summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/wasm-engine.cc
blob: 97111f8349735a1bfd70d969c380fd39f6abfc2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/wasm-engine.h"

#include "src/base/platform/time.h"
#include "src/diagnostics/code-tracer.h"
#include "src/diagnostics/compilation-statistics.h"
#include "src/execution/frames.h"
#include "src/execution/v8threads.h"
#include "src/logging/counters.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-promise.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"
#include "src/wasm/function-compiler.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/module-instantiate.h"
#include "src/wasm/streaming-decoder.h"
#include "src/wasm/wasm-objects-inl.h"

namespace v8 {
namespace internal {
namespace wasm {

#define TRACE_CODE_GC(...)                                         \
  do {                                                             \
    if (FLAG_trace_wasm_code_gc) PrintF("[wasm-gc] " __VA_ARGS__); \
  } while (false)

namespace {
// A task to log a set of {WasmCode} objects in an isolate. It does not own any
// data itself, since it is owned by the platform, so lifetime is not really
// bound to the wasm engine.
class LogCodesTask : public Task {
 public:
  LogCodesTask(base::Mutex* mutex, LogCodesTask** task_slot, Isolate* isolate,
               WasmEngine* engine)
      : mutex_(mutex),
        task_slot_(task_slot),
        isolate_(isolate),
        engine_(engine) {
    DCHECK_NOT_NULL(task_slot);
    DCHECK_NOT_NULL(isolate);
  }

  ~LogCodesTask() {
    // If the platform deletes this task before executing it, we also deregister
    // it to avoid use-after-free from still-running background threads.
    if (!cancelled()) DeregisterTask();
  }

  void Run() override {
    if (cancelled()) return;
    DeregisterTask();
    engine_->LogOutstandingCodesForIsolate(isolate_);
  }

  void Cancel() {
    // Cancel will only be called on Isolate shutdown, which happens on the
    // Isolate's foreground thread. Thus no synchronization needed.
    isolate_ = nullptr;
  }

  bool cancelled() const { return isolate_ == nullptr; }

  void DeregisterTask() {
    // The task will only be deregistered from the foreground thread (executing
    // this task or calling its destructor), thus we do not need synchronization
    // on this field access.
    if (task_slot_ == nullptr) return;  // already deregistered.
    // Remove this task from the {IsolateInfo} in the engine. The next
    // logging request will allocate and schedule a new task.
    base::MutexGuard guard(mutex_);
    DCHECK_EQ(this, *task_slot_);
    *task_slot_ = nullptr;
    task_slot_ = nullptr;
  }

 private:
  // The mutex of the WasmEngine.
  base::Mutex* const mutex_;
  // The slot in the WasmEngine where this LogCodesTask is stored. This is
  // cleared by this task before execution or on task destruction.
  LogCodesTask** task_slot_;
  Isolate* isolate_;
  WasmEngine* const engine_;
};

void CheckNoArchivedThreads(Isolate* isolate) {
  class ArchivedThreadsVisitor : public ThreadVisitor {
    void VisitThread(Isolate* isolate, ThreadLocalTop* top) override {
      // Archived threads are rarely used, and not combined with Wasm at the
      // moment. Implement this and test it properly once we have a use case for
      // that.
      FATAL("archived threads in combination with wasm not supported");
    }
  } archived_threads_visitor;
  isolate->thread_manager()->IterateArchivedThreads(&archived_threads_visitor);
}

class WasmGCForegroundTask : public CancelableTask {
 public:
  explicit WasmGCForegroundTask(Isolate* isolate)
      : CancelableTask(isolate->cancelable_task_manager()), isolate_(isolate) {}

  void RunInternal() final {
    WasmEngine* engine = isolate_->wasm_engine();
    // If the foreground task is executing, there is no wasm code active. Just
    // report an empty set of live wasm code.
#ifdef ENABLE_SLOW_DCHECKS
    for (StackFrameIterator it(isolate_); !it.done(); it.Advance()) {
      DCHECK_NE(StackFrame::WASM_COMPILED, it.frame()->type());
    }
#endif
    CheckNoArchivedThreads(isolate_);
    engine->ReportLiveCodeForGC(isolate_, Vector<WasmCode*>{});
  }

 private:
  Isolate* isolate_;
};

