summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/code-stubs-x64.cc
blob: b480412aabd3abe21c3e5b0086b61d17211dfef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_X64)

#include "bootstrapper.h"
#include "code-stubs.h"
#include "regexp-macro-assembler.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)
void FastNewClosureStub::Generate(MacroAssembler* masm) {
  // Create a new closure from the given function info in new
  // space. Set the context to the current context in rsi.
  Label gc;
  __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);

  // Get the function info from the stack.
  __ movq(rdx, Operand(rsp, 1 * kPointerSize));

  // Compute the function map in the current global context and set that
  // as the map of the allocated object.
  __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
  __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
  __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);

  // Initialize the rest of the function. We don't have to update the
  // write barrier because the allocated object is in new space.
  __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
  __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
  __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
  __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
  __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
  __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
  __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
  __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);

  // Initialize the code pointer in the function to be the one
  // found in the shared function info object.
  __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
  __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
  __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);


  // Return and remove the on-stack parameter.
  __ ret(1 * kPointerSize);

  // Create a new closure through the slower runtime call.
  __ bind(&gc);
  __ pop(rcx);  // Temporarily remove return address.
  __ pop(rdx);
  __ push(rsi);
  __ push(rdx);
  __ push(rcx);  // Restore return address.
  __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
}


void FastNewContextStub::Generate(MacroAssembler* masm) {
  // Try to allocate the context in new space.
  Label gc;
  int length = slots_ + Context::MIN_CONTEXT_SLOTS;
  __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
                        rax, rbx, rcx, &gc, TAG_OBJECT);

  // Get the function from the stack.
  __ movq(rcx, Operand(rsp, 1 * kPointerSize));

  // Setup the object header.
  __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
  __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
  __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));

  // Setup the fixed slots.
  __ xor_(rbx, rbx);  // Set to NULL.
  __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
  __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
  __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
  __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);

  // Copy the global object from the surrounding context.
  __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);

  // Initialize the rest of the slots to undefined.
  __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
  for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
    __ movq(Operand(rax, Context::SlotOffset(i)), rbx);
  }

  // Return and remove the on-stack parameter.
  __ movq(rsi, rax);
  __ ret(1 * kPointerSize);

  // Need to collect. Call into runtime system.
  __ bind(&gc);
  __ TailCallRuntime(Runtime::kNewContext, 1, 1);
}


void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
  // Stack layout on entry:
  //
  // [rsp + kPointerSize]: constant elements.
  // [rsp + (2 * kPointerSize)]: literal index.
  // [rsp + (3 * kPointerSize)]: literals array.

  // All sizes here are multiples of kPointerSize.
  int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
  int size = JSArray::kSize + elements_size;

  // Load boilerplate object into rcx and check if we need to create a
  // boilerplate.
  Label slow_case;
  __ movq(rcx, Operand(rsp, 3 * kPointerSize));
  __ movq(rax, Operand(rsp, 2 * kPointerSize));
  SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
  __ movq(rcx,
          FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
  __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
  __ j(equal, &slow_case);

  if (FLAG_debug_code) {
    const char* message;
    Heap::RootListIndex expected_map_index;
    if (mode_ == CLONE_ELEMENTS) {
      message = "Expected (writable) fixed array";
      expected_map_index = Heap::kFixedArrayMapRootIndex;
    } else {
      ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
      message = "Expected copy-on-write fixed array";
      expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
    }
    __ push(rcx);
    __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
    __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
                   expected_map_index);
    __ Assert(equal, message);
    __ pop(rcx);
  }

  // Allocate both the JS array and the elements array in one big
  // allocation. This avoids multiple limit checks.
  __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);

  // Copy the JS array part.
  for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
    if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
      __ movq(rbx, FieldOperand(rcx, i));
      __ movq(FieldOperand(rax, i), rbx);
    }
  }

  if (length_ > 0) {
    // Get hold of the elements array of the boilerplate and setup the
    // elements pointer in the resulting object.
    __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
    __ lea(rdx, Operand(rax, JSArray::kSize));
    __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);

    // Copy the elements array.
    for (int i = 0; i < elements_size; i += kPointerSize) {
      __ movq(rbx, FieldOperand(rcx, i));
      __ movq(FieldOperand(rdx, i), rbx);
    }
  }

  // Return and remove the on-stack parameters.
  __ ret(3 * kPointerSize);

  __ bind(&slow_case);
  __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}


void ToBooleanStub::Generate(MacroAssembler* masm) {
  Label false_result, true_result, not_string;
  __ movq(rax, Operand(rsp, 1 * kPointerSize));

  // 'null' => false.
  __ CompareRoot(rax, Heap::kNullValueRootIndex);
  __ j(equal, &false_result);

  // Get the map and type of the heap object.
  // We don't use CmpObjectType because we manipulate the type field.
  __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
  __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));

  // Undetectable => false.
  __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
  __ and_(rbx, Immediate(1 << Map::kIsUndetectable));
  __ j(not_zero, &false_result);

  // JavaScript object => true.
  __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
  __ j(above_equal, &true_result);

  // String value => false iff empty.
  __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
  __ j(above_equal, &not_string);
  __ movq(rdx, FieldOperand(rax, String::kLengthOffset));
  __ SmiTest(rdx);
  __ j(zero, &false_result);
  __ jmp(&true_result);

  __ bind(&not_string);
  __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
  __ j(not_equal, &true_result);
  // HeapNumber => false iff +0, -0, or NaN.
  // These three cases set the zero flag when compared to zero using ucomisd.
  __ xorpd(xmm0, xmm0);
  __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
  __ j(zero, &false_result);
  // Fall through to |true_result|.

  // Return 1/0 for true/false in rax.
  __ bind(&true_result);
  __ movq(rax, Immediate(1));
  __ ret(1 * kPointerSize);
  __ bind(&false_result);
  __ xor_(rax, rax);
  __ ret(1 * kPointerSize);
}


const char* GenericBinaryOpStub::GetName() {
  if (name_ != NULL) return name_;
  const int kMaxNameLength = 100;
  name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
  if (name_ == NULL) return "OOM";
  const char* op_name = Token::Name(op_);
  const char* overwrite_name;
  switch (mode_) {
    case NO_OVERWRITE: overwrite_name = "Alloc"; break;
    case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
    case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
    default: overwrite_name = "UnknownOverwrite"; break;
  }

  OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
               "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
               op_name,
               overwrite_name,
               (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
               args_in_registers_ ? "RegArgs" : "StackArgs",
               args_reversed_ ? "_R" : "",
               static_operands_type_.ToString(),
               BinaryOpIC::GetName(runtime_operands_type_));
  return name_;
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Register left,
    Register right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ push(left);
    __ push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (!(left.is(left_arg) && right.is(right_arg))) {
      if (left.is(right_arg) && right.is(left_arg)) {
        if (IsOperationCommutative()) {
          SetArgsReversed();
        } else {
          __ xchg(left, right);
        }
      } else if (left.is(left_arg)) {
        __ movq(right_arg, right);
      } else if (right.is(right_arg)) {
        __ movq(left_arg, left);
      } else if (left.is(right_arg)) {
        if (IsOperationCommutative()) {
          __ movq(left_arg, right);
          SetArgsReversed();
        } else {
          // Order of moves important to avoid destroying left argument.
          __ movq(left_arg, left);
          __ movq(right_arg, right);
        }
      } else if (right.is(left_arg)) {
        if (IsOperationCommutative()) {
          __ movq(right_arg, left);
          SetArgsReversed();
        } else {
          // Order of moves important to avoid destroying right argument.
          __ movq(right_arg, right);
          __ movq(left_arg, left);
        }
      } else {
        // Order of moves is not important.
        __ movq(left_arg, left);
        __ movq(right_arg, right);
      }
    }

    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Register left,
    Smi* right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ push(left);
    __ Push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (left.is(left_arg)) {
      __ Move(right_arg, right);
    } else if (left.is(right_arg) && IsOperationCommutative()) {
      __ Move(left_arg, right);
      SetArgsReversed();
    } else {
      // For non-commutative operations, left and right_arg might be
      // the same register.  Therefore, the order of the moves is
      // important here in order to not overwrite left before moving
      // it to left_arg.
      __ movq(left_arg, left);
      __ Move(right_arg, right);
    }

    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


void GenericBinaryOpStub::GenerateCall(
    MacroAssembler* masm,
    Smi* left,
    Register right) {
  if (!ArgsInRegistersSupported()) {
    // Pass arguments on the stack.
    __ Push(left);
    __ push(right);
  } else {
    // The calling convention with registers is left in rdx and right in rax.
    Register left_arg = rdx;
    Register right_arg = rax;
    if (right.is(right_arg)) {
      __ Move(left_arg, left);
    } else if (right.is(left_arg) && IsOperationCommutative()) {
      __ Move(right_arg, left);
      SetArgsReversed();
    } else {
      // For non-commutative operations, right and left_arg might be
      // the same register.  Therefore, the order of the moves is
      // important here in order to not overwrite right before moving
      // it to right_arg.
      __ movq(right_arg, right);
      __ Move(left_arg, left);
    }
    // Update flags to indicate that arguments are in registers.
    SetArgsInRegisters();
    __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
  }

  // Call the stub.
  __ CallStub(this);
}


class FloatingPointHelper : public AllStatic {
 public:
  // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
  // If the operands are not both numbers, jump to not_numbers.
  // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
  // NumberOperands assumes both are smis or heap numbers.
  static void LoadSSE2SmiOperands(MacroAssembler* masm);
  static void LoadSSE2NumberOperands(MacroAssembler* masm);
  static void LoadSSE2UnknownOperands(MacroAssembler* masm,
                                      Label* not_numbers);

  // Takes the operands in rdx and rax and loads them as integers in rax
  // and rcx.
  static void LoadAsIntegers(MacroAssembler* masm,
                             Label* operand_conversion_failure,
                             Register heap_number_map);
  // As above, but we know the operands to be numbers. In that case,
  // conversion can't fail.
  static void LoadNumbersAsIntegers(MacroAssembler* masm);
};


void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
  // 1. Move arguments into rdx, rax except for DIV and MOD, which need the
  // dividend in rax and rdx free for the division.  Use rax, rbx for those.
  Comment load_comment(masm, "-- Load arguments");
  Register left = rdx;
  Register right = rax;
  if (op_ == Token::DIV || op_ == Token::MOD) {
    left = rax;
    right = rbx;
    if (HasArgsInRegisters()) {
      __ movq(rbx, rax);
      __ movq(rax, rdx);
    }
  }
  if (!HasArgsInRegisters()) {
    __ movq(right, Operand(rsp, 1 * kPointerSize));
    __ movq(left, Operand(rsp, 2 * kPointerSize));
  }

  Label not_smis;
  // 2. Smi check both operands.
  if (static_operands_type_.IsSmi()) {
    // Skip smi check if we know that both arguments are smis.
    if (FLAG_debug_code) {
      __ AbortIfNotSmi(left);
      __ AbortIfNotSmi(right);
    }
    if (op_ == Token::BIT_OR) {
      // Handle OR here, since we do extra smi-checking in the or code below.
      __ SmiOr(right, right, left);
      GenerateReturn(masm);
      return;
    }
  } else {
    if (op_ != Token::BIT_OR) {
      // Skip the check for OR as it is better combined with the
      // actual operation.
      Comment smi_check_comment(masm, "-- Smi check arguments");
      __ JumpIfNotBothSmi(left, right, &not_smis);
    }
  }

  // 3. Operands are both smis (except for OR), perform the operation leaving
  // the result in rax and check the result if necessary.
  Comment perform_smi(masm, "-- Perform smi operation");
  Label use_fp_on_smis;
  switch (op_) {
    case Token::ADD: {
      ASSERT(right.is(rax));
      __ SmiAdd(right, right, left, &use_fp_on_smis);  // ADD is commutative.
      break;
    }

    case Token::SUB: {
      __ SmiSub(left, left, right, &use_fp_on_smis);
      __ movq(rax, left);
      break;
    }

    case Token::MUL:
      ASSERT(right.is(rax));
      __ SmiMul(right, right, left, &use_fp_on_smis);  // MUL is commutative.
      break;

    case Token::DIV:
      ASSERT(left.is(rax));
      __ SmiDiv(left, left, right, &use_fp_on_smis);
      break;

    case Token::MOD:
      ASSERT(left.is(rax));
      __ SmiMod(left, left, right, slow);
      break;

    case Token::BIT_OR:
      ASSERT(right.is(rax));
      __ movq(rcx, right);  // Save the right operand.
      __ SmiOr(right, right, left);  // BIT_OR is commutative.
      __ testb(right, Immediate(kSmiTagMask));
      __ j(not_zero, &not_smis);
      break;

    case Token::BIT_AND:
      ASSERT(right.is(rax));
      __ SmiAnd(right, right, left);  // BIT_AND is commutative.
      break;

    case Token::BIT_XOR:
      ASSERT(right.is(rax));
      __ SmiXor(right, right, left);  // BIT_XOR is commutative.
      break;

    case Token::SHL:
    case Token::SHR:
    case Token::SAR:
      switch (op_) {
        case Token::SAR:
          __ SmiShiftArithmeticRight(left, left, right);
          break;
        case Token::SHR:
          __ SmiShiftLogicalRight(left, left, right, slow);
          break;
        case Token::SHL:
          __ SmiShiftLeft(left, left, right);
          break;
        default:
          UNREACHABLE();
      }
      __ movq(rax, left);
      break;

    default:
      UNREACHABLE();
      break;
  }

  // 4. Emit return of result in rax.
  GenerateReturn(masm);

  // 5. For some operations emit inline code to perform floating point
  // operations on known smis (e.g., if the result of the operation
  // overflowed the smi range).
  switch (op_) {
    case Token::ADD:
    case Token::SUB:
    case Token::MUL:
    case Token::DIV: {
      ASSERT(use_fp_on_smis.is_linked());
      __ bind(&use_fp_on_smis);
      if (op_ == Token::DIV) {
        __ movq(rdx, rax);
        __ movq(rax, rbx);
      }
      // left is rdx, right is rax.
      __ AllocateHeapNumber(rbx, rcx, slow);
      FloatingPointHelper::LoadSSE2SmiOperands(masm);
      switch (op_) {
        case Token::ADD: __ addsd(xmm0, xmm1); break;
        case Token::SUB: __ subsd(xmm0, xmm1); break;
        case Token::MUL: __ mulsd(xmm0, xmm1); break;
        case Token::DIV: __ divsd(xmm0, xmm1); break;
        default: UNREACHABLE();
      }
      __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
      __ movq(rax, rbx);
      GenerateReturn(masm);
    }
    default:
      break;
  }

