulo 0x1f + 32.
  shl(dst, Immediate(kSmiShift));
  testq(dst, dst);
  if (src1.is(rcx) || src2.is(rcx)) {
    NearLabel positive_result;
    j(positive, &positive_result);
    if (src1.is(rcx)) {
      movq(src1, kScratchRegister);
    } else {
      movq(src2, kScratchRegister);
    }
    jmp(on_not_smi_result);
    bind(&positive_result);
  } else {
    j(negative, on_not_smi_result);  // src2 was zero and src1 negative.
  }
}


template <typename LabelType>
void MacroAssembler::SelectNonSmi(Register dst,
                                  Register src1,
                                  Register src2,
                                  LabelType* on_not_smis) {
  ASSERT(!dst.is(kScratchRegister));
  ASSERT(!src1.is(kScratchRegister));
  ASSERT(!src2.is(kScratchRegister));
  ASSERT(!dst.is(src1));
  ASSERT(!dst.is(src2));
  // Both operands must not be smis.
#ifdef DEBUG
  if (allow_stub_calls()) {  // Check contains a stub call.
    Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
    Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
  }
#endif
  ASSERT_EQ(0, kSmiTag);
  ASSERT_EQ(0, Smi::FromInt(0));
  movl(kScratchRegister, Immediate(kSmiTagMask));
  and_(kScratchRegister, src1);
  testl(kScratchRegister, src2);
  // If non-zero then both are smis.
  j(not_zero, on_not_smis);

  // Exactly one operand is a smi.
  ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
  // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
  subq(kScratchRegister, Immediate(1));
  // If src1 is a smi, then scratch register all 1s, else it is all 0s.
  movq(dst, src1);
  xor_(dst, src2);
  and_(dst, kScratchRegister);
  // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
  xor_(dst, src1);
  // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}


template <typename LabelType>
void MacroAssembler::JumpIfSmi(Register src, LabelType* on_smi) {
  ASSERT_EQ(0, kSmiTag);
  Condition smi = CheckSmi(src);
  j(smi, on_smi);
}


template <typename LabelType>
void MacroAssembler::JumpIfNotSmi(Register src, LabelType* on_not_smi) {
  Condition smi = CheckSmi(src);
  j(NegateCondition(smi), on_not_smi);
}


template <typename LabelType>
void MacroAssembler::JumpUnlessNonNegativeSmi(
    Register src, LabelType* on_not_smi_or_negative) {
  Condition non_negative_smi = CheckNonNegativeSmi(src);
  j(NegateCondition(non_negative_smi), on_not_smi_or_negative);
}


template <typename LabelType>
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
                                             Smi* constant,
                                             LabelType* on_equals) {
  SmiCompare(src, constant);
  j(equal, on_equals);
}


template <typename LabelType>
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
                                            LabelType* on_invalid) {
  Condition is_valid = CheckInteger32ValidSmiValue(src);
  j(NegateCondition(is_valid), on_invalid);
}


template <typename LabelType>
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
                                                LabelType* on_invalid) {
  Condition is_valid = CheckUInteger32ValidSmiValue(src);
  j(NegateCondition(is_valid), on_invalid);
}


template <typename LabelType>
void MacroAssembler::JumpIfNotBothSmi(Register src1,
                                      Register src2,
                                      LabelType* on_not_both_smi) {
  Condition both_smi = CheckBothSmi(src1, src2);
  j(NegateCondition(both_smi), on_not_both_smi);
}


template <typename LabelType>
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
                                                  Register src2,
                                                  LabelType* on_not_both_smi) {
  Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
  j(NegateCondition(both_smi), on_not_both_smi);
}


template <typename LabelType>
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object,
                                                         Register second_object,
                                                         Register scratch1,
                                                         Register scratch2,
                                                         LabelType* on_fail) {
  // Check that both objects are not smis.
  Condition either_smi = CheckEitherSmi(first_object, second_object);
  j(either_smi, on_fail);

  // Load instance type for both strings.
  movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
  movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
  movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
  movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));