}  // namespace

struct WasmEngine::CurrentGCInfo {
  explicit CurrentGCInfo(int8_t gc_sequence_index)
      : gc_sequence_index(gc_sequence_index) {
    DCHECK_NE(0, gc_sequence_index);
  }

  // Set of isolates that did not scan their stack yet for used WasmCode, and
  // their scheduled foreground task.
  std::unordered_map<Isolate*, WasmGCForegroundTask*> outstanding_isolates;

  // Set of dead code. Filled with all potentially dead code on initialization.
  // Code that is still in-use is removed by the individual isolates.
  std::unordered_set<WasmCode*> dead_code;

  // The number of GCs triggered in the native module that triggered this GC.
  // This is stored in the histogram for each participating isolate during
  // execution of that isolate's foreground task.
  const int8_t gc_sequence_index;

  // If during this GC, another GC was requested, we skipped that other GC (we
  // only run one GC at a time). Remember though to trigger another one once
  // this one finishes. {next_gc_sequence_index} is 0 if no next GC is needed,
  // and >0 otherwise. It stores the {num_code_gcs_triggered} of the native
  // module which triggered the next GC.
  int8_t next_gc_sequence_index = 0;

  // The start time of this GC; used for tracing and sampled via {Counters}.
  // Can be null ({TimeTicks::IsNull()}) if timer is not high resolution.
  base::TimeTicks start_time;
};

struct WasmEngine::IsolateInfo {
  explicit IsolateInfo(Isolate* isolate)
      : log_codes(WasmCode::ShouldBeLogged(isolate)),
        async_counters(isolate->async_counters()) {
    v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
    v8::Platform* platform = V8::GetCurrentPlatform();
    foreground_task_runner = platform->GetForegroundTaskRunner(v8_isolate);
  }

#ifdef DEBUG
  ~IsolateInfo() {
    // Before destructing, the {WasmEngine} must have cleared outstanding code
    // to log.
    DCHECK_EQ(0, code_to_log.size());
  }
#endif

  // All native modules that are being used by this Isolate (currently only
  // grows, never shrinks).
  std::set<NativeModule*> native_modules;

  // Caches whether code needs to be logged on this isolate.
  bool log_codes;

  // The currently scheduled LogCodesTask.
  LogCodesTask* log_codes_task = nullptr;

  // The vector of code objects that still need to be logged in this isolate.
  std::vector<WasmCode*> code_to_log;

  // The foreground task runner of the isolate (can be called from background).
  std::shared_ptr<v8::TaskRunner> foreground_task_runner;

  const std::shared_ptr<Counters> async_counters;
};

struct WasmEngine::NativeModuleInfo {
  // Set of isolates using this NativeModule.
  std::unordered_set<Isolate*> isolates;

  // Set of potentially dead code. This set holds one ref for each code object,
  // until code is detected to be really dead. At that point, the ref count is
  // decremented and code is move to the {dead_code} set. If the code is finally
  // deleted, it is also removed from {dead_code}.
  std::unordered_set<WasmCode*> potentially_dead_code;

  // Code that is not being executed in any isolate any more, but the ref count
  // did not drop to zero yet.
  std::unordered_set<WasmCode*> dead_code;

  // Number of code GCs triggered because code in this native module became
  // potentially dead.
  int8_t num_code_gcs_triggered = 0;
};

WasmEngine::WasmEngine()
    : code_manager_(&memory_tracker_, FLAG_wasm_max_code_space * MB) {}