  // 6. Non-smi operands, fall out to the non-smi code with the operands in
  // rdx and rax.
  Comment done_comment(masm, "-- Enter non-smi code");
  __ bind(&not_smis);

  switch (op_) {
    case Token::DIV:
    case Token::MOD:
      // Operands are in rax, rbx at this point.
      __ movq(rdx, rax);
      __ movq(rax, rbx);
      break;

    case Token::BIT_OR:
      // Right operand is saved in rcx and rax was destroyed by the smi
      // operation.
      __ movq(rax, rcx);
      break;

    default:
      break;
  }
}


void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
  Label call_runtime;

  if (ShouldGenerateSmiCode()) {
    GenerateSmiCode(masm, &call_runtime);
  } else if (op_ != Token::MOD) {
    if (!HasArgsInRegisters()) {
      GenerateLoadArguments(masm);
    }
  }
  // Floating point case.
  if (ShouldGenerateFPCode()) {
    switch (op_) {
      case Token::ADD:
      case Token::SUB:
      case Token::MUL:
      case Token::DIV: {
        if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
            HasSmiCodeInStub()) {
          // Execution reaches this point when the first non-smi argument occurs
          // (and only if smi code is generated). This is the right moment to
          // patch to HEAP_NUMBERS state. The transition is attempted only for
          // the four basic operations. The stub stays in the DEFAULT state
          // forever for all other operations (also if smi code is skipped).
          GenerateTypeTransition(masm);
          break;
        }

        Label not_floats;
        // rax: y
        // rdx: x
        if (static_operands_type_.IsNumber()) {
          if (FLAG_debug_code) {
            // Assert at runtime that inputs are only numbers.
            __ AbortIfNotNumber(rdx);
            __ AbortIfNotNumber(rax);
          }
          FloatingPointHelper::LoadSSE2NumberOperands(masm);
        } else {
          FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
        }

        switch (op_) {
          case Token::ADD: __ addsd(xmm0, xmm1); break;
          case Token::SUB: __ subsd(xmm0, xmm1); break;
          case Token::MUL: __ mulsd(xmm0, xmm1); break;
          case Token::DIV: __ divsd(xmm0, xmm1); break;
          default: UNREACHABLE();
        }
        // Allocate a heap number, if needed.
        Label skip_allocation;
        OverwriteMode mode = mode_;
        if (HasArgsReversed()) {
          if (mode == OVERWRITE_RIGHT) {
            mode = OVERWRITE_LEFT;
          } else if (mode == OVERWRITE_LEFT) {
            mode = OVERWRITE_RIGHT;
          }
        }
        switch (mode) {
          case OVERWRITE_LEFT:
            __ JumpIfNotSmi(rdx, &skip_allocation);
            __ AllocateHeapNumber(rbx, rcx, &call_runtime);
            __ movq(rdx, rbx);
            __ bind(&skip_allocation);
            __ movq(rax, rdx);
            break;
          case OVERWRITE_RIGHT:
            // If the argument in rax is already an object, we skip the
            // allocation of a heap number.
            __ JumpIfNotSmi(rax, &skip_allocation);
            // Fall through!
          case NO_OVERWRITE:
            // Allocate a heap number for the result. Keep rax and rdx intact
            // for the possible runtime call.
            __ AllocateHeapNumber(rbx, rcx, &call_runtime);
            __ movq(rax, rbx);
            __ bind(&skip_allocation);
            break;
          default: UNREACHABLE();
        }
        __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
        GenerateReturn(masm);
        __ bind(&not_floats);
        if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
            !HasSmiCodeInStub()) {
            // Execution reaches this point when the first non-number argument
            // occurs (and only if smi code is skipped from the stub, otherwise
            // the patching has already been done earlier in this case branch).
            // A perfect moment to try patching to STRINGS for ADD operation.
            if (op_ == Token::ADD) {
              GenerateTypeTransition(masm);
            }
        }
        break;
      }
      case Token::MOD: {
        // For MOD we go directly to runtime in the non-smi case.
        break;
      }
      case Token::BIT_OR:
      case Token::BIT_AND:
      case Token::BIT_XOR:
      case Token::SAR:
      case Token::SHL:
      case Token::SHR: {
        Label skip_allocation, non_smi_shr_result;
        Register heap_number_map = r9;
        __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
        if (static_operands_type_.IsNumber()) {
          if (FLAG_debug_code) {
            // Assert at runtime that inputs are only numbers.
            __ AbortIfNotNumber(rdx);
            __ AbortIfNotNumber(rax);
          }
          FloatingPointHelper::LoadNumbersAsIntegers(masm);
        } else {
          FloatingPointHelper::LoadAsIntegers(masm,
                                              &call_runtime,
                                              heap_number_map);
        }
        switch (op_) {
          case Token::BIT_OR:  __ orl(rax, rcx); break;
          case Token::BIT_AND: __ andl(rax, rcx); break;
          case Token::BIT_XOR: __ xorl(rax, rcx); break;
          case Token::SAR: __ sarl_cl(rax); break;
          case Token::SHL: __ shll_cl(rax); break;
          case Token::SHR: {
            __ shrl_cl(rax);
            // Check if result is negative. This can only happen for a shift
            // by zero.
            __ testl(rax, rax);
            __ j(negative, &non_smi_shr_result);
            break;
          }
          default: UNREACHABLE();
        }

        STATIC_ASSERT(kSmiValueSize == 32);
        // Tag smi result and return.
        __ Integer32ToSmi(rax, rax);
        GenerateReturn(masm);

        // All bit-ops except SHR return a signed int32 that can be
        // returned immediately as a smi.
        // We might need to allocate a HeapNumber if we shift a negative
        // number right by zero (i.e., convert to UInt32).
        if (op_ == Token::SHR) {
          ASSERT(non_smi_shr_result.is_linked());
          __ bind(&non_smi_shr_result);
          // Allocate a heap number if needed.
          __ movl(rbx, rax);  // rbx holds result value (uint32 value as int64).
          switch (mode_) {
            case OVERWRITE_LEFT:
            case OVERWRITE_RIGHT:
              // If the operand was an object, we skip the
              // allocation of a heap number.
              __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
                                   1 * kPointerSize : 2 * kPointerSize));
              __ JumpIfNotSmi(rax, &skip_allocation);
              // Fall through!
            case NO_OVERWRITE:
              // Allocate heap number in new space.
              // Not using AllocateHeapNumber macro in order to reuse
              // already loaded heap_number_map.
              __ AllocateInNewSpace(HeapNumber::kSize,
                                    rax,
                                    rcx,
                                    no_reg,
                                    &call_runtime,
                                    TAG_OBJECT);
              // Set the map.
              if (FLAG_debug_code) {
                __ AbortIfNotRootValue(heap_number_map,
                                       Heap::kHeapNumberMapRootIndex,
                                       "HeapNumberMap register clobbered.");
              }
              __ movq(FieldOperand(rax, HeapObject::kMapOffset),
                      heap_number_map);
              __ bind(&skip_allocation);
              break;
            default: UNREACHABLE();
          }
          // Store the result in the HeapNumber and return.
          __ cvtqsi2sd(xmm0, rbx);
          __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
          GenerateReturn(masm);
        }

        break;
      }
      default: UNREACHABLE(); break;
    }
  }

  // If all else fails, use the runtime system to get the correct
  // result. If arguments was passed in registers now place them on the
  // stack in the correct order below the return address.
  __ bind(&call_runtime);

  if (HasArgsInRegisters()) {
    GenerateRegisterArgsPush(masm);
  }

  switch (op_) {
    case Token::ADD: {
      // Registers containing left and right operands respectively.
      Register lhs, rhs;

      if (HasArgsReversed()) {
        lhs = rax;
        rhs = rdx;
      } else {
        lhs = rdx;
        rhs = rax;
      }

      // Test for string arguments before calling runtime.
      Label not_strings, both_strings, not_string1, string1, string1_smi2;

      // If this stub has already generated FP-specific code then the arguments
      // are already in rdx and rax.
      if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
        GenerateLoadArguments(masm);
      }

      Condition is_smi;
      is_smi = masm->CheckSmi(lhs);
      __ j(is_smi, &not_string1);
      __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
      __ j(above_equal, &not_string1);

      // First argument is a a string, test second.
      is_smi = masm->CheckSmi(rhs);
      __ j(is_smi, &string1_smi2);
      __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
      __ j(above_equal, &string1);

      // First and second argument are strings.
      StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
      __ TailCallStub(&string_add_stub);

      __ bind(&string1_smi2);
      // First argument is a string, second is a smi. Try to lookup the number
      // string for the smi in the number string cache.
      NumberToStringStub::GenerateLookupNumberStringCache(
          masm, rhs, rbx, rcx, r8, true, &string1);

      // Replace second argument on stack and tailcall string add stub to make
      // the result.
      __ movq(Operand(rsp, 1 * kPointerSize), rbx);
      __ TailCallStub(&string_add_stub);

      // Only first argument is a string.
      __ bind(&string1);
      __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);

      // First argument was not a string, test second.
      __ bind(&not_string1);
      is_smi = masm->CheckSmi(rhs);
      __ j(is_smi, &not_strings);
      __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
      __ j(above_equal, &not_strings);

      // Only second argument is a string.
      __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);

      __ bind(&not_strings);
      // Neither argument is a string.
      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
      break;
    }
    case Token::SUB:
      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
      break;
    case Token::MUL:
      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
      break;
    case Token::DIV:
      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
      break;
    case Token::MOD:
      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
      break;
    case Token::BIT_OR:
      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
      break;
    case Token::BIT_AND:
      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
      break;
    case Token::BIT_XOR:
      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
      break;
    case Token::SAR:
      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
      break;
    case Token::SHL:
      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
      break;
    case Token::SHR:
      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
      break;
    default:
      UNREACHABLE();
  }
}


void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
  ASSERT(!HasArgsInRegisters());
  __ movq(rax, Operand(rsp, 1 * kPointerSize));
  __ movq(rdx, Operand(rsp, 2 * kPointerSize));
}


void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
  // If arguments are not passed in registers remove them from the stack before
  // returning.
  if (!HasArgsInRegisters()) {
    __ ret(2 * kPointerSize);  // Remove both operands
  } else {
    __ ret(0);
  }
}


void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
  ASSERT(HasArgsInRegisters());
  __ pop(rcx);
  if (HasArgsReversed()) {
    __ push(rax);
    __ push(rdx);
  } else {
    __ push(rdx);
    __ push(rax);
  }
  __ push(rcx);
}


void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
  Label get_result;

  // Ensure the operands are on the stack.
  if (HasArgsInRegisters()) {
    GenerateRegisterArgsPush(masm);
  }

  // Left and right arguments are already on stack.
  __ pop(rcx);  // Save the return address.

  // Push this stub's key.
  __ Push(Smi::FromInt(MinorKey()));

  // Although the operation and the type info are encoded into the key,
  // the encoding is opaque, so push them too.
  __ Push(Smi::FromInt(op_));

  __ Push(Smi::FromInt(runtime_operands_type_));

  __ push(rcx);  // The return address.

  // Perform patching to an appropriate fast case and return the result.
  __ TailCallExternalReference(
      ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
      5,
      1);
}


Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
  GenericBinaryOpStub stub(key, type_info);
  return stub.GetCode();
}


void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
  // Input on stack:
  // rsp[8]: argument (should be number).
  // rsp[0]: return address.
  Label runtime_call;
  Label runtime_call_clear_stack;
  Label input_not_smi;
  Label loaded;
  // Test that rax is a number.
  __ movq(rax, Operand(rsp, kPointerSize));
  __ JumpIfNotSmi(rax, &input_not_smi);
  // Input is a smi. Untag and load it onto the FPU stack.
  // Then load the bits of the double into rbx.
  __ SmiToInteger32(rax, rax);
  __ subq(rsp, Immediate(kPointerSize));
  __ cvtlsi2sd(xmm1, rax);
  __ movsd(Operand(rsp, 0), xmm1);
  __ movq(rbx, xmm1);
  __ movq(rdx, xmm1);
  __ fld_d(Operand(rsp, 0));
  __ addq(rsp, Immediate(kPointerSize));
  __ jmp(&loaded);

  __ bind(&input_not_smi);
  // Check if input is a HeapNumber.
  __ Move(rbx, Factory::heap_number_map());
  __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
  __ j(not_equal, &runtime_call);
  // Input is a HeapNumber. Push it on the FPU stack and load its
  // bits into rbx.
  __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
  __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
  __ movq(rdx, rbx);
  __ bind(&loaded);
  // ST[0] == double value
  // rbx = bits of double value.
  // rdx = also bits of double value.
  // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
  //   h = h0 = bits ^ (bits >> 32);
  //   h ^= h >> 16;
  //   h ^= h >> 8;
  //   h = h & (cacheSize - 1);
  // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
  __ sar(rdx, Immediate(32));
  __ xorl(rdx, rbx);
  __ movl(rcx, rdx);
  __ movl(rax, rdx);
  __ movl(rdi, rdx);
  __ sarl(rdx, Immediate(8));
  __ sarl(rcx, Immediate(16));
  __ sarl(rax, Immediate(24));
  __ xorl(rcx, rdx);
  __ xorl(rax, rdi);
  __ xorl(rcx, rax);
  ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
  __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));

  // ST[0] == double value.
  // rbx = bits of double value.
  // rcx = TranscendentalCache::hash(double value).
  __ movq(rax, ExternalReference::transcendental_cache_array_address());
  // rax points to cache array.
  __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
  // rax points to the cache for the type type_.
  // If NULL, the cache hasn't been initialized yet, so go through runtime.
  __ testq(rax, rax);
  __ j(zero, &runtime_call_clear_stack);
#ifdef DEBUG
  // Check that the layout of cache elements match expectations.
  {  // NOLINT - doesn't like a single brace on a line.
    TranscendentalCache::Element test_elem[2];
    char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
    char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
    char* elem_in0  = reinterpret_cast<char*>(&(test_elem[0].in[0]));
    char* elem_in1  = reinterpret_cast<char*>(&(test_elem[0].in[1]));
    char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
    // Two uint_32's and a pointer per element.
    CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
    CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
    CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
    CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
  }
#endif
  // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
  __ addl(rcx, rcx);
  __ lea(rcx, Operand(rax, rcx, times_8, 0));
  // Check if cache matches: Double value is stored in uint32_t[2] array.
  Label cache_miss;
  __ cmpq(rbx, Operand(rcx, 0));
  __ j(not_equal, &cache_miss);
  // Cache hit!
  __ movq(rax, Operand(rcx, 2 * kIntSize));
  __ fstp(0);  // Clear FPU stack.
  __ ret(kPointerSize);

  __ bind(&cache_miss);
  // Update cache with new value.
  Label nan_result;
  GenerateOperation(masm, &nan_result);
  __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
  __ movq(Operand(rcx, 0), rbx);
  __ movq(Operand(rcx, 2 * kIntSize), rax);
  __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
  __ ret(kPointerSize);

  __ bind(&runtime_call_clear_stack);
  __ fstp(0);
  __ bind(&runtime_call);
  __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);

  __ bind(&nan_result);
  __ fstp(0);  // Remove argument from FPU stack.
  __ LoadRoot(rax, Heap::kNanValueRootIndex);
  __ movq(Operand(rcx, 0), rbx);
  __ movq(Operand(rcx, 2 * kIntSize), rax);
  __ ret(kPointerSize);
}


Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
  switch (type_) {
    // Add more cases when necessary.
    case TranscendentalCache::SIN: return Runtime::kMath_sin;
    case TranscendentalCache::COS: return Runtime::kMath_cos;
    default:
      UNIMPLEMENTED();
      return Runtime::kAbort;
  }
}


void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
                                                Label* on_nan_result) {
  // Registers:
  // rbx: Bits of input double. Must be preserved.
  // rcx: Pointer to cache entry. Must be preserved.
  // st(0): Input double
  Label done;
  ASSERT(type_ == TranscendentalCache::SIN ||
         type_ == TranscendentalCache::COS);
  // More transcendental types can be added later.