  // Check that both are flat ascii strings.
  ASSERT(kNotStringTag != 0);
  const int kFlatAsciiStringMask =
      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
  const int kFlatAsciiStringTag = ASCII_STRING_TYPE;

  andl(scratch1, Immediate(kFlatAsciiStringMask));
  andl(scratch2, Immediate(kFlatAsciiStringMask));
  // Interleave the bits to check both scratch1 and scratch2 in one test.
  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
  cmpl(scratch1,
       Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
  j(not_equal, on_fail);
}


template <typename LabelType>
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
    Register instance_type,
    Register scratch,
    LabelType *failure) {
  if (!scratch.is(instance_type)) {
    movl(scratch, instance_type);
  }

  const int kFlatAsciiStringMask =
      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;

  andl(scratch, Immediate(kFlatAsciiStringMask));
  cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
  j(not_equal, failure);
}


template <typename LabelType>
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
    Register first_object_instance_type,
    Register second_object_instance_type,
    Register scratch1,
    Register scratch2,
    LabelType* on_fail) {
  // Load instance type for both strings.
  movq(scratch1, first_object_instance_type);
  movq(scratch2, second_object_instance_type);

  // Check that both are flat ascii strings.
  ASSERT(kNotStringTag != 0);
  const int kFlatAsciiStringMask =
      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
  const int kFlatAsciiStringTag = ASCII_STRING_TYPE;

  andl(scratch1, Immediate(kFlatAsciiStringMask));
  andl(scratch2, Immediate(kFlatAsciiStringMask));
  // Interleave the bits to check both scratch1 and scratch2 in one test.
  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
  cmpl(scratch1,
       Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
  j(not_equal, on_fail);
}


template <typename LabelType>
void MacroAssembler::InNewSpace(Register object,
                                Register scratch,
                                Condition cc,
                                LabelType* branch) {
  if (Serializer::enabled()) {
    // Can't do arithmetic on external references if it might get serialized.
    // The mask isn't really an address.  We load it as an external reference in
    // case the size of the new space is different between the snapshot maker
    // and the running system.
    if (scratch.is(object)) {
      movq(kScratchRegister, ExternalReference::new_space_mask());
      and_(scratch, kScratchRegister);
    } else {
      movq(scratch, ExternalReference::new_space_mask());
      and_(scratch, object);
    }
    movq(kScratchRegister, ExternalReference::new_space_start());
    cmpq(scratch, kScratchRegister);
    j(cc, branch);
  } else {
    ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask())));
    intptr_t new_space_start =
        reinterpret_cast<intptr_t>(Heap::NewSpaceStart());
    movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
    if (scratch.is(object)) {
      addq(scratch, kScratchRegister);
    } else {
      lea(scratch, Operand(object, kScratchRegister, times_1, 0));
    }
    and_(scratch, Immediate(static_cast<int32_t>(Heap::NewSpaceMask())));
    j(cc, branch);
  }
}


template <typename LabelType>
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    Handle<Code> code_constant,
                                    Register code_register,
                                    LabelType* done,
                                    InvokeFlag flag) {
  bool definitely_matches = false;
  NearLabel invoke;
  if (expected.is_immediate()) {
    ASSERT(actual.is_immediate());
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      Set(rax, actual.immediate());
      if (expected.immediate() ==
              SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
        // Don't worry about adapting arguments for built-ins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
        Set(rbx, expected.immediate());
      }
    }
  } else {
    if (actual.is_immediate()) {
      // Expected is in register, actual is immediate. This is the
      // case when we invoke function values without going through the
      // IC mechanism.
      cmpq(expected.reg(), Immediate(actual.immediate()));
      j(equal, &invoke);
      ASSERT(expected.reg().is(rbx));
      Set(rax, actual.immediate());
    } else if (!expected.reg().is(actual.reg())) {
      // Both expected and actual are in (different) registers. This
      // is the case when we invoke functions using call and apply.
      cmpq(expected.reg(), actual.reg());
      j(equal, &invoke);
      ASSERT(actual.reg().is(rax));
      ASSERT(expected.reg().is(rbx));
    }
  }

  if (!definitely_matches) {
    Handle<Code> adaptor =
        Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
    if (!code_constant.is_null()) {
      movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
      addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    } else if (!code_register.is(rdx)) {
      movq(rdx, code_register);
    }

    if (flag == CALL_FUNCTION) {
      Call(adaptor, RelocInfo::CODE_TARGET);
      jmp(done);
    } else {
      Jump(adaptor, RelocInfo::CODE_TARGET);
    }
    bind(&invoke);
  }
}


} }  // namespace v8::internal

#endif  // V8_X64_MACRO_ASSEMBLER_X64_H_