summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/macro-assembler-x64.h
blob: de2070ab8d02341df16efee65cbdf413b1114252 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_

#include "assembler.h"

namespace v8 {
namespace internal {

// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
static const Register kScratchRegister = r10;

// Forward declaration.
class JumpTarget;

struct SmiIndex {
  SmiIndex(Register index_register, ScaleFactor scale)
      : reg(index_register),
        scale(scale) {}
  Register reg;
  ScaleFactor scale;
};

// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  MacroAssembler(void* buffer, int size);

  void LoadRoot(Register destination, Heap::RootListIndex index);
  void CompareRoot(Register with, Heap::RootListIndex index);
  void PushRoot(Heap::RootListIndex index);

  // ---------------------------------------------------------------------------
  // GC Support

  // Set the remembered set bit for [object+offset].
  // object is the object being stored into, value is the object being stored.
  // If offset is zero, then the scratch register contains the array index into
  // the elements array represented as a Smi.
  // All registers are clobbered by the operation.
  void RecordWrite(Register object,
                   int offset,
                   Register value,
                   Register scratch);

#ifdef ENABLE_DEBUGGER_SUPPORT
  // ---------------------------------------------------------------------------
  // Debugger Support

  void SaveRegistersToMemory(RegList regs);
  void RestoreRegistersFromMemory(RegList regs);
  void PushRegistersFromMemory(RegList regs);
  void PopRegistersToMemory(RegList regs);
  void CopyRegistersFromStackToMemory(Register base,
                                      Register scratch,
                                      RegList regs);
#endif

  // ---------------------------------------------------------------------------
  // Activation frames

  void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
  void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }

  void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
  void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }

  // Enter specific kind of exit frame; either EXIT or
  // EXIT_DEBUG. Expects the number of arguments in register rax and
  // sets up the number of arguments in register rdi and the pointer
  // to the first argument in register rsi.
  void EnterExitFrame(StackFrame::Type type, int result_size = 1);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax:rdx (untouched) and the pointer to the first
  // argument in register rsi.
  void LeaveExitFrame(StackFrame::Type type, int result_size = 1);


  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(Register code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag);

  void InvokeCode(Handle<Code> code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  RelocInfo::Mode rmode,
                  InvokeFlag flag);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      const ParameterCount& actual,
                      InvokeFlag flag);

  // Invoke specified builtin JavaScript function. Adds an entry to
  // the unresolved list if the name does not resolve.
  void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag);

  // Store the code object for the given builtin in the target register.
  void GetBuiltinEntry(Register target, Builtins::JavaScript id);


  // ---------------------------------------------------------------------------
  // Smi tagging, untagging and operations on tagged smis.

  // Conversions between tagged smi values and non-tagged integer values.

  // Tag an integer value. The result must be known to be a valid smi value.
  // Only uses the low 32 bits of the src register.
  void Integer32ToSmi(Register dst, Register src);

  // Tag an integer value if possible, or jump the integer value cannot be
  // represented as a smi. Only uses the low 32 bit of the src registers.
  void Integer32ToSmi(Register dst, Register src, Label* on_overflow);

  // Adds constant to src and tags the result as a smi.
  // Result must be a valid smi.
  void Integer64AddToSmi(Register dst, Register src, int constant);

  // Convert smi to 32-bit integer. I.e., not sign extended into
  // high 32 bits of destination.
  void SmiToInteger32(Register dst, Register src);

  // Convert smi to 64-bit integer (sign extended if necessary).
  void SmiToInteger64(Register dst, Register src);

  // Multiply a positive smi's integer value by a power of two.
  // Provides result as 64-bit integer value.
  void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
                                             Register src,
                                             int power);

  // Functions performing a check on a known or potential smi. Returns
  // a condition that is satisfied if the check is successful.

