summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-external-refs.cc
blob: 9ca45183ef628ad21f697f3b895b49f850e4a74b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <limits>

#include "include/v8config.h"

#include "src/base/bits.h"
#include "src/base/ieee754.h"
#include "src/utils/memcopy.h"

#if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \
    defined(THREAD_SANITIZER) || defined(LEAK_SANITIZER) ||    \
    defined(UNDEFINED_SANITIZER)
#define V8_WITH_SANITIZER
#endif

#if defined(V8_OS_WIN) && defined(V8_WITH_SANITIZER)
// With ASAN on Windows we have to reset the thread-in-wasm flag. Exceptions
// caused by ASAN let the thread-in-wasm flag get out of sync. Even marking
// functions with DISABLE_ASAN is not sufficient when the compiler produces
// calls to memset. Therefore we add test-specific code for ASAN on
// Windows.
#define RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS
#include "src/trap-handler/trap-handler.h"
#endif

#include "src/base/memory.h"
#include "src/utils/utils.h"
#include "src/wasm/wasm-external-refs.h"

namespace v8 {
namespace internal {
namespace wasm {

using base::ReadUnalignedValue;
using base::WriteUnalignedValue;

void f32_trunc_wrapper(Address data) {
  WriteUnalignedValue<float>(data, truncf(ReadUnalignedValue<float>(data)));
}

void f32_floor_wrapper(Address data) {
  WriteUnalignedValue<float>(data, floorf(ReadUnalignedValue<float>(data)));
}

void f32_ceil_wrapper(Address data) {
  WriteUnalignedValue<float>(data, ceilf(ReadUnalignedValue<float>(data)));
}

void f32_nearest_int_wrapper(Address data) {
  WriteUnalignedValue<float>(data, nearbyintf(ReadUnalignedValue<float>(data)));
}

void f64_trunc_wrapper(Address data) {
  WriteUnalignedValue<double>(data, trunc(ReadUnalignedValue<double>(data)));
}

void f64_floor_wrapper(Address data) {
  WriteUnalignedValue<double>(data, floor(ReadUnalignedValue<double>(data)));
}

void f64_ceil_wrapper(Address data) {
  WriteUnalignedValue<double>(data, ceil(ReadUnalignedValue<double>(data)));
}

void f64_nearest_int_wrapper(Address data) {
  WriteUnalignedValue<double>(data,
                              nearbyint(ReadUnalignedValue<double>(data)));
}

void int64_to_float32_wrapper(Address data) {
  int64_t input = ReadUnalignedValue<int64_t>(data);
  WriteUnalignedValue<float>(data, static_cast<float>(input));
}

