summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/deoptimizer-x64.cc
blob: 16b0cdcd1ba434abcdcc7d70302179cbbe97f616 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#if V8_TARGET_ARCH_X64

#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen.h"
#include "src/safepoint-table.h"

namespace v8 {
namespace internal {


const int Deoptimizer::table_entry_size_ = 10;


int Deoptimizer::patch_size() {
  return Assembler::kCallSequenceLength;
}


void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
  // Invalidate the relocation information, as it will become invalid by the
  // code patching below, and is not needed any more.
  code->InvalidateRelocation();

  if (FLAG_zap_code_space) {
    // Fail hard and early if we enter this code object again.
    byte* pointer = code->FindCodeAgeSequence();
    if (pointer != NULL) {
      pointer += kNoCodeAgeSequenceLength;
    } else {
      pointer = code->instruction_start();
    }
    CodePatcher patcher(pointer, 1);
    patcher.masm()->int3();

    DeoptimizationInputData* data =
        DeoptimizationInputData::cast(code->deoptimization_data());
    int osr_offset = data->OsrPcOffset()->value();
    if (osr_offset > 0) {
      CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1);
      osr_patcher.masm()->int3();
    }
  }

  // For each LLazyBailout instruction insert a absolute call to the
  // corresponding deoptimization entry, or a short call to an absolute
  // jump if space is short. The absolute jumps are put in a table just
  // before the safepoint table (space was allocated there when the Code
  // object was created, if necessary).

  Address instruction_start = code->instruction_start();
#ifdef DEBUG
  Address prev_call_address = NULL;
#endif
  DeoptimizationInputData* deopt_data =
      DeoptimizationInputData::cast(code->deoptimization_data());
  deopt_data->SetSharedFunctionInfo(Smi::FromInt(0));
  // For each LLazyBailout instruction insert a call to the corresponding
  // deoptimization entry.
  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    if (deopt_data->Pc(i)->value() == -1) continue;
    // Position where Call will be patched in.
    Address call_address = instruction_start + deopt_data->Pc(i)->value();
    // There is room enough to write a long call instruction because we pad
    // LLazyBailout instructions with nops if necessary.
    CodePatcher patcher(call_address, Assembler::kCallSequenceLength);
    patcher.masm()->Call(GetDeoptimizationEntry(isolate, i, LAZY),
                         Assembler::RelocInfoNone());
    DCHECK(prev_call_address == NULL ||
           call_address >= prev_call_address + patch_size());
    DCHECK(call_address + patch_size() <= code->instruction_end());
#ifdef DEBUG
    prev_call_address = call_address;
#endif
  }
}


void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
  // Set the register values. The values are not important as there are no
  // callee saved registers in JavaScript frames, so all registers are
  // spilled. Registers rbp and rsp are set to the correct values though.
  for (int i = 0; i < Register::kNumRegisters; i++) {
    input_->SetRegister(i, i * 4);
  }
  input_->SetRegister(rsp.code(), reinterpret_cast<intptr_t>(frame->sp()));
  input_->SetRegister(rbp.code(), reinterpret_cast<intptr_t>(frame->fp()));
  for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) {
    input_->SetDoubleRegister(i, 0.0);
  }

  // Fill the frame content from the actual data on the frame.
  for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
    input_->SetFrameSlot(i, Memory::uintptr_at(tos + i));
  }
}


void Deoptimizer::SetPlatformCompiledStubRegisters(
    FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
  intptr_t handler =
      reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
  int params = descriptor->GetHandlerParameterCount();
  output_frame->SetRegister(rax.code(), params);
  output_frame->SetRegister(rbx.code(), handler);
}


void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
  for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) {
    double double_value = input_->GetDoubleRegister(i);
    output_frame->SetDoubleRegister(i, double_value);
  }
}


bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
  // There is no dynamic alignment padding on x64 in the input frame.
  return false;
}


#define __ masm()->

void Deoptimizer::EntryGenerator::Generate() {
  GeneratePrologue();

  // Save all general purpose registers before messing with them.
  const int kNumberOfRegisters = Register::kNumRegisters;

  const int kDoubleRegsSize = kDoubleSize *
      XMMRegister::NumAllocatableRegisters();
  __ subp(rsp, Immediate(kDoubleRegsSize));

  for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) {
    XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    int offset = i * kDoubleSize;
    __ movsd(Operand(rsp, offset), xmm_reg);
  }

  // We push all registers onto the stack, even though we do not need
  // to restore all later.
  for (int i = 0; i < kNumberOfRegisters; i++) {
    Register r = Register::from_code(i);
    __ pushq(r);
  }

  const int kSavedRegistersAreaSize = kNumberOfRegisters * kRegisterSize +
                                      kDoubleRegsSize;

  // We use this to keep the value of the fifth argument temporarily.
  // Unfortunately we can't store it directly in r8 (used for passing
  // this on linux), since it is another parameter passing register on windows.
  Register arg5 = r11;

  // Get the bailout id from the stack.
  __ movp(arg_reg_3, Operand(rsp, kSavedRegistersAreaSize));

  // Get the address of the location in the code object
  // and compute the fp-to-sp delta in register arg5.
  __ movp(arg_reg_4, Operand(rsp, kSavedRegistersAreaSize + 1 * kRegisterSize));
  __ leap(arg5, Operand(rsp, kSavedRegistersAreaSize + 1 * kRegisterSize +
                            kPCOnStackSize));

  __ subp(arg5, rbp);
  __ negp(arg5);

  // Allocate a new deoptimizer object.
  __ PrepareCallCFunction(6);
  __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
  __ movp(arg_reg_1, rax);
  __ Set(arg_reg_2, type());
  // Args 3 and 4 are already in the right registers.

