summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-linkage.h
blob: 1bd32ef561c025b21de80127e3559a456f761753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_WASM_LINKAGE_H_
#define V8_WASM_WASM_LINKAGE_H_

#include "src/codegen/assembler-arch.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/signature.h"
#include "src/wasm/value-type.h"

namespace v8 {
namespace internal {
namespace wasm {

// TODO(wasm): optimize calling conventions to be both closer to C++ (to
// reduce adapter costs for fast WASM <-> C++ calls) and to be more efficient
// in general.

#if V8_TARGET_ARCH_IA32
// ===========================================================================
// == ia32 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {esi, eax, edx, ecx};
constexpr Register kGpReturnRegisters[] = {eax, edx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
                                                xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};

#elif V8_TARGET_ARCH_X64
// ===========================================================================
// == x64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {rsi, rax, rdx, rcx, rbx, r9};
constexpr Register kGpReturnRegisters[] = {rax, rdx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
                                                xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};

#elif V8_TARGET_ARCH_ARM
// ===========================================================================
// == arm ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r3, r0, r2, r6};
constexpr Register kGpReturnRegisters[] = {r0, r1};
// ARM d-registers must be in ascending order for correct allocation.
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};

#elif V8_TARGET_ARCH_ARM64
// ===========================================================================
// == arm64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {x7, x0, x2, x3, x4, x5, x6};
constexpr Register kGpReturnRegisters[] = {x0, x1};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};

#elif V8_TARGET_ARCH_MIPS
// ===========================================================================
// == mips ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};

#elif V8_TARGET_ARCH_MIPS64
// ===========================================================================
// == mips64 =================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3, a4, a5, a6, a7};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};

#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
// ===========================================================================
// == ppc & ppc64 ============================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r10, r3, r5, r6, r7, r8, r9};
constexpr Register kGpReturnRegisters[] = {r3, r4};
constexpr DoubleRegister kFpParamRegisters[] = {d1, d2, d3, d4, d5, d6, d7, d8};
constexpr DoubleRegister kFpReturnRegisters[] = {d1, d2};

#elif V8_TARGET_ARCH_S390X
// ===========================================================================
// == s390x ==================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2, d4, d6};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2, d4, d6};

#elif V8_TARGET_ARCH_S390
// ===========================================================================
// == s390 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2};

#else
// ===========================================================================
// == unknown ================================================================
// ===========================================================================
// Do not use any registers, we will just always use the stack.
constexpr Register kGpParamRegisters[] = {};
constexpr Register kGpReturnRegisters[] = {};
constexpr DoubleRegister kFpParamRegisters[] = {};
constexpr DoubleRegister kFpReturnRegisters[] = {};

#endif

// The parameter index where the instance parameter should be placed in wasm
// call descriptors. This is used by the Int64Lowering::LowerNode method.
constexpr int kWasmInstanceParameterIndex = 0;

class LinkageAllocator {
 public:
  template <size_t kNumGpRegs, size_t kNumFpRegs>
  constexpr LinkageAllocator(const Register (&gp)[kNumGpRegs],
                             const DoubleRegister (&fp)[kNumFpRegs])
      : LinkageAllocator(gp, kNumGpRegs, fp, kNumFpRegs) {}

  constexpr LinkageAllocator(const Register* gp, int gpc,
                             const DoubleRegister* fp, int fpc)
      : gp_count_(gpc), gp_regs_(gp), fp_count_(fpc), fp_regs_(fp) {}

  bool CanAllocateGP() const { return gp_offset_ < gp_count_; }
  bool CanAllocateFP(MachineRepresentation rep) const {
#if V8_TARGET_ARCH_ARM
    switch (rep) {
      case MachineRepresentation::kFloat32:
        return fp_offset_ < fp_count_ && fp_regs_[fp_offset_].code() < 16;
      case MachineRepresentation::kFloat64:
        return extra_double_reg_ >= 0 || fp_offset_ < fp_count_;
      case MachineRepresentation::kSimd128:
        return ((fp_offset_ + 1) & ~1) + 1 < fp_count_;
      default:
        UNREACHABLE();
        return false;
    }
#endif
    return fp_offset_ < fp_count_;
  }