WasmEngine::~WasmEngine() {
  // Synchronize on all background compile tasks.
  background_compile_task_manager_.CancelAndWait();
  // All AsyncCompileJobs have been canceled.
  DCHECK(async_compile_jobs_.empty());
  // All Isolates have been deregistered.
  DCHECK(isolates_.empty());
  // All NativeModules did die.
  DCHECK(native_modules_.empty());
}

bool WasmEngine::SyncValidate(Isolate* isolate, const WasmFeatures& enabled,
                              const ModuleWireBytes& bytes) {
  // TODO(titzer): remove dependency on the isolate.
  if (bytes.start() == nullptr || bytes.length() == 0) return false;
  ModuleResult result =
      DecodeWasmModule(enabled, bytes.start(), bytes.end(), true, kWasmOrigin,
                       isolate->counters(), allocator());
  return result.ok();
}

MaybeHandle<AsmWasmData> WasmEngine::SyncCompileTranslatedAsmJs(
    Isolate* isolate, ErrorThrower* thrower, const ModuleWireBytes& bytes,
    Vector<const byte> asm_js_offset_table_bytes,
    Handle<HeapNumber> uses_bitset, LanguageMode language_mode) {
  ModuleOrigin origin = language_mode == LanguageMode::kSloppy
                            ? kAsmJsSloppyOrigin
                            : kAsmJsStrictOrigin;
  ModuleResult result =
      DecodeWasmModule(kAsmjsWasmFeatures, bytes.start(), bytes.end(), false,
                       origin, isolate->counters(), allocator());
  if (result.failed()) {
    // This happens once in a while when we have missed some limit check
    // in the asm parser. Output an error message to help diagnose, but crash.
    std::cout << result.error().message();
    UNREACHABLE();
  }

  // Transfer ownership of the WasmModule to the {Managed<WasmModule>} generated
  // in {CompileToNativeModule}.
  Handle<FixedArray> export_wrappers;
  std::shared_ptr<NativeModule> native_module =
      CompileToNativeModule(isolate, kAsmjsWasmFeatures, thrower,
                            std::move(result).value(), bytes, &export_wrappers);
  if (!native_module) return {};

  // Create heap objects for asm.js offset table to be stored in the module
  // object.
  Handle<ByteArray> asm_js_offset_table =
      isolate->factory()->NewByteArray(asm_js_offset_table_bytes.length());
  asm_js_offset_table->copy_in(0, asm_js_offset_table_bytes.begin(),
                               asm_js_offset_table_bytes.length());

  return AsmWasmData::New(isolate, std::move(native_module), export_wrappers,
                          asm_js_offset_table, uses_bitset);
}

Handle<WasmModuleObject> WasmEngine::FinalizeTranslatedAsmJs(
    Isolate* isolate, Handle<AsmWasmData> asm_wasm_data,
    Handle<Script> script) {
  std::shared_ptr<NativeModule> native_module =
      asm_wasm_data->managed_native_module().get();
  Handle<FixedArray> export_wrappers =
      handle(asm_wasm_data->export_wrappers(), isolate);
  Handle<WasmModuleObject> module_object = WasmModuleObject::New(
      isolate, std::move(native_module), script, export_wrappers);
  module_object->set_asm_js_offset_table(asm_wasm_data->asm_js_offset_table());
  return module_object;
}

MaybeHandle<WasmModuleObject> WasmEngine::SyncCompile(
    Isolate* isolate, const WasmFeatures& enabled, ErrorThrower* thrower,
    const ModuleWireBytes& bytes) {
  ModuleResult result =
      DecodeWasmModule(enabled, bytes.start(), bytes.end(), false, kWasmOrigin,
                       isolate->counters(), allocator());
  if (result.failed()) {
    thrower->CompileFailed(result.error());
    return {};
  }

  // Transfer ownership of the WasmModule to the {Managed<WasmModule>} generated
  // in {CompileToModuleObject}.
  Handle<FixedArray> export_wrappers;
  std::shared_ptr<NativeModule> native_module =
      CompileToNativeModule(isolate, enabled, thrower,
                            std::move(result).value(), bytes, &export_wrappers);
  if (!native_module) return {};

  Handle<Script> script =
      CreateWasmScript(isolate, bytes, native_module->module()->source_map_url);

  // Create the module object.
  // TODO(clemensh): For the same module (same bytes / same hash), we should
  // only have one WasmModuleObject. Otherwise, we might only set
  // breakpoints on a (potentially empty) subset of the instances.