  // Both fsin and fcos require arguments in the range +/-2^63 and
  // return NaN for infinities and NaN. They can share all code except
  // the actual fsin/fcos operation.
  Label in_range;
  // If argument is outside the range -2^63..2^63, fsin/cos doesn't
  // work. We must reduce it to the appropriate range.
  __ movq(rdi, rbx);
  // Move exponent and sign bits to low bits.
  __ shr(rdi, Immediate(HeapNumber::kMantissaBits));
  // Remove sign bit.
  __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
  int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
  __ cmpl(rdi, Immediate(supported_exponent_limit));
  __ j(below, &in_range);
  // Check for infinity and NaN. Both return NaN for sin.
  __ cmpl(rdi, Immediate(0x7ff));
  __ j(equal, on_nan_result);

  // Use fpmod to restrict argument to the range +/-2*PI.
  __ fldpi();
  __ fadd(0);
  __ fld(1);
  // FPU Stack: input, 2*pi, input.
  {
    Label no_exceptions;
    __ fwait();
    __ fnstsw_ax();
    // Clear if Illegal Operand or Zero Division exceptions are set.
    __ testl(rax, Immediate(5));  // #IO and #ZD flags of FPU status word.
    __ j(zero, &no_exceptions);
    __ fnclex();
    __ bind(&no_exceptions);
  }

  // Compute st(0) % st(1)
  {
    Label partial_remainder_loop;
    __ bind(&partial_remainder_loop);
    __ fprem1();
    __ fwait();
    __ fnstsw_ax();
    __ testl(rax, Immediate(0x400));  // Check C2 bit of FPU status word.
    // If C2 is set, computation only has partial result. Loop to
    // continue computation.
    __ j(not_zero, &partial_remainder_loop);
  }
  // FPU Stack: input, 2*pi, input % 2*pi
  __ fstp(2);
  // FPU Stack: input % 2*pi, 2*pi,
  __ fstp(0);
  // FPU Stack: input % 2*pi
  __ bind(&in_range);
  switch (type_) {
    case TranscendentalCache::SIN:
      __ fsin();
      break;
    case TranscendentalCache::COS:
      __ fcos();
      break;
    default:
      UNREACHABLE();
  }
  __ bind(&done);
}


// Get the integer part of a heap number.
// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
void IntegerConvert(MacroAssembler* masm,
                    Register result,
                    Register source) {
  // Result may be rcx. If result and source are the same register, source will
  // be overwritten.
  ASSERT(!result.is(rdi) && !result.is(rbx));
  // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
  // cvttsd2si (32-bit version) directly.
  Register double_exponent = rbx;
  Register double_value = rdi;
  Label done, exponent_63_plus;
  // Get double and extract exponent.
  __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
  // Clear result preemptively, in case we need to return zero.
  __ xorl(result, result);
  __ movq(xmm0, double_value);  // Save copy in xmm0 in case we need it there.
  // Double to remove sign bit, shift exponent down to least significant bits.
  // and subtract bias to get the unshifted, unbiased exponent.
  __ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
  __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
  __ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
  // Check whether the exponent is too big for a 63 bit unsigned integer.
  __ cmpl(double_exponent, Immediate(63));
  __ j(above_equal, &exponent_63_plus);
  // Handle exponent range 0..62.
  __ cvttsd2siq(result, xmm0);
  __ jmp(&done);

  __ bind(&exponent_63_plus);
  // Exponent negative or 63+.
  __ cmpl(double_exponent, Immediate(83));
  // If exponent negative or above 83, number contains no significant bits in
  // the range 0..2^31, so result is zero, and rcx already holds zero.
  __ j(above, &done);

  // Exponent in rage 63..83.
  // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
  // the least significant exponent-52 bits.

  // Negate low bits of mantissa if value is negative.
  __ addq(double_value, double_value);  // Move sign bit to carry.
  __ sbbl(result, result);  // And convert carry to -1 in result register.
  // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
  __ addl(double_value, result);
  // Do xor in opposite directions depending on where we want the result
  // (depending on whether result is rcx or not).

  if (result.is(rcx)) {
    __ xorl(double_value, result);
    // Left shift mantissa by (exponent - mantissabits - 1) to save the
    // bits that have positional values below 2^32 (the extra -1 comes from the
    // doubling done above to move the sign bit into the carry flag).
    __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
    __ shll_cl(double_value);
    __ movl(result, double_value);
  } else {
    // As the then-branch, but move double-value to result before shifting.
    __ xorl(result, double_value);
    __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
    __ shll_cl(result);
  }

  __ bind(&done);
}


// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
  // Check float operands.
  Label done;
  Label rax_is_smi;
  Label rax_is_object;
  Label rdx_is_object;

  __ JumpIfNotSmi(rdx, &rdx_is_object);
  __ SmiToInteger32(rdx, rdx);
  __ JumpIfSmi(rax, &rax_is_smi);

  __ bind(&rax_is_object);
  IntegerConvert(masm, rcx, rax);  // Uses rdi, rcx and rbx.
  __ jmp(&done);

  __ bind(&rdx_is_object);
  IntegerConvert(masm, rdx, rdx);  // Uses rdi, rcx and rbx.
  __ JumpIfNotSmi(rax, &rax_is_object);
  __ bind(&rax_is_smi);
  __ SmiToInteger32(rcx, rax);

  __ bind(&done);
  __ movl(rax, rdx);
}


// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
                                         Label* conversion_failure,
                                         Register heap_number_map) {
  // Check float operands.
  Label arg1_is_object, check_undefined_arg1;
  Label arg2_is_object, check_undefined_arg2;
  Label load_arg2, done;

  __ JumpIfNotSmi(rdx, &arg1_is_object);
  __ SmiToInteger32(rdx, rdx);
  __ jmp(&load_arg2);

  // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
  __ bind(&check_undefined_arg1);
  __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
  __ j(not_equal, conversion_failure);
  __ movl(rdx, Immediate(0));
  __ jmp(&load_arg2);

  __ bind(&arg1_is_object);
  __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
  __ j(not_equal, &check_undefined_arg1);
  // Get the untagged integer version of the edx heap number in rcx.
  IntegerConvert(masm, rdx, rdx);

  // Here rdx has the untagged integer, rax has a Smi or a heap number.
  __ bind(&load_arg2);
  // Test if arg2 is a Smi.
  __ JumpIfNotSmi(rax, &arg2_is_object);
  __ SmiToInteger32(rax, rax);
  __ movl(rcx, rax);
  __ jmp(&done);

  // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
  __ bind(&check_undefined_arg2);
  __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
  __ j(not_equal, conversion_failure);
  __ movl(rcx, Immediate(0));
  __ jmp(&done);

  __ bind(&arg2_is_object);
  __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
  __ j(not_equal, &check_undefined_arg2);
  // Get the untagged integer version of the rax heap number in rcx.
  IntegerConvert(masm, rcx, rax);
  __ bind(&done);
  __ movl(rax, rdx);
}


void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
  __ SmiToInteger32(kScratchRegister, rdx);
  __ cvtlsi2sd(xmm0, kScratchRegister);
  __ SmiToInteger32(kScratchRegister, rax);
  __ cvtlsi2sd(xmm1, kScratchRegister);
}


void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
  Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
  // Load operand in rdx into xmm0.
  __ JumpIfSmi(rdx, &load_smi_rdx);
  __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
  // Load operand in rax into xmm1.
  __ JumpIfSmi(rax, &load_smi_rax);
  __ bind(&load_nonsmi_rax);
  __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi_rdx);
  __ SmiToInteger32(kScratchRegister, rdx);
  __ cvtlsi2sd(xmm0, kScratchRegister);
  __ JumpIfNotSmi(rax, &load_nonsmi_rax);

  __ bind(&load_smi_rax);
  __ SmiToInteger32(kScratchRegister, rax);
  __ cvtlsi2sd(xmm1, kScratchRegister);

  __ bind(&done);
}


void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
                                                  Label* not_numbers) {
  Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
  // Load operand in rdx into xmm0, or branch to not_numbers.
  __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
  __ JumpIfSmi(rdx, &load_smi_rdx);
  __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
  __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
  __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
  // Load operand in rax into xmm1, or branch to not_numbers.
  __ JumpIfSmi(rax, &load_smi_rax);

  __ bind(&load_nonsmi_rax);
  __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
  __ j(not_equal, not_numbers);
  __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
  __ jmp(&done);

  __ bind(&load_smi_rdx);
  __ SmiToInteger32(kScratchRegister, rdx);
  __ cvtlsi2sd(xmm0, kScratchRegister);
  __ JumpIfNotSmi(rax, &load_nonsmi_rax);

  __ bind(&load_smi_rax);
  __ SmiToInteger32(kScratchRegister, rax);
  __ cvtlsi2sd(xmm1, kScratchRegister);
  __ bind(&done);
}


void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
  Label slow, done;

  if (op_ == Token::SUB) {
    if (include_smi_code_) {
      // Check whether the value is a smi.
      Label try_float;
      __ JumpIfNotSmi(rax, &try_float);
      if (negative_zero_ == kIgnoreNegativeZero) {
        __ SmiCompare(rax, Smi::FromInt(0));
        __ j(equal, &done);
      }
      __ SmiNeg(rax, rax, &done);

      // Either zero or Smi::kMinValue, neither of which become a smi when
      // negated. We handle negative zero here if required. We always enter
      // the runtime system if we have Smi::kMinValue.
      if (negative_zero_ == kStrictNegativeZero) {
        __ SmiCompare(rax, Smi::FromInt(0));
        __ j(not_equal, &slow);
        __ Move(rax, Factory::minus_zero_value());
        __ jmp(&done);
      } else  {
        __ SmiCompare(rax, Smi::FromInt(Smi::kMinValue));
        __ j(equal, &slow);
        __ jmp(&done);
      }
      // Try floating point case.
      __ bind(&try_float);
    } else if (FLAG_debug_code) {
      __ AbortIfSmi(rax);
    }

    __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
    __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
    __ j(not_equal, &slow);
    // Operand is a float, negate its value by flipping sign bit.
    __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
    __ movq(kScratchRegister, Immediate(0x01));
    __ shl(kScratchRegister, Immediate(63));
    __ xor_(rdx, kScratchRegister);  // Flip sign.
    // rdx is value to store.
    if (overwrite_ == UNARY_OVERWRITE) {
      __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
    } else {
      __ AllocateHeapNumber(rcx, rbx, &slow);
      // rcx: allocated 'empty' number
      __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
      __ movq(rax, rcx);
    }
  } else if (op_ == Token::BIT_NOT) {
    if (include_smi_code_) {
      Label try_float;
      __ JumpIfNotSmi(rax, &try_float);
      __ SmiNot(rax, rax);
      __ jmp(&done);
      // Try floating point case.
      __ bind(&try_float);
    } else if (FLAG_debug_code) {
      __ AbortIfSmi(rax);
    }

    // Check if the operand is a heap number.
    __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
    __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
    __ j(not_equal, &slow);

    // Convert the heap number in rax to an untagged integer in rcx.
    IntegerConvert(masm, rax, rax);

    // Do the bitwise operation and smi tag the result.
    __ notl(rax);
    __ Integer32ToSmi(rax, rax);
  }

  // Return from the stub.
  __ bind(&done);
  __ StubReturn(1);

  // Handle the slow case by jumping to the JavaScript builtin.
  __ bind(&slow);
  __ pop(rcx);  // pop return address
  __ push(rax);
  __ push(rcx);  // push return address
  switch (op_) {
    case Token::SUB:
      __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
      break;
    case Token::BIT_NOT:
      __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
      break;
    default:
      UNREACHABLE();
  }
}


void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
  // The key is in rdx and the parameter count is in rax.

  // The displacement is used for skipping the frame pointer on the
  // stack. It is the offset of the last parameter (if any) relative
  // to the frame pointer.
  static const int kDisplacement = 1 * kPointerSize;

  // Check that the key is a smi.
  Label slow;
  __ JumpIfNotSmi(rdx, &slow);

  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor;
  __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
  __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(equal, &adaptor);

  // Check index against formal parameters count limit passed in
  // through register rax. Use unsigned comparison to get negative
  // check for free.
  __ cmpq(rdx, rax);
  __ j(above_equal, &slow);

  // Read the argument from the stack and return it.
  SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
  __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
  __ Ret();

  // Arguments adaptor case: Check index against actual arguments
  // limit found in the arguments adaptor frame. Use unsigned
  // comparison to get negative check for free.
  __ bind(&adaptor);
  __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ cmpq(rdx, rcx);
  __ j(above_equal, &slow);

  // Read the argument from the stack and return it.
  index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
  __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
  index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
  __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
  __ Ret();

  // Slow-case: Handle non-smi or out-of-bounds access to arguments
  // by calling the runtime system.
  __ bind(&slow);
  __ pop(rbx);  // Return address.
  __ push(rdx);
  __ push(rbx);
  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}


void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
  // rsp[0] : return address
  // rsp[8] : number of parameters
  // rsp[16] : receiver displacement
  // rsp[24] : function

  // The displacement is used for skipping the return address and the
  // frame pointer on the stack. It is the offset of the last
  // parameter (if any) relative to the frame pointer.
  static const int kDisplacement = 2 * kPointerSize;

  // Check if the calling frame is an arguments adaptor frame.
  Label adaptor_frame, try_allocate, runtime;
  __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
  __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
                Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
  __ j(equal, &adaptor_frame);

  // Get the length from the frame.
  __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
  __ jmp(&try_allocate);

  // Patch the arguments.length and the parameters pointer.
  __ bind(&adaptor_frame);
  __ SmiToInteger32(rcx,
                    Operand(rdx,
                            ArgumentsAdaptorFrameConstants::kLengthOffset));
  // Space on stack must already hold a smi.
  __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
  // Do not clobber the length index for the indexing operation since
  // it is used compute the size for allocation later.
  __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
  __ movq(Operand(rsp, 2 * kPointerSize), rdx);

  // Try the new space allocation. Start out with computing the size of
  // the arguments object and the elements array.
  Label add_arguments_object;
  __ bind(&try_allocate);
  __ testl(rcx, rcx);
  __ j(zero, &add_arguments_object);
  __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
  __ bind(&add_arguments_object);
  __ addl(rcx, Immediate(Heap::kArgumentsObjectSize));

  // Do the allocation of both objects in one go.
  __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);

  // Get the arguments boilerplate from the current (global) context.
  int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
  __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
  __ movq(rdi, Operand(rdi, offset));

  // Copy the JS object part.
  STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
  __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
  __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
  __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
  __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
  __ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
  __ movq(FieldOperand(rax, 2 * kPointerSize), rbx);

  // Setup the callee in-object property.
  ASSERT(Heap::arguments_callee_index == 0);
  __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
  __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);

  // Get the length (smi tagged) and set that as an in-object property too.
  ASSERT(Heap::arguments_length_index == 1);
  __ movq(rcx, Operand(rsp, 1 * kPointerSize));
  __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);

  // If there are no actual arguments, we're done.
  Label done;
  __ SmiTest(rcx);
  __ j(zero, &done);

  // Get the parameters pointer from the stack and untag the length.
  __ movq(rdx, Operand(rsp, 2 * kPointerSize));

  // Setup the elements pointer in the allocated arguments object and
  // initialize the header in the elements fixed array.
  __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
  __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
  __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
  __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
  __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
  __ SmiToInteger32(rcx, rcx);  // Untag length for the loop below.