void uint64_to_float32_wrapper(Address data) {
  uint64_t input = ReadUnalignedValue<uint64_t>(data);
#if defined(V8_OS_WIN)
  // On Windows, the FP stack registers calculate with less precision, which
  // leads to a uint64_t to float32 conversion which does not satisfy the
  // WebAssembly specification. Therefore we do a different approach here:
  //
  // / leading 0 \/  24 float data bits  \/  for rounding \/ trailing 0 \
  // 00000000000001XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX100000000000000
  //
  // Float32 can only represent 24 data bit (1 implicit 1 bit + 23 mantissa
  // bits). Starting from the most significant 1 bit, we can therefore extract
  // 24 bits and do the conversion only on them. The other bits can affect the
  // result only through rounding. Rounding works as follows:
  // * If the most significant rounding bit is not set, then round down.
  // * If the most significant rounding bit is set, and at least one of the
  //   other rounding bits is set, then round up.
  // * If the most significant rounding bit is set, but all other rounding bits
  //   are not set, then round to even.
  // We can aggregate 'all other rounding bits' in the second-most significant
  // rounding bit.
  // The resulting algorithm is therefore as follows:
  // * Check if the distance between the most significant bit (MSB) and the
  //   least significant bit (LSB) is greater than 25 bits. If the distance is
  //   less or equal to 25 bits, the uint64 to float32 conversion is anyways
  //   exact, and we just use the C++ conversion.
  // * Find the most significant bit (MSB).
  // * Starting from the MSB, extract 25 bits (24 data bits + the first rounding
  //   bit).
  // * The remaining rounding bits are guaranteed to contain at least one 1 bit,
  //   due to the check we did above.
  // * Store the 25 bits + 1 aggregated bit in an uint32_t.
  // * Convert this uint32_t to float. The conversion does the correct rounding
  //   now.
  // * Shift the result back to the original magnitude.
  uint32_t leading_zeros = base::bits::CountLeadingZeros(input);
  uint32_t trailing_zeros = base::bits::CountTrailingZeros(input);
  constexpr uint32_t num_extracted_bits = 25;
  // Check if there are any rounding bits we have to aggregate.
  if (leading_zeros + trailing_zeros + num_extracted_bits < 64) {
    // Shift to extract the data bits.
    uint32_t num_aggregation_bits = 64 - num_extracted_bits - leading_zeros;
    // We extract the bits we want to convert. Note that we convert one bit more
    // than necessary. This bit is a placeholder where we will store the
    // aggregation bit.
    int32_t extracted_bits =
        static_cast<int32_t>(input >> (num_aggregation_bits - 1));
    // Set the aggregation bit. We don't have to clear the slot first, because
    // the bit there is also part of the aggregation.
    extracted_bits |= 1;
    float result = static_cast<float>(extracted_bits);
    // We have to shift the result back. The shift amount is
    // (num_aggregation_bits - 1), which is the shift amount we did originally,
    // and (-2), which is for the two additional bits we kept originally for
    // rounding.
    int32_t shift_back = static_cast<int32_t>(num_aggregation_bits) - 1 - 2;
    // Calculate the multiplier to shift the extracted bits back to the original
    // magnitude. This multiplier is a power of two, so in the float32 bit
    // representation we just have to construct the correct exponent and put it
    // at the correct bit offset. The exponent consists of 8 bits, starting at
    // the second MSB (a.k.a '<< 23'). The encoded exponent itself is
    // ('actual exponent' - 127).
    int32_t multiplier_bits = ((shift_back - 127) & 0xff) << 23;
    result *= bit_cast<float>(multiplier_bits);
    WriteUnalignedValue<float>(data, result);
    return;
  }
#endif  // defined(V8_OS_WIN)
  WriteUnalignedValue<float>(data, static_cast<float>(input));
}

void int64_to_float64_wrapper(Address data) {
  int64_t input = ReadUnalignedValue<int64_t>(data);
  WriteUnalignedValue<double>(data, static_cast<double>(input));
}

void uint64_to_float64_wrapper(Address data) {
  uint64_t input = ReadUnalignedValue<uint64_t>(data);
  double result = static_cast<double>(input);

#if V8_CC_MSVC
  // With MSVC we use static_cast<double>(uint32_t) instead of
  // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
  // semantics. The idea is to calculate
  // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
  uint32_t low_word = static_cast<uint32_t>(input & 0xFFFFFFFF);
  uint32_t high_word = static_cast<uint32_t>(input >> 32);

  double shift = static_cast<double>(1ull << 32);

  result = static_cast<double>(high_word);
  result *= shift;
  result += static_cast<double>(low_word);
#endif

  WriteUnalignedValue<double>(data, result);
}

int32_t float32_to_int64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  float input = ReadUnalignedValue<float>(data);
  if (input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
      input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
    WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float32_to_uint64_wrapper(Address data) {
  float input = ReadUnalignedValue<float>(data);
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  if (input > -1.0 &&
      input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
    WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float64_to_int64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  double input = ReadUnalignedValue<double>(data);
  if (input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
      input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
    WriteUnalignedValue<int64_t>(data, static_cast<int64_t>(input));
    return 1;
  }
  return 0;
}

int32_t float64_to_uint64_wrapper(Address data) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  double input = ReadUnalignedValue<double>(data);
  if (input > -1.0 &&
      input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
    WriteUnalignedValue<uint64_t>(data, static_cast<uint64_t>(input));
    return 1;
  }
  return 0;
}

int32_t int64_div_wrapper(Address data) {
  int64_t dividend = ReadUnalignedValue<int64_t>(data);
  int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  if (divisor == -1 && dividend == std::numeric_limits<int64_t>::min()) {
    return -1;
  }
  WriteUnalignedValue<int64_t>(data, dividend / divisor);
  return 1;
}

int32_t int64_mod_wrapper(Address data) {
  int64_t dividend = ReadUnalignedValue<int64_t>(data);
  int64_t divisor = ReadUnalignedValue<int64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<int64_t>(data, dividend % divisor);
  return 1;
}

int32_t uint64_div_wrapper(Address data) {
  uint64_t dividend = ReadUnalignedValue<uint64_t>(data);
  uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<uint64_t>(data, dividend / divisor);
  return 1;
}