  // Is the value a tagged smi.
  Condition CheckSmi(Register src);

  // Is the value not a tagged smi.
  Condition CheckNotSmi(Register src);

  // Is the value a positive tagged smi.
  Condition CheckPositiveSmi(Register src);

  // Is the value not a positive tagged smi.
  Condition CheckNotPositiveSmi(Register src);

  // Are both values are tagged smis.
  Condition CheckBothSmi(Register first, Register second);

  // Is one of the values not a tagged smi.
  Condition CheckNotBothSmi(Register first, Register second);

  // Is the value the minimum smi value (since we are using
  // two's complement numbers, negating the value is known to yield
  // a non-smi value).
  Condition CheckIsMinSmi(Register src);

  // Check whether a tagged smi is equal to a constant.
  Condition CheckSmiEqualsConstant(Register src, int constant);

  // Checks whether an 32-bit integer value is a valid for conversion
  // to a smi.
  Condition CheckInteger32ValidSmiValue(Register src);

  // Test-and-jump functions. Typically combines a check function
  // above with a conditional jump.

  // Jump if the value cannot be represented by a smi.
  void JumpIfNotValidSmiValue(Register src, Label* on_invalid);

  // Jump to label if the value is a tagged smi.
  void JumpIfSmi(Register src, Label* on_smi);

  // Jump to label if the value is not a tagged smi.
  void JumpIfNotSmi(Register src, Label* on_not_smi);

  // Jump to label if the value is not a positive tagged smi.
  void JumpIfNotPositiveSmi(Register src, Label* on_not_smi);

  // Jump to label if the value is a tagged smi with value equal
  // to the constant.
  void JumpIfSmiEqualsConstant(Register src, int constant, Label* on_equals);

  // Jump if either or both register are not smi values.
  void JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi);

  // Operations on tagged smi values.

  // Smis represent a subset of integers. The subset is always equivalent to
  // a two's complement interpretation of a fixed number of bits.

  // Optimistically adds an integer constant to a supposed smi.
  // If the src is not a smi, or the result is not a smi, jump to
  // the label.
  void SmiTryAddConstant(Register dst,
                         Register src,
                         int32_t constant,
                         Label* on_not_smi_result);

  // Add an integer constant to a tagged smi, giving a tagged smi as result,
  // or jumping to a label if the result cannot be represented by a smi.
  // If the label is NULL, no testing on the result is done.
  void SmiAddConstant(Register dst,
                      Register src,
                      int32_t constant,
                      Label* on_not_smi_result);

  // Subtract an integer constant from a tagged smi, giving a tagged smi as
  // result, or jumping to a label if the result cannot be represented by a smi.
  // If the label is NULL, no testing on the result is done.
  void SmiSubConstant(Register dst,
                      Register src,
                      int32_t constant,
                      Label* on_not_smi_result);

  // Negating a smi can give a negative zero or too large positive value.
  void SmiNeg(Register dst,
              Register src,
              Label* on_not_smi_result);

  // Adds smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  void SmiAdd(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result);

  // Subtracts smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  void SmiSub(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result);

  // Multiplies smi values and return the result as a smi,
  // if possible.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  void SmiMul(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result);

  // Divides one smi by another and returns the quotient.
  // Clobbers rax and rdx registers.
  void SmiDiv(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result);

  // Divides one smi by another and returns the remainder.
  // Clobbers rax and rdx registers.
  void SmiMod(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result);

  // Bitwise operations.
  void SmiNot(Register dst, Register src);
  void SmiAnd(Register dst, Register src1, Register src2);
  void SmiOr(Register dst, Register src1, Register src2);
  void SmiXor(Register dst, Register src1, Register src2);
  void SmiAndConstant(Register dst, Register src1, int constant);
  void SmiOrConstant(Register dst, Register src1, int constant);
  void SmiXorConstant(Register dst, Register src1, int constant);

  void SmiShiftLeftConstant(Register dst,
                            Register src,
                            int shift_value,
                            Label* on_not_smi_result);
  void SmiShiftLogicalRightConstant(Register dst,
                                  Register src,
                                  int shift_value,
                                  Label* on_not_smi_result);
  void SmiShiftArithmeticRightConstant(Register dst,
                                       Register src,
                                       int shift_value);