  // Copy the fixed array slots.
  Label loop;
  __ bind(&loop);
  __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize));  // Skip receiver.
  __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
  __ addq(rdi, Immediate(kPointerSize));
  __ subq(rdx, Immediate(kPointerSize));
  __ decl(rcx);
  __ j(not_zero, &loop);

  // Return and remove the on-stack parameters.
  __ bind(&done);
  __ ret(3 * kPointerSize);

  // Do the runtime call to allocate the arguments object.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}


void RegExpExecStub::Generate(MacroAssembler* masm) {
  // Just jump directly to runtime if native RegExp is not selected at compile
  // time or if regexp entry in generated code is turned off runtime switch or
  // at compilation.
#ifdef V8_INTERPRETED_REGEXP
  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else  // V8_INTERPRETED_REGEXP
  if (!FLAG_regexp_entry_native) {
    __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
    return;
  }

  // Stack frame on entry.
  //  esp[0]: return address
  //  esp[8]: last_match_info (expected JSArray)
  //  esp[16]: previous index
  //  esp[24]: subject string
  //  esp[32]: JSRegExp object

  static const int kLastMatchInfoOffset = 1 * kPointerSize;
  static const int kPreviousIndexOffset = 2 * kPointerSize;
  static const int kSubjectOffset = 3 * kPointerSize;
  static const int kJSRegExpOffset = 4 * kPointerSize;

  Label runtime;

  // Ensure that a RegExp stack is allocated.
  ExternalReference address_of_regexp_stack_memory_address =
      ExternalReference::address_of_regexp_stack_memory_address();
  ExternalReference address_of_regexp_stack_memory_size =
      ExternalReference::address_of_regexp_stack_memory_size();
  __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
  __ movq(kScratchRegister, Operand(kScratchRegister, 0));
  __ testq(kScratchRegister, kScratchRegister);
  __ j(zero, &runtime);


  // Check that the first argument is a JSRegExp object.
  __ movq(rax, Operand(rsp, kJSRegExpOffset));
  __ JumpIfSmi(rax, &runtime);
  __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
  __ j(not_equal, &runtime);
  // Check that the RegExp has been compiled (data contains a fixed array).
  __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
  if (FLAG_debug_code) {
    Condition is_smi = masm->CheckSmi(rcx);
    __ Check(NegateCondition(is_smi),
        "Unexpected type for RegExp data, FixedArray expected");
    __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
    __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
  }

  // rcx: RegExp data (FixedArray)
  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
  __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
  __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
  __ j(not_equal, &runtime);

  // rcx: RegExp data (FixedArray)
  // Check that the number of captures fit in the static offsets vector buffer.
  __ SmiToInteger32(rdx,
                    FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2.
  __ leal(rdx, Operand(rdx, rdx, times_1, 2));
  // Check that the static offsets vector buffer is large enough.
  __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
  __ j(above, &runtime);

  // rcx: RegExp data (FixedArray)
  // rdx: Number of capture registers
  // Check that the second argument is a string.
  __ movq(rax, Operand(rsp, kSubjectOffset));
  __ JumpIfSmi(rax, &runtime);
  Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
  __ j(NegateCondition(is_string), &runtime);

  // rax: Subject string.
  // rcx: RegExp data (FixedArray).
  // rdx: Number of capture registers.
  // Check that the third argument is a positive smi less than the string
  // length. A negative value will be greater (unsigned comparison).
  __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
  __ JumpIfNotSmi(rbx, &runtime);
  __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
  __ j(above_equal, &runtime);

  // rcx: RegExp data (FixedArray)
  // rdx: Number of capture registers
  // Check that the fourth object is a JSArray object.
  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
  __ JumpIfSmi(rax, &runtime);
  __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
  __ j(not_equal, &runtime);
  // Check that the JSArray is in fast case.
  __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
  __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
  __ Cmp(rax, Factory::fixed_array_map());
  __ j(not_equal, &runtime);
  // Check that the last match info has space for the capture registers and the
  // additional information. Ensure no overflow in add.
  STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
  __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
  __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
  __ cmpl(rdx, rax);
  __ j(greater, &runtime);

  // rcx: RegExp data (FixedArray)
  // Check the representation and encoding of the subject string.
  Label seq_ascii_string, seq_two_byte_string, check_code;
  __ movq(rax, Operand(rsp, kSubjectOffset));
  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
  __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
  // First check for flat two byte string.
  __ andb(rbx, Immediate(
      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
  STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
  __ j(zero, &seq_two_byte_string);
  // Any other flat string must be a flat ascii string.
  __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
  __ j(zero, &seq_ascii_string);

  // Check for flat cons string.
  // A flat cons string is a cons string where the second part is the empty
  // string. In that case the subject string is just the first part of the cons
  // string. Also in this case the first part of the cons string is known to be
  // a sequential string or an external string.
  STATIC_ASSERT(kExternalStringTag !=0);
  STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
  __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
  __ j(not_zero, &runtime);
  // String is a cons string.
  __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
  __ Cmp(rdx, Factory::empty_string());
  __ j(not_equal, &runtime);
  __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
  // String is a cons string with empty second part.
  // rax: first part of cons string.
  // rbx: map of first part of cons string.
  // Is first part a flat two byte string?
  __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
           Immediate(kStringRepresentationMask | kStringEncodingMask));
  STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
  __ j(zero, &seq_two_byte_string);
  // Any other flat string must be ascii.
  __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
           Immediate(kStringRepresentationMask));
  __ j(not_zero, &runtime);

  __ bind(&seq_ascii_string);
  // rax: subject string (sequential ascii)
  // rcx: RegExp data (FixedArray)
  __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
  __ Set(rdi, 1);  // Type is ascii.
  __ jmp(&check_code);

  __ bind(&seq_two_byte_string);
  // rax: subject string (flat two-byte)
  // rcx: RegExp data (FixedArray)
  __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
  __ Set(rdi, 0);  // Type is two byte.

  __ bind(&check_code);
  // Check that the irregexp code has been generated for the actual string
  // encoding. If it has, the field contains a code object otherwise it contains
  // the hole.
  __ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
  __ j(not_equal, &runtime);

  // rax: subject string
  // rdi: encoding of subject string (1 if ascii, 0 if two_byte);
  // r11: code
  // Load used arguments before starting to push arguments for call to native
  // RegExp code to avoid handling changing stack height.
  __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));

  // rax: subject string
  // rbx: previous index
  // rdi: encoding of subject string (1 if ascii 0 if two_byte);
  // r11: code
  // All checks done. Now push arguments for native regexp code.
  __ IncrementCounter(&Counters::regexp_entry_native, 1);

  // rsi is caller save on Windows and used to pass parameter on Linux.
  __ push(rsi);

  static const int kRegExpExecuteArguments = 7;
  __ PrepareCallCFunction(kRegExpExecuteArguments);
  int argument_slots_on_stack =
      masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);

  // Argument 7: Indicate that this is a direct call from JavaScript.
  __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
          Immediate(1));

  // Argument 6: Start (high end) of backtracking stack memory area.
  __ movq(kScratchRegister, address_of_regexp_stack_memory_address);
  __ movq(r9, Operand(kScratchRegister, 0));
  __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
  __ addq(r9, Operand(kScratchRegister, 0));
  // Argument 6 passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
  __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
#endif

  // Argument 5: static offsets vector buffer.
  __ movq(r8, ExternalReference::address_of_static_offsets_vector());
  // Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
  __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
#endif

  // First four arguments are passed in registers on both Linux and Windows.
#ifdef _WIN64
  Register arg4 = r9;
  Register arg3 = r8;
  Register arg2 = rdx;
  Register arg1 = rcx;
#else
  Register arg4 = rcx;
  Register arg3 = rdx;
  Register arg2 = rsi;
  Register arg1 = rdi;
#endif

  // Keep track on aliasing between argX defined above and the registers used.
  // rax: subject string
  // rbx: previous index
  // rdi: encoding of subject string (1 if ascii 0 if two_byte);
  // r11: code

  // Argument 4: End of string data
  // Argument 3: Start of string data
  Label setup_two_byte, setup_rest;
  __ testb(rdi, rdi);
  __ j(zero, &setup_two_byte);
  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
  __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
  __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
  __ jmp(&setup_rest);
  __ bind(&setup_two_byte);
  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
  __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
  __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));

  __ bind(&setup_rest);
  // Argument 2: Previous index.
  __ movq(arg2, rbx);

  // Argument 1: Subject string.
  __ movq(arg1, rax);

  // Locate the code entry and call it.
  __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
  __ CallCFunction(r11, kRegExpExecuteArguments);

  // rsi is caller save, as it is used to pass parameter.
  __ pop(rsi);

  // Check the result.
  Label success;
  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
  __ j(equal, &success);
  Label failure;
  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
  __ j(equal, &failure);
  __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
  // If not exception it can only be retry. Handle that in the runtime system.
  __ j(not_equal, &runtime);
  // Result must now be exception. If there is no pending exception already a
  // stack overflow (on the backtrack stack) was detected in RegExp code but
  // haven't created the exception yet. Handle that in the runtime system.
  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
  ExternalReference pending_exception_address(Top::k_pending_exception_address);
  __ movq(kScratchRegister, pending_exception_address);
  __ Cmp(kScratchRegister, Factory::the_hole_value());
  __ j(equal, &runtime);
  __ bind(&failure);
  // For failure and exception return null.
  __ Move(rax, Factory::null_value());
  __ ret(4 * kPointerSize);

  // Load RegExp data.
  __ bind(&success);
  __ movq(rax, Operand(rsp, kJSRegExpOffset));
  __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
  __ SmiToInteger32(rax,
                    FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2.
  __ leal(rdx, Operand(rax, rax, times_1, 2));

  // rdx: Number of capture registers
  // Load last_match_info which is still known to be a fast case JSArray.
  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
  __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));

  // rbx: last_match_info backing store (FixedArray)
  // rdx: number of capture registers
  // Store the capture count.
  __ Integer32ToSmi(kScratchRegister, rdx);
  __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
          kScratchRegister);
  // Store last subject and last input.
  __ movq(rax, Operand(rsp, kSubjectOffset));
  __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
  __ movq(rcx, rbx);
  __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
  __ movq(rax, Operand(rsp, kSubjectOffset));
  __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
  __ movq(rcx, rbx);
  __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);

  // Get the static offsets vector filled by the native regexp code.
  __ movq(rcx, ExternalReference::address_of_static_offsets_vector());

  // rbx: last_match_info backing store (FixedArray)
  // rcx: offsets vector
  // rdx: number of capture registers
  Label next_capture, done;
  // Capture register counter starts from number of capture registers and
  // counts down until wraping after zero.
  __ bind(&next_capture);
  __ subq(rdx, Immediate(1));
  __ j(negative, &done);
  // Read the value from the static offsets vector buffer and make it a smi.
  __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
  __ Integer32ToSmi(rdi, rdi, &runtime);
  // Store the smi value in the last match info.
  __ movq(FieldOperand(rbx,
                       rdx,
                       times_pointer_size,
                       RegExpImpl::kFirstCaptureOffset),
          rdi);
  __ jmp(&next_capture);
  __ bind(&done);

  // Return last match info.
  __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
  __ ret(4 * kPointerSize);

  // Do the runtime call to execute the regexp.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif  // V8_INTERPRETED_REGEXP
}


void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
                                                         Register object,
                                                         Register result,
                                                         Register scratch1,
                                                         Register scratch2,
                                                         bool object_is_smi,
                                                         Label* not_found) {
  // Use of registers. Register result is used as a temporary.
  Register number_string_cache = result;
  Register mask = scratch1;
  Register scratch = scratch2;

  // Load the number string cache.
  __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);

  // Make the hash mask from the length of the number string cache. It
  // contains two elements (number and string) for each cache entry.
  __ SmiToInteger32(
      mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
  __ shrl(mask, Immediate(1));
  __ subq(mask, Immediate(1));  // Make mask.