int32_t uint64_mod_wrapper(Address data) {
  uint64_t dividend = ReadUnalignedValue<uint64_t>(data);
  uint64_t divisor = ReadUnalignedValue<uint64_t>(data + sizeof(dividend));
  if (divisor == 0) {
    return 0;
  }
  WriteUnalignedValue<uint64_t>(data, dividend % divisor);
  return 1;
}

uint32_t word32_ctz_wrapper(Address data) {
  return base::bits::CountTrailingZeros(ReadUnalignedValue<uint32_t>(data));
}

uint32_t word64_ctz_wrapper(Address data) {
  return base::bits::CountTrailingZeros(ReadUnalignedValue<uint64_t>(data));
}

uint32_t word32_popcnt_wrapper(Address data) {
  return base::bits::CountPopulation(ReadUnalignedValue<uint32_t>(data));
}

uint32_t word64_popcnt_wrapper(Address data) {
  return base::bits::CountPopulation(ReadUnalignedValue<uint64_t>(data));
}

uint32_t word32_rol_wrapper(Address data) {
  uint32_t input = ReadUnalignedValue<uint32_t>(data);
  uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31;
  return (input << shift) | (input >> ((32 - shift) & 31));
}

uint32_t word32_ror_wrapper(Address data) {
  uint32_t input = ReadUnalignedValue<uint32_t>(data);
  uint32_t shift = ReadUnalignedValue<uint32_t>(data + sizeof(input)) & 31;
  return (input >> shift) | (input << ((32 - shift) & 31));
}

void float64_pow_wrapper(Address data) {
  double x = ReadUnalignedValue<double>(data);
  double y = ReadUnalignedValue<double>(data + sizeof(x));
  WriteUnalignedValue<double>(data, base::ieee754::pow(x, y));
}

// Asan on Windows triggers exceptions in this function to allocate
// shadow memory lazily. When this function is called from WebAssembly,
// these exceptions would be handled by the trap handler before they get
// handled by Asan, and thereby confuse the thread-in-wasm flag.
// Therefore we disable ASAN for this function. Alternatively we could
// reset the thread-in-wasm flag before calling this function. However,
// as this is only a problem with Asan on Windows, we did not consider
// it worth the overhead.
DISABLE_ASAN void memory_copy_wrapper(Address dst, Address src, uint32_t size) {
  // Use explicit forward and backward copy to match the required semantics for
  // the memory.copy instruction. It is assumed that the caller of this
  // function has already performed bounds checks, so {src + size} and
  // {dst + size} should not overflow.
  DCHECK(src + size >= src && dst + size >= dst);
  uint8_t* dst8 = reinterpret_cast<uint8_t*>(dst);
  uint8_t* src8 = reinterpret_cast<uint8_t*>(src);
  if (src < dst && src + size > dst && dst + size > src) {
    dst8 += size - 1;
    src8 += size - 1;
    for (; size > 0; size--) {
      *dst8-- = *src8--;
    }
  } else {
    for (; size > 0; size--) {
      *dst8++ = *src8++;
    }
  }
}

// Asan on Windows triggers exceptions in this function that confuse the
// WebAssembly trap handler, so Asan is disabled. See the comment on
// memory_copy_wrapper above for more info.
void memory_fill_wrapper(Address dst, uint32_t value, uint32_t size) {
#if defined(RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS)
  bool thread_was_in_wasm = trap_handler::IsThreadInWasm();
  if (thread_was_in_wasm) {
    trap_handler::ClearThreadInWasm();
  }
#endif

  // Use an explicit forward copy to match the required semantics for the
  // memory.fill instruction. It is assumed that the caller of this function
  // has already performed bounds checks, so {dst + size} should not overflow.
  DCHECK(dst + size >= dst);
  uint8_t* dst8 = reinterpret_cast<uint8_t*>(dst);
  uint8_t value8 = static_cast<uint8_t>(value);
  for (; size > 0; size--) {
    *dst8++ = value8;
  }
#if defined(RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS)
  if (thread_was_in_wasm) {
    trap_handler::SetThreadInWasm();
  }
#endif
}

static WasmTrapCallbackForTesting wasm_trap_callback_for_testing = nullptr;

void set_trap_callback_for_testing(WasmTrapCallbackForTesting callback) {
  wasm_trap_callback_for_testing = callback;
}

void call_trap_callback_for_testing() {
  if (wasm_trap_callback_for_testing) {
    wasm_trap_callback_for_testing();
  }
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8

#undef V8_WITH_SANITIZER
#undef RESET_THREAD_IN_WASM_FLAG_FOR_ASAN_ON_WINDOWS