summaryrefslogtreecommitdiff
path: root/deps/v8/src/x64/assembler-x64-inl.h
blob: ec27983cc15982a312860f75722411a430453f51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_X64_ASSEMBLER_X64_INL_H_
#define V8_X64_ASSEMBLER_X64_INL_H_

#include "cpu.h"

namespace v8 {
namespace internal {

Condition NegateCondition(Condition cc) {
  return static_cast<Condition>(cc ^ 1);
}

// -----------------------------------------------------------------------------

Immediate::Immediate(Smi* value) {
  value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
}

// -----------------------------------------------------------------------------
// Implementation of Assembler



void Assembler::emitl(uint32_t x) {
  Memory::uint32_at(pc_) = x;
  pc_ += sizeof(uint32_t);
}


void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
  Memory::uint64_at(pc_) = x;
  if (rmode != RelocInfo::NONE) {
    RecordRelocInfo(rmode, x);
  }
  pc_ += sizeof(uint64_t);
}


void Assembler::emitw(uint16_t x) {
  Memory::uint16_at(pc_) = x;
  pc_ += sizeof(uint16_t);
}


void Assembler::emit_rex_64(Register reg, Register rm_reg) {
  emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}


void Assembler::emit_rex_64(Register reg, const Operand& op) {
  emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
}


void Assembler::emit_rex_64(Register rm_reg) {
  ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
  emit(0x48 | (rm_reg.code() >> 3));
}


void Assembler::emit_rex_64(const Operand& op) {
  emit(0x48 | op.rex_);
}


void Assembler::emit_rex_32(Register reg, Register rm_reg) {
  emit(0x40 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}


void Assembler::emit_rex_32(Register reg, const Operand& op) {
  emit(0x40 | (reg.code() & 0x8) >> 1 | op.rex_);
}


void Assembler::emit_rex_32(Register rm_reg) {
  emit(0x40 | (rm_reg.code() & 0x8) >> 3);
}


void Assembler::emit_rex_32(const Operand& op) {
  emit(0x40 | op.rex_);
}


void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
  byte rex_bits = (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3;
  if (rex_bits != 0) emit(0x40 | rex_bits);
}


void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
  byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
  if (rex_bits != 0) emit(0x40 | rex_bits);
}


void Assembler::emit_optional_rex_32(Register rm_reg) {
  if (rm_reg.code() & 0x8 != 0) emit(0x41);
}


void Assembler::emit_optional_rex_32(const Operand& op) {
  if (op.rex_ != 0) emit(0x40 | op.rex_);
}


Address Assembler::target_address_at(Address pc) {
  return Memory::Address_at(pc);
}


void Assembler::set_target_address_at(Address pc, Address target) {
  Memory::Address_at(pc) = target;
  CPU::FlushICache(pc, sizeof(intptr_t));
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo

// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(int delta) {
  if (rmode_ == RUNTIME_ENTRY || IsCodeTarget(rmode_)) {
    intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
    *p -= delta;  // relocate entry
  } else if (IsInternalReference(rmode_)) {
    // absolute code pointer inside code object moves with the code object.
    intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
    *p += delta;  // relocate entry
  }
}


Address RelocInfo::target_address() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
  return Assembler::target_address_at(pc_);
}


Address RelocInfo::target_address_address() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
  return reinterpret_cast<Address>(pc_);
}


void RelocInfo::set_target_address(Address target) {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
  Assembler::set_target_address_at(pc_, target);
}


Object* RelocInfo::target_object() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return *reinterpret_cast<Object**>(pc_);
}


Object** RelocInfo::target_object_address() {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return reinterpret_cast<Object**>(pc_);
}


Address* RelocInfo::target_reference_address() {
  ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
  return reinterpret_cast<Address*>(pc_);
}


void RelocInfo::set_target_object(Object* target) {
  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  *reinterpret_cast<Object**>(pc_) = target;
}


bool RelocInfo::IsCallInstruction() {
  UNIMPLEMENTED();  // IA32 code below.
  return *pc_ == 0xE8;
}


Address RelocInfo::call_address() {
  UNIMPLEMENTED();  // IA32 code below.
  ASSERT(IsCallInstruction());
  return Assembler::target_address_at(pc_ + 1);
}


void RelocInfo::set_call_address(Address target) {
  UNIMPLEMENTED();  // IA32 code below.
  ASSERT(IsCallInstruction());
  Assembler::set_target_address_at(pc_ + 1, target);
}


Object* RelocInfo::call_object() {
  UNIMPLEMENTED();  // IA32 code below.
  ASSERT(IsCallInstruction());
  return *call_object_address();
}


void RelocInfo::set_call_object(Object* target) {
  UNIMPLEMENTED();  // IA32 code below.
  ASSERT(IsCallInstruction());
  *call_object_address() = target;
}


Object** RelocInfo::call_object_address() {
  UNIMPLEMENTED();  // IA32 code below.
  ASSERT(IsCallInstruction());
  return reinterpret_cast<Object**>(pc_ + 1);
}

// -----------------------------------------------------------------------------
// Implementation of Operand

void Operand::set_modrm(int mod, Register rm) {
  ASSERT((mod & -4) == 0);
  buf_[0] = (mod << 6) | (rm.code() & 0x7);
  // Set REX.B to the high bit of rm.code().
  rex_ |= (rm.code() >> 3);
}


void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
  ASSERT(len_ == 1);
  ASSERT(is_uint2(scale));
  // Use SIB with no index register only for base rsp or r12. Otherwise we
  // would skip the SIB byte entirely.
  ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
  buf_[1] = scale << 6 | (index.code() & 0x7) << 3 | (base.code() & 0x7);
  rex_ |= (index.code() >> 3) << 1 | base.code() >> 3;
  len_ = 2;
}

void Operand::set_disp8(int disp) {
  ASSERT(is_int8(disp));
  ASSERT(len_ == 1 || len_ == 2);
  int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
  *p = disp;
  len_ += sizeof(int8_t);
}

void Operand::set_disp32(int disp) {
  ASSERT(len_ == 1 || len_ == 2);
  int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
  *p = disp;
  len_ += sizeof(int32_t);
}


} }  // namespace v8::internal

#endif  // V8_X64_ASSEMBLER_X64_INL_H_