  // Calculate the entry in the number string cache. The hash value in the
  // number string cache for smis is just the smi value, and the hash for
  // doubles is the xor of the upper and lower words. See
  // Heap::GetNumberStringCache.
  Label is_smi;
  Label load_result_from_cache;
  if (!object_is_smi) {
    __ JumpIfSmi(object, &is_smi);
    __ CheckMap(object, Factory::heap_number_map(), not_found, true);

    STATIC_ASSERT(8 == kDoubleSize);
    __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
    __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
    GenerateConvertHashCodeToIndex(masm, scratch, mask);

    Register index = scratch;
    Register probe = mask;
    __ movq(probe,
            FieldOperand(number_string_cache,
                         index,
                         times_1,
                         FixedArray::kHeaderSize));
    __ JumpIfSmi(probe, not_found);
    ASSERT(CpuFeatures::IsSupported(SSE2));
    CpuFeatures::Scope fscope(SSE2);
    __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
    __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
    __ ucomisd(xmm0, xmm1);
    __ j(parity_even, not_found);  // Bail out if NaN is involved.
    __ j(not_equal, not_found);  // The cache did not contain this value.
    __ jmp(&load_result_from_cache);
  }

  __ bind(&is_smi);
  __ SmiToInteger32(scratch, object);
  GenerateConvertHashCodeToIndex(masm, scratch, mask);

  Register index = scratch;
  // Check if the entry is the smi we are looking for.
  __ cmpq(object,
          FieldOperand(number_string_cache,
                       index,
                       times_1,
                       FixedArray::kHeaderSize));
  __ j(not_equal, not_found);

  // Get the result from the cache.
  __ bind(&load_result_from_cache);
  __ movq(result,
          FieldOperand(number_string_cache,
                       index,
                       times_1,
                       FixedArray::kHeaderSize + kPointerSize));
  __ IncrementCounter(&Counters::number_to_string_native, 1);
}


void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
                                                        Register hash,
                                                        Register mask) {
  __ and_(hash, mask);
  // Each entry in string cache consists of two pointer sized fields,
  // but times_twice_pointer_size (multiplication by 16) scale factor
  // is not supported by addrmode on x64 platform.
  // So we have to premultiply entry index before lookup.
  __ shl(hash, Immediate(kPointerSizeLog2 + 1));
}


void NumberToStringStub::Generate(MacroAssembler* masm) {
  Label runtime;

  __ movq(rbx, Operand(rsp, kPointerSize));

  // Generate code to lookup number in the number string cache.
  GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
  __ ret(1 * kPointerSize);

  __ bind(&runtime);
  // Handle number to string in the runtime system if not found in the cache.
  __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}


static int NegativeComparisonResult(Condition cc) {
  ASSERT(cc != equal);
  ASSERT((cc == less) || (cc == less_equal)
      || (cc == greater) || (cc == greater_equal));
  return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}


void CompareStub::Generate(MacroAssembler* masm) {
  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));

  Label check_unequal_objects, done;

  // Compare two smis if required.
  if (include_smi_compare_) {
    Label non_smi, smi_done;
    __ JumpIfNotBothSmi(rax, rdx, &non_smi);
    __ subq(rdx, rax);
    __ j(no_overflow, &smi_done);
    __ neg(rdx);  // Correct sign in case of overflow.
    __ bind(&smi_done);
    __ movq(rax, rdx);
    __ ret(0);
    __ bind(&non_smi);
  } else if (FLAG_debug_code) {
    Label ok;
    __ JumpIfNotSmi(rdx, &ok);
    __ JumpIfNotSmi(rax, &ok);
    __ Abort("CompareStub: smi operands");
    __ bind(&ok);
  }

  // The compare stub returns a positive, negative, or zero 64-bit integer
  // value in rax, corresponding to result of comparing the two inputs.
  // NOTICE! This code is only reached after a smi-fast-case check, so
  // it is certain that at least one operand isn't a smi.

  // Two identical objects are equal unless they are both NaN or undefined.
  {
    Label not_identical;
    __ cmpq(rax, rdx);
    __ j(not_equal, &not_identical);

    if (cc_ != equal) {
      // Check for undefined.  undefined OP undefined is false even though
      // undefined == undefined.
      Label check_for_nan;
      __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
      __ j(not_equal, &check_for_nan);
      __ Set(rax, NegativeComparisonResult(cc_));
      __ ret(0);
      __ bind(&check_for_nan);
    }

    // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    // so we do the second best thing - test it ourselves.
    // Note: if cc_ != equal, never_nan_nan_ is not used.
    // We cannot set rax to EQUAL until just before return because
    // rax must be unchanged on jump to not_identical.

    if (never_nan_nan_ && (cc_ == equal)) {
      __ Set(rax, EQUAL);
      __ ret(0);
    } else {
      Label heap_number;
      // If it's not a heap number, then return equal for (in)equality operator.
      __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
             Factory::heap_number_map());
      __ j(equal, &heap_number);
      if (cc_ != equal) {
        // Call runtime on identical JSObjects.  Otherwise return equal.
        __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
        __ j(above_equal, &not_identical);
      }
      __ Set(rax, EQUAL);
      __ ret(0);

      __ bind(&heap_number);
      // It is a heap number, so return  equal if it's not NaN.
      // For NaN, return 1 for every condition except greater and
      // greater-equal.  Return -1 for them, so the comparison yields
      // false for all conditions except not-equal.
      __ Set(rax, EQUAL);
      __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
      __ ucomisd(xmm0, xmm0);
      __ setcc(parity_even, rax);
      // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
      if (cc_ == greater_equal || cc_ == greater) {
        __ neg(rax);
      }
      __ ret(0);
    }

    __ bind(&not_identical);
  }

  if (cc_ == equal) {  // Both strict and non-strict.
    Label slow;  // Fallthrough label.

    // If we're doing a strict equality comparison, we don't have to do
    // type conversion, so we generate code to do fast comparison for objects
    // and oddballs. Non-smi numbers and strings still go through the usual
    // slow-case code.
    if (strict_) {
      // If either is a Smi (we know that not both are), then they can only
      // be equal if the other is a HeapNumber. If so, use the slow case.
      {
        Label not_smis;
        __ SelectNonSmi(rbx, rax, rdx, &not_smis);

        // Check if the non-smi operand is a heap number.
        __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
               Factory::heap_number_map());
        // If heap number, handle it in the slow case.
        __ j(equal, &slow);
        // Return non-equal.  ebx (the lower half of rbx) is not zero.
        __ movq(rax, rbx);
        __ ret(0);

        __ bind(&not_smis);
      }

      // If either operand is a JSObject or an oddball value, then they are not
      // equal since their pointers are different
      // There is no test for undetectability in strict equality.

      // If the first object is a JS object, we have done pointer comparison.
      STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
      Label first_non_object;
      __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
      __ j(below, &first_non_object);
      // Return non-zero (eax (not rax) is not zero)
      Label return_not_equal;
      STATIC_ASSERT(kHeapObjectTag != 0);
      __ bind(&return_not_equal);
      __ ret(0);

      __ bind(&first_non_object);
      // Check for oddballs: true, false, null, undefined.
      __ CmpInstanceType(rcx, ODDBALL_TYPE);
      __ j(equal, &return_not_equal);

      __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
      __ j(above_equal, &return_not_equal);

      // Check for oddballs: true, false, null, undefined.
      __ CmpInstanceType(rcx, ODDBALL_TYPE);
      __ j(equal, &return_not_equal);

      // Fall through to the general case.
    }
    __ bind(&slow);
  }

  // Generate the number comparison code.
  if (include_number_compare_) {
    Label non_number_comparison;
    Label unordered;
    FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
    __ xorl(rax, rax);
    __ xorl(rcx, rcx);
    __ ucomisd(xmm0, xmm1);

    // Don't base result on EFLAGS when a NaN is involved.
    __ j(parity_even, &unordered);
    // Return a result of -1, 0, or 1, based on EFLAGS.
    __ setcc(above, rax);
    __ setcc(below, rcx);
    __ subq(rax, rcx);
    __ ret(0);

    // If one of the numbers was NaN, then the result is always false.
    // The cc is never not-equal.
    __ bind(&unordered);
    ASSERT(cc_ != not_equal);
    if (cc_ == less || cc_ == less_equal) {
      __ Set(rax, 1);
    } else {
      __ Set(rax, -1);
    }
    __ ret(0);

    // The number comparison code did not provide a valid result.
    __ bind(&non_number_comparison);
  }

  // Fast negative check for symbol-to-symbol equality.
  Label check_for_strings;
  if (cc_ == equal) {
    BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
    BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);

    // We've already checked for object identity, so if both operands
    // are symbols they aren't equal. Register eax (not rax) already holds a
    // non-zero value, which indicates not equal, so just return.
    __ ret(0);
  }

  __ bind(&check_for_strings);

  __ JumpIfNotBothSequentialAsciiStrings(
      rdx, rax, rcx, rbx, &check_unequal_objects);

  // Inline comparison of ascii strings.
  StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
                                                     rdx,
                                                     rax,
                                                     rcx,
                                                     rbx,
                                                     rdi,
                                                     r8);

#ifdef DEBUG
  __ Abort("Unexpected fall-through from string comparison");
#endif

  __ bind(&check_unequal_objects);
  if (cc_ == equal && !strict_) {
    // Not strict equality.  Objects are unequal if
    // they are both JSObjects and not undetectable,
    // and their pointers are different.
    Label not_both_objects, return_unequal;
    // At most one is a smi, so we can test for smi by adding the two.
    // A smi plus a heap object has the low bit set, a heap object plus
    // a heap object has the low bit clear.
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagMask == 1);
    __ lea(rcx, Operand(rax, rdx, times_1, 0));
    __ testb(rcx, Immediate(kSmiTagMask));
    __ j(not_zero, &not_both_objects);
    __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
    __ j(below, &not_both_objects);
    __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
    __ j(below, &not_both_objects);
    __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
             Immediate(1 << Map::kIsUndetectable));
    __ j(zero, &return_unequal);
    __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
             Immediate(1 << Map::kIsUndetectable));
    __ j(zero, &return_unequal);
    // The objects are both undetectable, so they both compare as the value
    // undefined, and are equal.
    __ Set(rax, EQUAL);
    __ bind(&return_unequal);
    // Return non-equal by returning the non-zero object pointer in eax,
    // or return equal if we fell through to here.
    __ ret(0);
    __ bind(&not_both_objects);
  }

  // Push arguments below the return address to prepare jump to builtin.
  __ pop(rcx);
  __ push(rdx);
  __ push(rax);

  // Figure out which native to call and setup the arguments.
  Builtins::JavaScript builtin;
  if (cc_ == equal) {
    builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
  } else {
    builtin = Builtins::COMPARE;
    __ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
  }

  // Restore return address on the stack.
  __ push(rcx);

  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
  // tagged as a small integer.
  __ InvokeBuiltin(builtin, JUMP_FUNCTION);
}


void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
                                    Label* label,
                                    Register object,
                                    Register scratch) {
  __ JumpIfSmi(object, label);
  __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
  __ movzxbq(scratch,
             FieldOperand(scratch, Map::kInstanceTypeOffset));
  // Ensure that no non-strings have the symbol bit set.
  STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
  STATIC_ASSERT(kSymbolTag != 0);
  __ testb(scratch, Immediate(kIsSymbolMask));
  __ j(zero, label);
}


void StackCheckStub::Generate(MacroAssembler* masm) {
  // Because builtins always remove the receiver from the stack, we
  // have to fake one to avoid underflowing the stack. The receiver
  // must be inserted below the return address on the stack so we
  // temporarily store that in a register.
  __ pop(rax);
  __ Push(Smi::FromInt(0));
  __ push(rax);

  // Do tail-call to runtime routine.
  __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
}


void CallFunctionStub::Generate(MacroAssembler* masm) {
  Label slow;

  // If the receiver might be a value (string, number or boolean) check for this
  // and box it if it is.
  if (ReceiverMightBeValue()) {
    // Get the receiver from the stack.
    // +1 ~ return address
    Label receiver_is_value, receiver_is_js_object;
    __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));

    // Check if receiver is a smi (which is a number value).
    __ JumpIfSmi(rax, &receiver_is_value);

    // Check if the receiver is a valid JS object.
    __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
    __ j(above_equal, &receiver_is_js_object);

    // Call the runtime to box the value.
    __ bind(&receiver_is_value);
    __ EnterInternalFrame();
    __ push(rax);
    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    __ LeaveInternalFrame();
    __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);

    __ bind(&receiver_is_js_object);
  }

  // Get the function to call from the stack.
  // +2 ~ receiver, return address
  __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));

  // Check that the function really is a JavaScript function.
  __ JumpIfSmi(rdi, &slow);
  // Goto slow case if we do not have a function.
  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
  __ j(not_equal, &slow);

  // Fast-case: Just invoke the function.
  ParameterCount actual(argc_);
  __ InvokeFunction(rdi, actual, JUMP_FUNCTION);

  // Slow-case: Non-function called.
  __ bind(&slow);
  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
  // of the original receiver from the call site).
  __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
  __ Set(rax, argc_);
  __ Set(rbx, 0);
  __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
  Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
  __ Jump(adaptor, RelocInfo::CODE_TARGET);
}


void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
  // Check that stack should contain next handler, frame pointer, state and
  // return address in that order.
  STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
            StackHandlerConstants::kStateOffset);
  STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
            StackHandlerConstants::kPCOffset);

  ExternalReference handler_address(Top::k_handler_address);
  __ movq(kScratchRegister, handler_address);
  __ movq(rsp, Operand(kScratchRegister, 0));
  // get next in chain
  __ pop(rcx);
  __ movq(Operand(kScratchRegister, 0), rcx);
  __ pop(rbp);  // pop frame pointer
  __ pop(rdx);  // remove state

  // Before returning we restore the context from the frame pointer if not NULL.
  // The frame pointer is NULL in the exception handler of a JS entry frame.
  __ xor_(rsi, rsi);  // tentatively set context pointer to NULL
  Label skip;
  __ cmpq(rbp, Immediate(0));
  __ j(equal, &skip);
  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);
  __ ret(0);
}


void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
  Label empty_result;
  Label prologue;
  Label promote_scheduled_exception;
  __ EnterApiExitFrame(kStackSpace, 0);
  ASSERT_EQ(kArgc, 4);
#ifdef _WIN64
  // All the parameters should be set up by a caller.
#else
  // Set 1st parameter register with property name.
  __ movq(rsi, rdx);
  // Second parameter register rdi should be set with pointer to AccessorInfo
  // by a caller.
#endif
  // Call the api function!
  __ movq(rax,
          reinterpret_cast<int64_t>(fun()->address()),
          RelocInfo::RUNTIME_ENTRY);
  __ call(rax);
  // Check if the function scheduled an exception.
  ExternalReference scheduled_exception_address =
      ExternalReference::scheduled_exception_address();
  __ movq(rsi, scheduled_exception_address);
  __ Cmp(Operand(rsi, 0), Factory::the_hole_value());
  __ j(not_equal, &promote_scheduled_exception);
#ifdef _WIN64
  // rax keeps a pointer to v8::Handle, unpack it.
  __ movq(rax, Operand(rax, 0));
#endif
  // Check if the result handle holds 0.
  __ testq(rax, rax);
  __ j(zero, &empty_result);
  // It was non-zero.  Dereference to get the result value.
  __ movq(rax, Operand(rax, 0));
  __ bind(&prologue);
  __ LeaveExitFrame();
  __ ret(0);
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
  __ bind(&empty_result);
  // It was zero; the result is undefined.
  __ Move(rax, Factory::undefined_value());
  __ jmp(&prologue);
}


void CEntryStub::GenerateCore(MacroAssembler* masm,
                              Label* throw_normal_exception,
                              Label* throw_termination_exception,
                              Label* throw_out_of_memory_exception,
                              bool do_gc,
                              bool always_allocate_scope,
                              int /* alignment_skew */) {
  // rax: result parameter for PerformGC, if any.
  // rbx: pointer to C function  (C callee-saved).
  // rbp: frame pointer  (restored after C call).
  // rsp: stack pointer  (restored after C call).
  // r14: number of arguments including receiver (C callee-saved).
  // r12: pointer to the first argument (C callee-saved).
  //      This pointer is reused in LeaveExitFrame(), so it is stored in a
  //      callee-saved register.