  int NextGpReg() {
    DCHECK_LT(gp_offset_, gp_count_);
    return gp_regs_[gp_offset_++].code();
  }

  int NextFpReg(MachineRepresentation rep) {
#if V8_TARGET_ARCH_ARM
    switch (rep) {
      case MachineRepresentation::kFloat32: {
        // Liftoff uses only even-numbered f32 registers, and encodes them using
        // the code of the corresponding f64 register. This limits the calling
        // interface to only using the even-numbered f32 registers.
        int d_reg_code = NextFpReg(MachineRepresentation::kFloat64);
        DCHECK_GT(16, d_reg_code);  // D-registers 16 - 31 can't split.
        return d_reg_code * 2;
      }
      case MachineRepresentation::kFloat64: {
        // Use the extra D-register if there is one.
        if (extra_double_reg_ >= 0) {
          int reg_code = extra_double_reg_;
          extra_double_reg_ = -1;
          return reg_code;
        }
        DCHECK_LT(fp_offset_, fp_count_);
        return fp_regs_[fp_offset_++].code();
      }
      case MachineRepresentation::kSimd128: {
        // Q-register must be an even-odd pair, so we must try to allocate at
        // the end, not using extra_double_reg_. If we are at an odd D-register,
        // skip past it (saving it to extra_double_reg_).
        DCHECK_LT(((fp_offset_ + 1) & ~1) + 1, fp_count_);
        int d_reg1_code = fp_regs_[fp_offset_++].code();
        if (d_reg1_code % 2 != 0) {
          // If we're misaligned then extra_double_reg_ must have been consumed.
          DCHECK_EQ(-1, extra_double_reg_);
          int odd_double_reg = d_reg1_code;
          d_reg1_code = fp_regs_[fp_offset_++].code();
          extra_double_reg_ = odd_double_reg;
        }
        // Combine the current D-register with the next to form a Q-register.
        int d_reg2_code = fp_regs_[fp_offset_++].code();
        DCHECK_EQ(0, d_reg1_code % 2);
        DCHECK_EQ(d_reg1_code + 1, d_reg2_code);
        USE(d_reg2_code);
        return d_reg1_code / 2;
      }
      default:
        UNREACHABLE();
    }
#else
    DCHECK_LT(fp_offset_, fp_count_);
    return fp_regs_[fp_offset_++].code();
#endif
  }

  // Stackslots are counted upwards starting from 0 (or the offset set by
  // {SetStackOffset}.
  int NumStackSlots(MachineRepresentation type) {
    return std::max(1, ElementSizeInBytes(type) / kSystemPointerSize);
  }

  // Stackslots are counted upwards starting from 0 (or the offset set by
  // {SetStackOffset}. If {type} needs more than
  // one stack slot, the lowest used stack slot is returned.
  int NextStackSlot(MachineRepresentation type) {
    int num_stack_slots = NumStackSlots(type);
    int offset = stack_offset_;
    stack_offset_ += num_stack_slots;
    return offset;
  }

  // Set an offset for the stack slots returned by {NextStackSlot} and
  // {NumStackSlots}. Can only be called before any call to {NextStackSlot}.
  void SetStackOffset(int num) {
    DCHECK_LE(0, num);
    DCHECK_EQ(0, stack_offset_);
    stack_offset_ = num;
  }

  int NumStackSlots() const { return stack_offset_; }

 private:
  const int gp_count_;
  int gp_offset_ = 0;
  const Register* const gp_regs_;

  const int fp_count_;
  int fp_offset_ = 0;
  const DoubleRegister* const fp_regs_;

#if V8_TARGET_ARCH_ARM
  // Track fragments of registers below fp_offset_ here. There can only be one
  // extra double register.
  int extra_double_reg_ = -1;
#endif

  int stack_offset_ = 0;
};

}  // namespace wasm
}  // namespace internal
}  // namespace v8

#endif  // V8_WASM_WASM_LINKAGE_H_