  // Shifts a smi value to the left, and returns the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftLeft(Register dst,
                    Register src1,
                    Register src2,
                    Label* on_not_smi_result);
  // Shifts a smi value to the right, shifting in zero bits at the top, and
  // returns the unsigned intepretation of the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftLogicalRight(Register dst,
                          Register src1,
                          Register src2,
                          Label* on_not_smi_result);
  // Shifts a smi value to the right, sign extending the top, and
  // returns the signed intepretation of the result. That will always
  // be a valid smi value, since it's numerically smaller than the
  // original.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftArithmeticRight(Register dst,
                               Register src1,
                               Register src2);

  // Specialized operations

  // Select the non-smi register of two registers where exactly one is a
  // smi. If neither are smis, jump to the failure label.
  void SelectNonSmi(Register dst,
                    Register src1,
                    Register src2,
                    Label* on_not_smis);

  // Converts, if necessary, a smi to a combination of number and
  // multiplier to be used as a scaled index.
  // The src register contains a *positive* smi value. The shift is the
  // power of two to multiply the index value by (e.g.
  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
  // The returned index register may be either src or dst, depending
  // on what is most efficient. If src and dst are different registers,
  // src is always unchanged.
  SmiIndex SmiToIndex(Register dst, Register src, int shift);

  // Converts a positive smi to a negative index.
  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);

  // ---------------------------------------------------------------------------
  // Macro instructions

  // Expression support
  void Set(Register dst, int64_t x);
  void Set(const Operand& dst, int64_t x);

  // Handle support
  bool IsUnsafeSmi(Smi* value);
  bool IsUnsafeSmi(Handle<Object> value) {
    return IsUnsafeSmi(Smi::cast(*value));
  }

  void LoadUnsafeSmi(Register dst, Smi* source);
  void LoadUnsafeSmi(Register dst, Handle<Object> source) {
    LoadUnsafeSmi(dst, Smi::cast(*source));
  }

  void Move(Register dst, Handle<Object> source);
  void Move(const Operand& dst, Handle<Object> source);
  void Cmp(Register dst, Handle<Object> source);
  void Cmp(const Operand& dst, Handle<Object> source);
  void Push(Handle<Object> source);
  void Push(Smi* smi);

  // Control Flow
  void Jump(Address destination, RelocInfo::Mode rmode);
  void Jump(ExternalReference ext);
  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);

  void Call(Address destination, RelocInfo::Mode rmode);
  void Call(ExternalReference ext);
  void Call(Handle<Code> code_object, RelocInfo::Mode rmode);

  // Compare object type for heap object.
  // Always use unsigned comparisons: above and below, not less and greater.
  // Incoming register is heap_object and outgoing register is map.
  // They may be the same register, and may be kScratchRegister.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  // Always use unsigned comparisons: above and below, not less and greater.
  void CmpInstanceType(Register map, InstanceType type);

  // FCmp is similar to integer cmp, but requires unsigned
  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
  void FCmp();

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new try handler and link into try handler chain.  The return
  // address must be pushed before calling this helper.
  void PushTryHandler(CodeLocation try_location, HandlerType type);


  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generates code that verifies that the maps of objects in the
  // prototype chain of object hasn't changed since the code was
  // generated and branches to the miss label if any map has. If
  // necessary the function also generates code for security check
  // in case of global object holders. The scratch and holder
  // registers are always clobbered, but the object register is only
  // clobbered if it the same as the holder register. The function
  // returns a register containing the holder - either object_reg or
  // holder_reg.
  Register CheckMaps(JSObject* object, Register object_reg,
                     JSObject* holder, Register holder_reg,
                     Register scratch, Label* miss);

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, but the scratch register and kScratchRegister,
  // which must be different, are clobbered.
  void CheckAccessGlobalProxy(Register holder_reg,
                              Register scratch,
                              Label* miss);


  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space. If the new space is exhausted control
  // continues at the gc_required label. The allocated object is returned in
  // result and end of the new object is returned in result_end. The register
  // scratch can be passed as no_reg in which case an additional object
  // reference will be added to the reloc info. The returned pointers in result
  // and result_end have not yet been tagged as heap objects. If
  // result_contains_top_on_entry is true the content of result is known to be
  // the allocation top on entry (could be result_end from a previous call to
  // AllocateObjectInNewSpace). If result_contains_top_on_entry is true scratch
  // should be no_reg as it is never used.
  void AllocateObjectInNewSpace(int object_size,
                                Register result,
                                Register result_end,
                                Register scratch,
                                Label* gc_required,
                                AllocationFlags flags);

  void AllocateObjectInNewSpace(int header_size,
                                ScaleFactor element_size,
                                Register element_count,
                                Register result,
                                Register result_end,
                                Register scratch,
                                Label* gc_required,
                                AllocationFlags flags);

  void AllocateObjectInNewSpace(Register object_size,
                                Register result,
                                Register result_end,
                                Register scratch,
                                Label* gc_required,
                                AllocationFlags flags);