  // Simple results returned in rax (both AMD64 and Win64 calling conventions).
  // Complex results must be written to address passed as first argument.
  // AMD64 calling convention: a struct of two pointers in rax+rdx

  // Check stack alignment.
  if (FLAG_debug_code) {
    __ CheckStackAlignment();
  }

  if (do_gc) {
    // Pass failure code returned from last attempt as first argument to
    // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
    // stack is known to be aligned. This function takes one argument which is
    // passed in register.
#ifdef _WIN64
    __ movq(rcx, rax);
#else  // _WIN64
    __ movq(rdi, rax);
#endif
    __ movq(kScratchRegister,
            FUNCTION_ADDR(Runtime::PerformGC),
            RelocInfo::RUNTIME_ENTRY);
    __ call(kScratchRegister);
  }

  ExternalReference scope_depth =
      ExternalReference::heap_always_allocate_scope_depth();
  if (always_allocate_scope) {
    __ movq(kScratchRegister, scope_depth);
    __ incl(Operand(kScratchRegister, 0));
  }

  // Call C function.
#ifdef _WIN64
  // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
  // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
  __ movq(Operand(rsp, 4 * kPointerSize), r14);  // argc.
  __ movq(Operand(rsp, 5 * kPointerSize), r12);  // argv.
  if (result_size_ < 2) {
    // Pass a pointer to the Arguments object as the first argument.
    // Return result in single register (rax).
    __ lea(rcx, Operand(rsp, 4 * kPointerSize));
  } else {
    ASSERT_EQ(2, result_size_);
    // Pass a pointer to the result location as the first argument.
    __ lea(rcx, Operand(rsp, 6 * kPointerSize));
    // Pass a pointer to the Arguments object as the second argument.
    __ lea(rdx, Operand(rsp, 4 * kPointerSize));
  }

#else  // _WIN64
  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
  __ movq(rdi, r14);  // argc.
  __ movq(rsi, r12);  // argv.
#endif
  __ call(rbx);
  // Result is in rax - do not destroy this register!

  if (always_allocate_scope) {
    __ movq(kScratchRegister, scope_depth);
    __ decl(Operand(kScratchRegister, 0));
  }

  // Check for failure result.
  Label failure_returned;
  STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
  // If return value is on the stack, pop it to registers.
  if (result_size_ > 1) {
    ASSERT_EQ(2, result_size_);
    // Read result values stored on stack. Result is stored
    // above the four argument mirror slots and the two
    // Arguments object slots.
    __ movq(rax, Operand(rsp, 6 * kPointerSize));
    __ movq(rdx, Operand(rsp, 7 * kPointerSize));
  }
#endif
  __ lea(rcx, Operand(rax, 1));
  // Lower 2 bits of rcx are 0 iff rax has failure tag.
  __ testl(rcx, Immediate(kFailureTagMask));
  __ j(zero, &failure_returned);

  // Exit the JavaScript to C++ exit frame.
  __ LeaveExitFrame(result_size_);
  __ ret(0);

  // Handling of failure.
  __ bind(&failure_returned);

  Label retry;
  // If the returned exception is RETRY_AFTER_GC continue at retry label
  STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
  __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
  __ j(zero, &retry);

  // Special handling of out of memory exceptions.
  __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
  __ cmpq(rax, kScratchRegister);
  __ j(equal, throw_out_of_memory_exception);

  // Retrieve the pending exception and clear the variable.
  ExternalReference pending_exception_address(Top::k_pending_exception_address);
  __ movq(kScratchRegister, pending_exception_address);
  __ movq(rax, Operand(kScratchRegister, 0));
  __ movq(rdx, ExternalReference::the_hole_value_location());
  __ movq(rdx, Operand(rdx, 0));
  __ movq(Operand(kScratchRegister, 0), rdx);

  // Special handling of termination exceptions which are uncatchable
  // by javascript code.
  __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
  __ j(equal, throw_termination_exception);

  // Handle normal exception.
  __ jmp(throw_normal_exception);

  // Retry.
  __ bind(&retry);
}


void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
                                          UncatchableExceptionType type) {
  // Fetch top stack handler.
  ExternalReference handler_address(Top::k_handler_address);
  __ movq(kScratchRegister, handler_address);
  __ movq(rsp, Operand(kScratchRegister, 0));

  // Unwind the handlers until the ENTRY handler is found.
  Label loop, done;
  __ bind(&loop);
  // Load the type of the current stack handler.
  const int kStateOffset = StackHandlerConstants::kStateOffset;
  __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
  __ j(equal, &done);
  // Fetch the next handler in the list.
  const int kNextOffset = StackHandlerConstants::kNextOffset;
  __ movq(rsp, Operand(rsp, kNextOffset));
  __ jmp(&loop);
  __ bind(&done);

  // Set the top handler address to next handler past the current ENTRY handler.
  __ movq(kScratchRegister, handler_address);
  __ pop(Operand(kScratchRegister, 0));

  if (type == OUT_OF_MEMORY) {
    // Set external caught exception to false.
    ExternalReference external_caught(Top::k_external_caught_exception_address);
    __ movq(rax, Immediate(false));
    __ store_rax(external_caught);

    // Set pending exception and rax to out of memory exception.
    ExternalReference pending_exception(Top::k_pending_exception_address);
    __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
    __ store_rax(pending_exception);
  }

  // Clear the context pointer.
  __ xor_(rsi, rsi);

  // Restore registers from handler.
  STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
            StackHandlerConstants::kFPOffset);
  __ pop(rbp);  // FP
  STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
            StackHandlerConstants::kStateOffset);
  __ pop(rdx);  // State

  STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
            StackHandlerConstants::kPCOffset);
  __ ret(0);
}


void CEntryStub::Generate(MacroAssembler* masm) {
  // rax: number of arguments including receiver
  // rbx: pointer to C function  (C callee-saved)
  // rbp: frame pointer of calling JS frame (restored after C call)
  // rsp: stack pointer  (restored after C call)
  // rsi: current context (restored)

  // NOTE: Invocations of builtins may return failure objects
  // instead of a proper result. The builtin entry handles
  // this by performing a garbage collection and retrying the
  // builtin once.

  // Enter the exit frame that transitions from JavaScript to C++.
  __ EnterExitFrame(result_size_);

  // rax: Holds the context at this point, but should not be used.
  //      On entry to code generated by GenerateCore, it must hold
  //      a failure result if the collect_garbage argument to GenerateCore
  //      is true.  This failure result can be the result of code
  //      generated by a previous call to GenerateCore.  The value
  //      of rax is then passed to Runtime::PerformGC.
  // rbx: pointer to builtin function  (C callee-saved).
  // rbp: frame pointer of exit frame  (restored after C call).
  // rsp: stack pointer (restored after C call).
  // r14: number of arguments including receiver (C callee-saved).
  // r12: argv pointer (C callee-saved).

  Label throw_normal_exception;
  Label throw_termination_exception;
  Label throw_out_of_memory_exception;

  // Call into the runtime system.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               false,
               false);

  // Do space-specific GC and retry runtime call.
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               true,
               false);

  // Do full GC and retry runtime call one final time.
  Failure* failure = Failure::InternalError();
  __ movq(rax, failure, RelocInfo::NONE);
  GenerateCore(masm,
               &throw_normal_exception,
               &throw_termination_exception,
               &throw_out_of_memory_exception,
               true,
               true);

  __ bind(&throw_out_of_memory_exception);
  GenerateThrowUncatchable(masm, OUT_OF_MEMORY);

  __ bind(&throw_termination_exception);
  GenerateThrowUncatchable(masm, TERMINATION);

  __ bind(&throw_normal_exception);
  GenerateThrowTOS(masm);
}


void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
  Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
  Label not_outermost_js, not_outermost_js_2;
#endif

  // Setup frame.
  __ push(rbp);
  __ movq(rbp, rsp);

  // Push the stack frame type marker twice.
  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
  // Scratch register is neither callee-save, nor an argument register on any
  // platform. It's free to use at this point.
  // Cannot use smi-register for loading yet.
  __ movq(kScratchRegister,
          reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
          RelocInfo::NONE);
  __ push(kScratchRegister);  // context slot
  __ push(kScratchRegister);  // function slot
  // Save callee-saved registers (X64/Win64 calling conventions).
  __ push(r12);
  __ push(r13);
  __ push(r14);
  __ push(r15);
#ifdef _WIN64
  __ push(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
  __ push(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
  __ push(rbx);
  // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
  // callee save as well.

  // Save copies of the top frame descriptor on the stack.
  ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
  __ load_rax(c_entry_fp);
  __ push(rax);

  // Set up the roots and smi constant registers.
  // Needs to be done before any further smi loads.
  ExternalReference roots_address = ExternalReference::roots_address();
  __ movq(kRootRegister, roots_address);
  __ InitializeSmiConstantRegister();

#ifdef ENABLE_LOGGING_AND_PROFILING
  // If this is the outermost JS call, set js_entry_sp value.
  ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
  __ load_rax(js_entry_sp);
  __ testq(rax, rax);
  __ j(not_zero, &not_outermost_js);
  __ movq(rax, rbp);
  __ store_rax(js_entry_sp);
  __ bind(&not_outermost_js);
#endif

  // Call a faked try-block that does the invoke.
  __ call(&invoke);

  // Caught exception: Store result (exception) in the pending
  // exception field in the JSEnv and return a failure sentinel.
  ExternalReference pending_exception(Top::k_pending_exception_address);
  __ store_rax(pending_exception);
  __ movq(rax, Failure::Exception(), RelocInfo::NONE);
  __ jmp(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);

  // Clear any pending exceptions.
  __ load_rax(ExternalReference::the_hole_value_location());
  __ store_rax(pending_exception);

  // Fake a receiver (NULL).
  __ push(Immediate(0));  // receiver

  // Invoke the function by calling through JS entry trampoline
  // builtin and pop the faked function when we return. We load the address
  // from an external reference instead of inlining the call target address
  // directly in the code, because the builtin stubs may not have been
  // generated yet at the time this code is generated.
  if (is_construct) {
    ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
    __ load_rax(construct_entry);
  } else {
    ExternalReference entry(Builtins::JSEntryTrampoline);
    __ load_rax(entry);
  }
  __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
  __ call(kScratchRegister);

  // Unlink this frame from the handler chain.
  __ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
  __ pop(Operand(kScratchRegister, 0));
  // Pop next_sp.
  __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));

#ifdef ENABLE_LOGGING_AND_PROFILING
  // If current EBP value is the same as js_entry_sp value, it means that
  // the current function is the outermost.
  __ movq(kScratchRegister, js_entry_sp);
  __ cmpq(rbp, Operand(kScratchRegister, 0));
  __ j(not_equal, &not_outermost_js_2);
  __ movq(Operand(kScratchRegister, 0), Immediate(0));
  __ bind(&not_outermost_js_2);
#endif

  // Restore the top frame descriptor from the stack.
  __ bind(&exit);
  __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
  __ pop(Operand(kScratchRegister, 0));

  // Restore callee-saved registers (X64 conventions).
  __ pop(rbx);
#ifdef _WIN64
  // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
  __ pop(rsi);
  __ pop(rdi);
#endif
  __ pop(r15);
  __ pop(r14);
  __ pop(r13);
  __ pop(r12);
  __ addq(rsp, Immediate(2 * kPointerSize));  // remove markers

  // Restore frame pointer and return.
  __ pop(rbp);
  __ ret(0);
}


void InstanceofStub::Generate(MacroAssembler* masm) {
  // Implements "value instanceof function" operator.
  // Expected input state:
  //   rsp[0] : return address
  //   rsp[1] : function pointer
  //   rsp[2] : value
  // Returns a bitwise zero to indicate that the value
  // is and instance of the function and anything else to
  // indicate that the value is not an instance.

  // Get the object - go slow case if it's a smi.
  Label slow;
  __ movq(rax, Operand(rsp, 2 * kPointerSize));
  __ JumpIfSmi(rax, &slow);

  // Check that the left hand is a JS object. Leave its map in rax.
  __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
  __ j(below, &slow);
  __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
  __ j(above, &slow);

  // Get the prototype of the function.
  __ movq(rdx, Operand(rsp, 1 * kPointerSize));
  // rdx is function, rax is map.