  // On windows put the arguments on the stack (PrepareCallCFunction
  // has created space for this). On linux pass the arguments in r8 and r9.
#ifdef _WIN64
  __ movq(Operand(rsp, 4 * kRegisterSize), arg5);
  __ LoadAddress(arg5, ExternalReference::isolate_address(isolate()));
  __ movq(Operand(rsp, 5 * kRegisterSize), arg5);
#else
  __ movp(r8, arg5);
  __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
#endif

  { AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
  }
  // Preserve deoptimizer object in register rax and get the input
  // frame descriptor pointer.
  __ movp(rbx, Operand(rax, Deoptimizer::input_offset()));

  // Fill in the input registers.
  for (int i = kNumberOfRegisters -1; i >= 0; i--) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    __ PopQuad(Operand(rbx, offset));
  }

  // Fill in the double input registers.
  int double_regs_offset = FrameDescription::double_registers_offset();
  for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); i++) {
    int dst_offset = i * kDoubleSize + double_regs_offset;
    __ popq(Operand(rbx, dst_offset));
  }

  // Remove the bailout id and return address from the stack.
  __ addp(rsp, Immediate(1 * kRegisterSize + kPCOnStackSize));

  // Compute a pointer to the unwinding limit in register rcx; that is
  // the first stack slot not part of the input frame.
  __ movp(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
  __ addp(rcx, rsp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ leap(rdx, Operand(rbx, FrameDescription::frame_content_offset()));
  Label pop_loop_header;
  __ jmp(&pop_loop_header);
  Label pop_loop;
  __ bind(&pop_loop);
  __ Pop(Operand(rdx, 0));
  __ addp(rdx, Immediate(sizeof(intptr_t)));
  __ bind(&pop_loop_header);
  __ cmpp(rcx, rsp);
  __ j(not_equal, &pop_loop);

  // Compute the output frame in the deoptimizer.
  __ pushq(rax);
  __ PrepareCallCFunction(2);
  __ movp(arg_reg_1, rax);
  __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate()));
  {
    AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(
        ExternalReference::compute_output_frames_function(isolate()), 2);
  }
  __ popq(rax);

  // Replace the current frame with the output frames.
  Label outer_push_loop, inner_push_loop,
      outer_loop_header, inner_loop_header;
  // Outer loop state: rax = current FrameDescription**, rdx = one past the
  // last FrameDescription**.
  __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
  __ movp(rax, Operand(rax, Deoptimizer::output_offset()));
  __ leap(rdx, Operand(rax, rdx, times_pointer_size, 0));
  __ jmp(&outer_loop_header);
  __ bind(&outer_push_loop);
  // Inner loop state: rbx = current FrameDescription*, rcx = loop index.
  __ movp(rbx, Operand(rax, 0));
  __ movp(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
  __ jmp(&inner_loop_header);
  __ bind(&inner_push_loop);
  __ subp(rcx, Immediate(sizeof(intptr_t)));
  __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
  __ bind(&inner_loop_header);
  __ testp(rcx, rcx);
  __ j(not_zero, &inner_push_loop);
  __ addp(rax, Immediate(kPointerSize));
  __ bind(&outer_loop_header);
  __ cmpp(rax, rdx);
  __ j(below, &outer_push_loop);

  for (int i = 0; i < XMMRegister::NumAllocatableRegisters(); ++i) {
    XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    int src_offset = i * kDoubleSize + double_regs_offset;
    __ movsd(xmm_reg, Operand(rbx, src_offset));
  }

  // Push state, pc, and continuation from the last output frame.
  __ Push(Operand(rbx, FrameDescription::state_offset()));
  __ PushQuad(Operand(rbx, FrameDescription::pc_offset()));
  __ PushQuad(Operand(rbx, FrameDescription::continuation_offset()));

  // Push the registers from the last output frame.
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    __ PushQuad(Operand(rbx, offset));
  }

  // Restore the registers from the stack.
  for (int i = kNumberOfRegisters - 1; i >= 0 ; i--) {
    Register r = Register::from_code(i);
    // Do not restore rsp, simply pop the value into the next register
    // and overwrite this afterwards.
    if (r.is(rsp)) {
      DCHECK(i > 0);
      r = Register::from_code(i - 1);
    }
    __ popq(r);
  }

  // Set up the roots register.
  __ InitializeRootRegister();
  __ InitializeSmiConstantRegister();

  // Return to the continuation point.
  __ ret(0);
}


void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
  // Create a sequence of deoptimization entries.
  Label done;
  for (int i = 0; i < count(); i++) {
    int start = masm()->pc_offset();
    USE(start);
    __ pushq_imm32(i);
    __ jmp(&done);
    DCHECK(masm()->pc_offset() - start == table_entry_size_);
  }
  __ bind(&done);
}


void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
  if (kPCOnStackSize == 2 * kPointerSize) {
    // Zero out the high-32 bit of PC for x32 port.
    SetFrameSlot(offset + kPointerSize, 0);
  }
  SetFrameSlot(offset, value);
}


void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
  if (kFPOnStackSize == 2 * kPointerSize) {
    // Zero out the high-32 bit of FP for x32 port.
    SetFrameSlot(offset + kPointerSize, 0);
  }
  SetFrameSlot(offset, value);
}


void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
  // No out-of-line constant pool support.
  UNREACHABLE();
}


#undef __


} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_X64