  // Undo allocation in new space. The object passed and objects allocated after
  // it will no longer be allocated. Make sure that no pointers are left to the
  // object(s) no longer allocated as they would be invalid when allocation is
  // un-done.
  void UndoAllocationInNewSpace(Register object);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Check if result is zero and op is negative.
  void NegativeZeroTest(Register result, Register op, Label* then_label);

  // Check if result is zero and op is negative in code using jump targets.
  void NegativeZeroTest(CodeGenerator* cgen,
                        Register result,
                        Register op,
                        JumpTarget* then_target);

  // Check if result is zero and any of op1 and op2 are negative.
  // Register scratch is destroyed, and it must be different from op2.
  void NegativeZeroTest(Register result, Register op1, Register op2,
                        Register scratch, Label* then_label);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other register may be
  // clobbered.
  void TryGetFunctionPrototype(Register function,
                               Register result,
                               Label* miss);

  // Generates code for reporting that an illegal operation has
  // occurred.
  void IllegalOperation(int num_arguments);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.
  void CallStub(CodeStub* stub);

  // Return from a code stub after popping its arguments.
  void StubReturn(int argc);

  // Call a runtime routine.
  // Eventually this should be used for all C calls.
  void CallRuntime(Runtime::Function* f, int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId id, int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToBuiltin, but also takes care of passing the number
  // of arguments.
  void TailCallRuntime(const ExternalReference& ext,
                       int num_arguments,
                       int result_size);

  // Jump to the builtin routine.
  void JumpToBuiltin(const ExternalReference& ext, int result_size);


  // ---------------------------------------------------------------------------
  // Utilities

  void Ret();

  struct Unresolved {
    int pc;
    uint32_t flags;  // see Bootstrapper::FixupFlags decoders/encoders.
    const char* name;
  };
  List<Unresolved>* unresolved() { return &unresolved_; }

  Handle<Object> CodeObject() { return code_object_; }


  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, const char* msg);

  // Like Assert(), but always enabled.
  void Check(Condition cc, const char* msg);

  // Print a message to stdout and abort execution.
  void Abort(const char* msg);

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
  bool allow_stub_calls() { return allow_stub_calls_; }

 private:
  List<Unresolved> unresolved_;
  bool generating_stub_;
  bool allow_stub_calls_;
  Handle<Object> code_object_;  // This handle will be patched with the code
                                // object on installation.

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Handle<Code> code_constant,
                      Register code_register,
                      Label* done,
                      InvokeFlag flag);

  // Get the code for the given builtin. Returns if able to resolve
  // the function in the 'resolved' flag.
  Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void LeaveFrame(StackFrame::Type type);

  // Allocation support helpers.
  void LoadAllocationTopHelper(Register result,
                               Register result_end,
                               Register scratch,
                               AllocationFlags flags);
  void UpdateAllocationTopHelper(Register result_end, Register scratch);
};


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
 public:
  CodePatcher(byte* address, int size);
  virtual ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

 private:
  byte* address_;  // The address of the code being patched.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};


// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}


// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
                                   Register index,
                                   ScaleFactor scale,
                                   int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}


#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) {                                               \
    byte* x64_coverage_function =                                         \
        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
    masm->pushfd();                                                       \
    masm->pushad();                                                       \
    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
    masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY);          \
    masm->pop(rax);                                                       \
    masm->popad();                                                        \
    masm->popfd();                                                        \
  }                                                                       \
  masm->
#else
#define ACCESS_MASM(masm) masm->
#endif


} }  // namespace v8::internal

#endif  // V8_X64_MACRO_ASSEMBLER_X64_H_