  // Look up the function and the map in the instanceof cache.
  Label miss;
  __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
  __ j(not_equal, &miss);
  __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
  __ j(not_equal, &miss);
  __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
  __ ret(2 * kPointerSize);

  __ bind(&miss);
  __ TryGetFunctionPrototype(rdx, rbx, &slow);

  // Check that the function prototype is a JS object.
  __ JumpIfSmi(rbx, &slow);
  __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
  __ j(below, &slow);
  __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
  __ j(above, &slow);

  // Register mapping:
  //   rax is object map.
  //   rdx is function.
  //   rbx is function prototype.
  __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
  __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);

  __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));

  // Loop through the prototype chain looking for the function prototype.
  Label loop, is_instance, is_not_instance;
  __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
  __ bind(&loop);
  __ cmpq(rcx, rbx);
  __ j(equal, &is_instance);
  __ cmpq(rcx, kScratchRegister);
  // The code at is_not_instance assumes that kScratchRegister contains a
  // non-zero GCable value (the null object in this case).
  __ j(equal, &is_not_instance);
  __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
  __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
  __ jmp(&loop);

  __ bind(&is_instance);
  __ xorl(rax, rax);
  // Store bitwise zero in the cache.  This is a Smi in GC terms.
  STATIC_ASSERT(kSmiTag == 0);
  __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
  __ ret(2 * kPointerSize);

  __ bind(&is_not_instance);
  // We have to store a non-zero value in the cache.
  __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
  __ ret(2 * kPointerSize);

  // Slow-case: Go through the JavaScript implementation.
  __ bind(&slow);
  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}


int CompareStub::MinorKey() {
  // Encode the three parameters in a unique 16 bit value. To avoid duplicate
  // stubs the never NaN NaN condition is only taken into account if the
  // condition is equals.
  ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
  return ConditionField::encode(static_cast<unsigned>(cc_))
         | RegisterField::encode(false)    // lhs_ and rhs_ are not used
         | StrictField::encode(strict_)
         | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
         | IncludeNumberCompareField::encode(include_number_compare_)
         | IncludeSmiCompareField::encode(include_smi_compare_);
}


// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* CompareStub::GetName() {
  ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));

  if (name_ != NULL) return name_;
  const int kMaxNameLength = 100;
  name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
  if (name_ == NULL) return "OOM";

  const char* cc_name;
  switch (cc_) {
    case less: cc_name = "LT"; break;
    case greater: cc_name = "GT"; break;
    case less_equal: cc_name = "LE"; break;
    case greater_equal: cc_name = "GE"; break;
    case equal: cc_name = "EQ"; break;
    case not_equal: cc_name = "NE"; break;
    default: cc_name = "UnknownCondition"; break;
  }

  const char* strict_name = "";
  if (strict_ && (cc_ == equal || cc_ == not_equal)) {
    strict_name = "_STRICT";
  }

  const char* never_nan_nan_name = "";
  if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
    never_nan_nan_name = "_NO_NAN";
  }

  const char* include_number_compare_name = "";
  if (!include_number_compare_) {
    include_number_compare_name = "_NO_NUMBER";
  }

  const char* include_smi_compare_name = "";
  if (!include_smi_compare_) {
    include_smi_compare_name = "_NO_SMI";
  }

  OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
               "CompareStub_%s%s%s%s",
               cc_name,
               strict_name,
               never_nan_nan_name,
               include_number_compare_name,
               include_smi_compare_name);
  return name_;
}


// -------------------------------------------------------------------------
// StringCharCodeAtGenerator

void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
  Label flat_string;
  Label ascii_string;
  Label got_char_code;

  // If the receiver is a smi trigger the non-string case.
  __ JumpIfSmi(object_, receiver_not_string_);

  // Fetch the instance type of the receiver into result register.
  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
  // If the receiver is not a string trigger the non-string case.
  __ testb(result_, Immediate(kIsNotStringMask));
  __ j(not_zero, receiver_not_string_);

  // If the index is non-smi trigger the non-smi case.
  __ JumpIfNotSmi(index_, &index_not_smi_);

  // Put smi-tagged index into scratch register.
  __ movq(scratch_, index_);
  __ bind(&got_smi_index_);

  // Check for index out of range.
  __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
  __ j(above_equal, index_out_of_range_);

  // We need special handling for non-flat strings.
  STATIC_ASSERT(kSeqStringTag == 0);
  __ testb(result_, Immediate(kStringRepresentationMask));
  __ j(zero, &flat_string);

  // Handle non-flat strings.
  __ testb(result_, Immediate(kIsConsStringMask));
  __ j(zero, &call_runtime_);

  // ConsString.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
                 Heap::kEmptyStringRootIndex);
  __ j(not_equal, &call_runtime_);
  // Get the first of the two strings and load its instance type.
  __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
  // If the first cons component is also non-flat, then go to runtime.
  STATIC_ASSERT(kSeqStringTag == 0);
  __ testb(result_, Immediate(kStringRepresentationMask));
  __ j(not_zero, &call_runtime_);

  // Check for 1-byte or 2-byte string.
  __ bind(&flat_string);
  STATIC_ASSERT(kAsciiStringTag != 0);
  __ testb(result_, Immediate(kStringEncodingMask));
  __ j(not_zero, &ascii_string);

  // 2-byte string.
  // Load the 2-byte character code into the result register.
  __ SmiToInteger32(scratch_, scratch_);
  __ movzxwl(result_, FieldOperand(object_,
                                   scratch_, times_2,
                                   SeqTwoByteString::kHeaderSize));
  __ jmp(&got_char_code);

  // ASCII string.
  // Load the byte into the result register.
  __ bind(&ascii_string);
  __ SmiToInteger32(scratch_, scratch_);
  __ movzxbl(result_, FieldOperand(object_,
                                   scratch_, times_1,
                                   SeqAsciiString::kHeaderSize));
  __ bind(&got_char_code);
  __ Integer32ToSmi(result_, result_);
  __ bind(&exit_);
}


void StringCharCodeAtGenerator::GenerateSlow(
    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
  __ Abort("Unexpected fallthrough to CharCodeAt slow case");

  // Index is not a smi.
  __ bind(&index_not_smi_);
  // If index is a heap number, try converting it to an integer.
  __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
  call_helper.BeforeCall(masm);
  __ push(object_);
  __ push(index_);
  __ push(index_);  // Consumed by runtime conversion function.
  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
  } else {
    ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
    // NumberToSmi discards numbers that are not exact integers.
    __ CallRuntime(Runtime::kNumberToSmi, 1);
  }
  if (!scratch_.is(rax)) {
    // Save the conversion result before the pop instructions below
    // have a chance to overwrite it.
    __ movq(scratch_, rax);
  }
  __ pop(index_);
  __ pop(object_);
  // Reload the instance type.
  __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
  __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
  call_helper.AfterCall(masm);
  // If index is still not a smi, it must be out of range.
  __ JumpIfNotSmi(scratch_, index_out_of_range_);
  // Otherwise, return to the fast path.
  __ jmp(&got_smi_index_);

  // Call runtime. We get here when the receiver is a string and the
  // index is a number, but the code of getting the actual character
  // is too complex (e.g., when the string needs to be flattened).
  __ bind(&call_runtime_);
  call_helper.BeforeCall(masm);
  __ push(object_);
  __ push(index_);
  __ CallRuntime(Runtime::kStringCharCodeAt, 2);
  if (!result_.is(rax)) {
    __ movq(result_, rax);
  }
  call_helper.AfterCall(masm);
  __ jmp(&exit_);

  __ Abort("Unexpected fallthrough from CharCodeAt slow case");
}


// -------------------------------------------------------------------------
// StringCharFromCodeGenerator

void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
  // Fast case of Heap::LookupSingleCharacterStringFromCode.
  __ JumpIfNotSmi(code_, &slow_case_);
  __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
  __ j(above, &slow_case_);

  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
  SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
  __ movq(result_, FieldOperand(result_, index.reg, index.scale,
                                FixedArray::kHeaderSize));
  __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
  __ j(equal, &slow_case_);
  __ bind(&exit_);
}


void StringCharFromCodeGenerator::GenerateSlow(
    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
  __ Abort("Unexpected fallthrough to CharFromCode slow case");

  __ bind(&slow_case_);
  call_helper.BeforeCall(masm);
  __ push(code_);
  __ CallRuntime(Runtime::kCharFromCode, 1);
  if (!result_.is(rax)) {
    __ movq(result_, rax);
  }
  call_helper.AfterCall(masm);
  __ jmp(&exit_);

  __ Abort("Unexpected fallthrough from CharFromCode slow case");
}


// -------------------------------------------------------------------------
// StringCharAtGenerator

void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
  char_code_at_generator_.GenerateFast(masm);
  char_from_code_generator_.GenerateFast(masm);
}


void StringCharAtGenerator::GenerateSlow(
    MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
  char_code_at_generator_.GenerateSlow(masm, call_helper);
  char_from_code_generator_.GenerateSlow(masm, call_helper);
}


void StringAddStub::Generate(MacroAssembler* masm) {
  Label string_add_runtime;

  // Load the two arguments.
  __ movq(rax, Operand(rsp, 2 * kPointerSize));  // First argument.
  __ movq(rdx, Operand(rsp, 1 * kPointerSize));  // Second argument.

  // Make sure that both arguments are strings if not known in advance.
  if (string_check_) {
    Condition is_smi;
    is_smi = masm->CheckSmi(rax);
    __ j(is_smi, &string_add_runtime);
    __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
    __ j(above_equal, &string_add_runtime);

    // First argument is a a string, test second.
    is_smi = masm->CheckSmi(rdx);
    __ j(is_smi, &string_add_runtime);
    __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
    __ j(above_equal, &string_add_runtime);
  }

  // Both arguments are strings.
  // rax: first string
  // rdx: second string
  // Check if either of the strings are empty. In that case return the other.
  Label second_not_zero_length, both_not_zero_length;
  __ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
  __ SmiTest(rcx);
  __ j(not_zero, &second_not_zero_length);
  // Second string is empty, result is first string which is already in rax.
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);
  __ bind(&second_not_zero_length);
  __ movq(rbx, FieldOperand(rax, String::kLengthOffset));
  __ SmiTest(rbx);
  __ j(not_zero, &both_not_zero_length);
  // First string is empty, result is second string which is in rdx.
  __ movq(rax, rdx);
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);

  // Both strings are non-empty.
  // rax: first string
  // rbx: length of first string
  // rcx: length of second string
  // rdx: second string
  // r8: map of first string if string check was performed above
  // r9: map of second string if string check was performed above
  Label string_add_flat_result, longer_than_two;
  __ bind(&both_not_zero_length);

  // If arguments where known to be strings, maps are not loaded to r8 and r9
  // by the code above.
  if (!string_check_) {
    __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
    __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
  }
  // Get the instance types of the two strings as they will be needed soon.
  __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
  __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));

  // Look at the length of the result of adding the two strings.
  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
  __ SmiAdd(rbx, rbx, rcx, NULL);
  // Use the runtime system when adding two one character strings, as it
  // contains optimizations for this specific case using the symbol table.
  __ SmiCompare(rbx, Smi::FromInt(2));
  __ j(not_equal, &longer_than_two);

  // Check that both strings are non-external ascii strings.
  __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
                                                  &string_add_runtime);

  // Get the two characters forming the sub string.
  __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
  __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));

  // Try to lookup two character string in symbol table. If it is not found
  // just allocate a new one.
  Label make_two_character_string, make_flat_ascii_string;
  StringHelper::GenerateTwoCharacterSymbolTableProbe(
      masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);

  __ bind(&make_two_character_string);
  __ Set(rbx, 2);
  __ jmp(&make_flat_ascii_string);

  __ bind(&longer_than_two);
  // Check if resulting string will be flat.
  __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
  __ j(below, &string_add_flat_result);
  // Handle exceptionally long strings in the runtime system.
  STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
  __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
  __ j(above, &string_add_runtime);

  // If result is not supposed to be flat, allocate a cons string object. If
  // both strings are ascii the result is an ascii cons string.
  // rax: first string
  // rbx: length of resulting flat string
  // rdx: second string
  // r8: instance type of first string
  // r9: instance type of second string
  Label non_ascii, allocated, ascii_data;
  __ movl(rcx, r8);
  __ and_(rcx, r9);
  STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
  __ testl(rcx, Immediate(kAsciiStringTag));
  __ j(zero, &non_ascii);
  __ bind(&ascii_data);
  // Allocate an acsii cons string.
  __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
  __ bind(&allocated);
  // Fill the fields of the cons string.
  __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
  __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
          Immediate(String::kEmptyHashField));
  __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
  __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
  __ movq(rax, rcx);
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);
  __ bind(&non_ascii);
  // At least one of the strings is two-byte. Check whether it happens
  // to contain only ascii characters.
  // rcx: first instance type AND second instance type.
  // r8: first instance type.
  // r9: second instance type.
  __ testb(rcx, Immediate(kAsciiDataHintMask));
  __ j(not_zero, &ascii_data);
  __ xor_(r8, r9);
  STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
  __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
  __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
  __ j(equal, &ascii_data);
  // Allocate a two byte cons string.
  __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
  __ jmp(&allocated);

  // Handle creating a flat result. First check that both strings are not
  // external strings.
  // rax: first string
  // rbx: length of resulting flat string as smi
  // rdx: second string
  // r8: instance type of first string
  // r9: instance type of first string
  __ bind(&string_add_flat_result);
  __ SmiToInteger32(rbx, rbx);
  __ movl(rcx, r8);
  __ and_(rcx, Immediate(kStringRepresentationMask));
  __ cmpl(rcx, Immediate(kExternalStringTag));
  __ j(equal, &string_add_runtime);
  __ movl(rcx, r9);
  __ and_(rcx, Immediate(kStringRepresentationMask));
  __ cmpl(rcx, Immediate(kExternalStringTag));
  __ j(equal, &string_add_runtime);
  // Now check if both strings are ascii strings.
  // rax: first string
  // rbx: length of resulting flat string
  // rdx: second string
  // r8: instance type of first string
  // r9: instance type of second string
  Label non_ascii_string_add_flat_result;
  STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
  __ testl(r8, Immediate(kAsciiStringTag));
  __ j(zero, &non_ascii_string_add_flat_result);
  __ testl(r9, Immediate(kAsciiStringTag));
  __ j(zero, &string_add_runtime);

  __ bind(&make_flat_ascii_string);
  // Both strings are ascii strings. As they are short they are both flat.
  __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
  // rcx: result string
  __ movq(rbx, rcx);
  // Locate first character of result.
  __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  // Locate first character of first argument
  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
  __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  // rax: first char of first argument
  // rbx: result string
  // rcx: first character of result
  // rdx: second string
  // rdi: length of first argument
  StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
  // Locate first character of second argument.
  __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
  __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
  // rbx: result string
  // rcx: next character of result
  // rdx: first char of second argument
  // rdi: length of second argument
  StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
  __ movq(rax, rbx);
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);

  // Handle creating a flat two byte result.
  // rax: first string - known to be two byte
  // rbx: length of resulting flat string
  // rdx: second string
  // r8: instance type of first string
  // r9: instance type of first string
  __ bind(&non_ascii_string_add_flat_result);
  __ and_(r9, Immediate(kAsciiStringTag));
  __ j(not_zero, &string_add_runtime);
  // Both strings are two byte strings. As they are short they are both
  // flat.
  __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
  // rcx: result string
  __ movq(rbx, rcx);
  // Locate first character of result.
  __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  // Locate first character of first argument.
  __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
  __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  // rax: first char of first argument
  // rbx: result string
  // rcx: first character of result
  // rdx: second argument
  // rdi: length of first argument
  StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
  // Locate first character of second argument.
  __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
  __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  // rbx: result string
  // rcx: next character of result
  // rdx: first char of second argument
  // rdi: length of second argument
  StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
  __ movq(rax, rbx);
  __ IncrementCounter(&Counters::string_add_native, 1);
  __ ret(2 * kPointerSize);

  // Just jump to runtime to add the two strings.
  __ bind(&string_add_runtime);
  __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
}


void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
                                          Register dest,
                                          Register src,
                                          Register count,
                                          bool ascii) {
  Label loop;
  __ bind(&loop);
  // This loop just copies one character at a time, as it is only used for very
  // short strings.
  if (ascii) {
    __ movb(kScratchRegister, Operand(src, 0));
    __ movb(Operand(dest, 0), kScratchRegister);
    __ incq(src);
    __ incq(dest);
  } else {
    __ movzxwl(kScratchRegister, Operand(src, 0));
    __ movw(Operand(dest, 0), kScratchRegister);
    __ addq(src, Immediate(2));
    __ addq(dest, Immediate(2));
  }
  __ decl(count);
  __ j(not_zero, &loop);
}


void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
                                             Register dest,
                                             Register src,
                                             Register count,
                                             bool ascii) {
  // Copy characters using rep movs of doublewords. Align destination on 4 byte
  // boundary before starting rep movs. Copy remaining characters after running
  // rep movs.
  // Count is positive int32, dest and src are character pointers.
  ASSERT(dest.is(rdi));  // rep movs destination
  ASSERT(src.is(rsi));  // rep movs source
  ASSERT(count.is(rcx));  // rep movs count

  // Nothing to do for zero characters.
  Label done;
  __ testl(count, count);
  __ j(zero, &done);

  // Make count the number of bytes to copy.
  if (!ascii) {
    STATIC_ASSERT(2 == sizeof(uc16));
    __ addl(count, count);
  }

  // Don't enter the rep movs if there are less than 4 bytes to copy.
  Label last_bytes;
  __ testl(count, Immediate(~7));
  __ j(zero, &last_bytes);

  // Copy from edi to esi using rep movs instruction.
  __ movl(kScratchRegister, count);
  __ shr(count, Immediate(3));  // Number of doublewords to copy.
  __ repmovsq();

  // Find number of bytes left.
  __ movl(count, kScratchRegister);
  __ and_(count, Immediate(7));

  // Check if there are more bytes to copy.
  __ bind(&last_bytes);
  __ testl(count, count);
  __ j(zero, &done);

  // Copy remaining characters.
  Label loop;
  __ bind(&loop);
  __ movb(kScratchRegister, Operand(src, 0));
  __ movb(Operand(dest, 0), kScratchRegister);
  __ incq(src);
  __ incq(dest);
  __ decl(count);
  __ j(not_zero, &loop);

  __ bind(&done);
}

void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                        Register c1,
                                                        Register c2,
                                                        Register scratch1,
                                                        Register scratch2,
                                                        Register scratch3,
                                                        Register scratch4,
                                                        Label* not_found) {
  // Register scratch3 is the general scratch register in this function.
  Register scratch = scratch3;

  // Make sure that both characters are not digits as such strings has a
  // different hash algorithm. Don't try to look for these in the symbol table.
  Label not_array_index;
  __ leal(scratch, Operand(c1, -'0'));
  __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
  __ j(above, &not_array_index);
  __ leal(scratch, Operand(c2, -'0'));
  __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
  __ j(below_equal, not_found);

  __ bind(&not_array_index);
  // Calculate the two character string hash.
  Register hash = scratch1;
  GenerateHashInit(masm, hash, c1, scratch);
  GenerateHashAddCharacter(masm, hash, c2, scratch);
  GenerateHashGetHash(masm, hash, scratch);

  // Collect the two characters in a register.
  Register chars = c1;
  __ shl(c2, Immediate(kBitsPerByte));
  __ orl(chars, c2);

  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
  // hash:  hash of two character string.

  // Load the symbol table.
  Register symbol_table = c2;
  __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);

  // Calculate capacity mask from the symbol table capacity.
  Register mask = scratch2;
  __ SmiToInteger32(mask,
                    FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
  __ decl(mask);

  Register undefined = scratch4;
  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);

  // Registers
  // chars:        two character string, char 1 in byte 0 and char 2 in byte 1.
  // hash:         hash of two character string (32-bit int)
  // symbol_table: symbol table
  // mask:         capacity mask (32-bit int)
  // undefined:    undefined value
  // scratch:      -

  // Perform a number of probes in the symbol table.
  static const int kProbes = 4;
  Label found_in_symbol_table;
  Label next_probe[kProbes];
  for (int i = 0; i < kProbes; i++) {
    // Calculate entry in symbol table.
    __ movl(scratch, hash);
    if (i > 0) {
      __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
    }
    __ andl(scratch, mask);

    // Load the entry from the symble table.
    Register candidate = scratch;  // Scratch register contains candidate.
    STATIC_ASSERT(SymbolTable::kEntrySize == 1);
    __ movq(candidate,
            FieldOperand(symbol_table,
                         scratch,
                         times_pointer_size,
                         SymbolTable::kElementsStartOffset));

    // If entry is undefined no string with this hash can be found.
    __ cmpq(candidate, undefined);
    __ j(equal, not_found);

    // If length is not 2 the string is not a candidate.
    __ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
                  Smi::FromInt(2));
    __ j(not_equal, &next_probe[i]);

    // We use kScratchRegister as a temporary register in assumption that
    // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
    Register temp = kScratchRegister;

    // Check that the candidate is a non-external ascii string.
    __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
    __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
    __ JumpIfInstanceTypeIsNotSequentialAscii(
        temp, temp, &next_probe[i]);

    // Check if the two characters match.
    __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
    __ andl(temp, Immediate(0x0000ffff));
    __ cmpl(chars, temp);
    __ j(equal, &found_in_symbol_table);
    __ bind(&next_probe[i]);
  }

  // No matching 2 character string found by probing.
  __ jmp(not_found);

  // Scratch register contains result when we fall through to here.
  Register result = scratch;
  __ bind(&found_in_symbol_table);
  if (!result.is(rax)) {
    __ movq(rax, result);
  }
}


void StringHelper::GenerateHashInit(MacroAssembler* masm,
                                    Register hash,
                                    Register character,
                                    Register scratch) {
  // hash = character + (character << 10);
  __ movl(hash, character);
  __ shll(hash, Immediate(10));
  __ addl(hash, character);
  // hash ^= hash >> 6;
  __ movl(scratch, hash);
  __ sarl(scratch, Immediate(6));
  __ xorl(hash, scratch);
}


void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
                                            Register hash,
                                            Register character,
                                            Register scratch) {
  // hash += character;
  __ addl(hash, character);
  // hash += hash << 10;
  __ movl(scratch, hash);
  __ shll(scratch, Immediate(10));
  __ addl(hash, scratch);
  // hash ^= hash >> 6;
  __ movl(scratch, hash);
  __ sarl(scratch, Immediate(6));
  __ xorl(hash, scratch);
}


void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
                                       Register hash,
                                       Register scratch) {
  // hash += hash << 3;
  __ leal(hash, Operand(hash, hash, times_8, 0));
  // hash ^= hash >> 11;
  __ movl(scratch, hash);
  __ sarl(scratch, Immediate(11));
  __ xorl(hash, scratch);
  // hash += hash << 15;
  __ movl(scratch, hash);
  __ shll(scratch, Immediate(15));
  __ addl(hash, scratch);

  // if (hash == 0) hash = 27;
  Label hash_not_zero;
  __ j(not_zero, &hash_not_zero);
  __ movl(hash, Immediate(27));
  __ bind(&hash_not_zero);
}

void SubStringStub::Generate(MacroAssembler* masm) {
  Label runtime;

  // Stack frame on entry.
  //  rsp[0]: return address
  //  rsp[8]: to
  //  rsp[16]: from
  //  rsp[24]: string

  const int kToOffset = 1 * kPointerSize;
  const int kFromOffset = kToOffset + kPointerSize;
  const int kStringOffset = kFromOffset + kPointerSize;
  const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;

  // Make sure first argument is a string.
  __ movq(rax, Operand(rsp, kStringOffset));
  STATIC_ASSERT(kSmiTag == 0);
  __ testl(rax, Immediate(kSmiTagMask));
  __ j(zero, &runtime);
  Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
  __ j(NegateCondition(is_string), &runtime);

  // rax: string
  // rbx: instance type
  // Calculate length of sub string using the smi values.
  Label result_longer_than_two;
  __ movq(rcx, Operand(rsp, kToOffset));
  __ movq(rdx, Operand(rsp, kFromOffset));
  __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);

  __ SmiSub(rcx, rcx, rdx, NULL);  // Overflow doesn't happen.
  __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
  Label return_rax;
  __ j(equal, &return_rax);
  // Special handling of sub-strings of length 1 and 2. One character strings
  // are handled in the runtime system (looked up in the single character
  // cache). Two character strings are looked for in the symbol cache.
  __ SmiToInteger32(rcx, rcx);
  __ cmpl(rcx, Immediate(2));
  __ j(greater, &result_longer_than_two);
  __ j(less, &runtime);

  // Sub string of length 2 requested.
  // rax: string
  // rbx: instance type
  // rcx: sub string length (value is 2)
  // rdx: from index (smi)
  __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);

  // Get the two characters forming the sub string.
  __ SmiToInteger32(rdx, rdx);  // From index is no longer smi.
  __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
  __ movzxbq(rcx,
             FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));

  // Try to lookup two character string in symbol table.
  Label make_two_character_string;
  StringHelper::GenerateTwoCharacterSymbolTableProbe(
      masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
  __ ret(3 * kPointerSize);

  __ bind(&make_two_character_string);
  // Setup registers for allocating the two character string.
  __ movq(rax, Operand(rsp, kStringOffset));
  __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
  __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
  __ Set(rcx, 2);

  __ bind(&result_longer_than_two);

  // rax: string
  // rbx: instance type
  // rcx: result string length
  // Check for flat ascii string
  Label non_ascii_flat;
  __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);

  // Allocate the result.
  __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);

  // rax: result string
  // rcx: result string length
  __ movq(rdx, rsi);  // esi used by following code.
  // Locate first character of result.
  __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
  // Load string argument and locate character of sub string start.
  __ movq(rsi, Operand(rsp, kStringOffset));
  __ movq(rbx, Operand(rsp, kFromOffset));
  {
    SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
    __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
                        SeqAsciiString::kHeaderSize - kHeapObjectTag));
  }

  // rax: result string
  // rcx: result length
  // rdx: original value of rsi
  // rdi: first character of result
  // rsi: character of sub string start
  StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
  __ movq(rsi, rdx);  // Restore rsi.
  __ IncrementCounter(&Counters::sub_string_native, 1);
  __ ret(kArgumentsSize);

  __ bind(&non_ascii_flat);
  // rax: string
  // rbx: instance type & kStringRepresentationMask | kStringEncodingMask
  // rcx: result string length
  // Check for sequential two byte string
  __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
  __ j(not_equal, &runtime);

  // Allocate the result.
  __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);

  // rax: result string
  // rcx: result string length
  __ movq(rdx, rsi);  // esi used by following code.
  // Locate first character of result.
  __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
  // Load string argument and locate character of sub string start.
  __ movq(rsi, Operand(rsp, kStringOffset));
  __ movq(rbx, Operand(rsp, kFromOffset));
  {
    SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
    __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
                        SeqAsciiString::kHeaderSize - kHeapObjectTag));
  }

  // rax: result string
  // rcx: result length
  // rdx: original value of rsi
  // rdi: first character of result
  // rsi: character of sub string start
  StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
  __ movq(rsi, rdx);  // Restore esi.

  __ bind(&return_rax);
  __ IncrementCounter(&Counters::sub_string_native, 1);
  __ ret(kArgumentsSize);

  // Just jump to runtime to create the sub string.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kSubString, 3, 1);
}


void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                                        Register left,
                                                        Register right,
                                                        Register scratch1,
                                                        Register scratch2,
                                                        Register scratch3,
                                                        Register scratch4) {
  // Ensure that you can always subtract a string length from a non-negative
  // number (e.g. another length).
  STATIC_ASSERT(String::kMaxLength < 0x7fffffff);

  // Find minimum length and length difference.
  __ movq(scratch1, FieldOperand(left, String::kLengthOffset));
  __ movq(scratch4, scratch1);
  __ SmiSub(scratch4,
            scratch4,
            FieldOperand(right, String::kLengthOffset),
            NULL);
  // Register scratch4 now holds left.length - right.length.
  const Register length_difference = scratch4;
  Label left_shorter;
  __ j(less, &left_shorter);
  // The right string isn't longer that the left one.
  // Get the right string's length by subtracting the (non-negative) difference
  // from the left string's length.
  __ SmiSub(scratch1, scratch1, length_difference, NULL);
  __ bind(&left_shorter);
  // Register scratch1 now holds Min(left.length, right.length).
  const Register min_length = scratch1;

  Label compare_lengths;
  // If min-length is zero, go directly to comparing lengths.
  __ SmiTest(min_length);
  __ j(zero, &compare_lengths);

  __ SmiToInteger32(min_length, min_length);

  // Registers scratch2 and scratch3 are free.
  Label result_not_equal;
  Label loop;
  {
    // Check characters 0 .. min_length - 1 in a loop.
    // Use scratch3 as loop index, min_length as limit and scratch2
    // for computation.
    const Register index = scratch3;
    __ movl(index, Immediate(0));  // Index into strings.
    __ bind(&loop);
    // Compare characters.
    // TODO(lrn): Could we load more than one character at a time?
    __ movb(scratch2, FieldOperand(left,
                                   index,
                                   times_1,
                                   SeqAsciiString::kHeaderSize));
    // Increment index and use -1 modifier on next load to give
    // the previous load extra time to complete.
    __ addl(index, Immediate(1));
    __ cmpb(scratch2, FieldOperand(right,
                                   index,
                                   times_1,
                                   SeqAsciiString::kHeaderSize - 1));
    __ j(not_equal, &result_not_equal);
    __ cmpl(index, min_length);
    __ j(not_equal, &loop);
  }
  // Completed loop without finding different characters.
  // Compare lengths (precomputed).
  __ bind(&compare_lengths);
  __ SmiTest(length_difference);
  __ j(not_zero, &result_not_equal);

  // Result is EQUAL.
  __ Move(rax, Smi::FromInt(EQUAL));
  __ ret(0);

  Label result_greater;
  __ bind(&result_not_equal);
  // Unequal comparison of left to right, either character or length.
  __ j(greater, &result_greater);

  // Result is LESS.
  __ Move(rax, Smi::FromInt(LESS));
  __ ret(0);

  // Result is GREATER.
  __ bind(&result_greater);
  __ Move(rax, Smi::FromInt(GREATER));
  __ ret(0);
}


void StringCompareStub::Generate(MacroAssembler* masm) {
  Label runtime;

  // Stack frame on entry.
  //  rsp[0]: return address
  //  rsp[8]: right string
  //  rsp[16]: left string

  __ movq(rdx, Operand(rsp, 2 * kPointerSize));  // left
  __ movq(rax, Operand(rsp, 1 * kPointerSize));  // right

  // Check for identity.
  Label not_same;
  __ cmpq(rdx, rax);
  __ j(not_equal, &not_same);
  __ Move(rax, Smi::FromInt(EQUAL));
  __ IncrementCounter(&Counters::string_compare_native, 1);
  __ ret(2 * kPointerSize);

  __ bind(&not_same);

  // Check that both are sequential ASCII strings.
  __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);

  // Inline comparison of ascii strings.
  __ IncrementCounter(&Counters::string_compare_native, 1);
  // Drop arguments from the stack
  __ pop(rcx);
  __ addq(rsp, Immediate(2 * kPointerSize));
  __ push(rcx);
  GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);

  // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
  // tagged as a small integer.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}

#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_X64