  // Create the compiled module object and populate with compiled functions
  // and information needed at instantiation time. This object needs to be
  // serializable. Instantiation may occur off a deserialized version of this
  // object.
  Handle<WasmModuleObject> module_object = WasmModuleObject::New(
      isolate, std::move(native_module), script, export_wrappers);

  // Finish the Wasm script now and make it public to the debugger.
  isolate->debug()->OnAfterCompile(script);
  return module_object;
}

MaybeHandle<WasmInstanceObject> WasmEngine::SyncInstantiate(
    Isolate* isolate, ErrorThrower* thrower,
    Handle<WasmModuleObject> module_object, MaybeHandle<JSReceiver> imports,
    MaybeHandle<JSArrayBuffer> memory) {
  return InstantiateToInstanceObject(isolate, thrower, module_object, imports,
                                     memory);
}

void WasmEngine::AsyncInstantiate(
    Isolate* isolate, std::unique_ptr<InstantiationResultResolver> resolver,
    Handle<WasmModuleObject> module_object, MaybeHandle<JSReceiver> imports) {
  ErrorThrower thrower(isolate, "WebAssembly.instantiate()");
  // Instantiate a TryCatch so that caught exceptions won't progagate out.
  // They will still be set as pending exceptions on the isolate.
  // TODO(clemensh): Avoid TryCatch, use Execution::TryCall internally to invoke
  // start function and report thrown exception explicitly via out argument.
  v8::TryCatch catcher(reinterpret_cast<v8::Isolate*>(isolate));
  catcher.SetVerbose(false);
  catcher.SetCaptureMessage(false);

  MaybeHandle<WasmInstanceObject> instance_object = SyncInstantiate(
      isolate, &thrower, module_object, imports, Handle<JSArrayBuffer>::null());

  if (!instance_object.is_null()) {
    resolver->OnInstantiationSucceeded(instance_object.ToHandleChecked());
    return;
  }

  if (isolate->has_pending_exception()) {
    // The JS code executed during instantiation has thrown an exception.
    // We have to move the exception to the promise chain.
    Handle<Object> exception(isolate->pending_exception(), isolate);
    isolate->clear_pending_exception();
    *isolate->external_caught_exception_address() = false;
    resolver->OnInstantiationFailed(exception);
    thrower.Reset();
  } else {
    DCHECK(thrower.error());
    resolver->OnInstantiationFailed(thrower.Reify());
  }
}

void WasmEngine::AsyncCompile(
    Isolate* isolate, const WasmFeatures& enabled,
    std::shared_ptr<CompilationResultResolver> resolver,
    const ModuleWireBytes& bytes, bool is_shared,
    const char* api_method_name_for_errors) {
  if (!FLAG_wasm_async_compilation) {
    // Asynchronous compilation disabled; fall back on synchronous compilation.
    ErrorThrower thrower(isolate, api_method_name_for_errors);
    MaybeHandle<WasmModuleObject> module_object;
    if (is_shared) {
      // Make a copy of the wire bytes to avoid concurrent modification.
      std::unique_ptr<uint8_t[]> copy(new uint8_t[bytes.length()]);
      memcpy(copy.get(), bytes.start(), bytes.length());
      ModuleWireBytes bytes_copy(copy.get(), copy.get() + bytes.length());
      module_object = SyncCompile(isolate, enabled, &thrower, bytes_copy);
    } else {
      // The wire bytes are not shared, OK to use them directly.
      module_object = SyncCompile(isolate, enabled, &thrower, bytes);
    }
    if (thrower.error()) {
      resolver->OnCompilationFailed(thrower.Reify());
      return;
    }
    Handle<WasmModuleObject> module = module_object.ToHandleChecked();
    resolver->OnCompilationSucceeded(module);
    return;
  }

  if (FLAG_wasm_test_streaming) {
    std::shared_ptr<StreamingDecoder> streaming_decoder =
        StartStreamingCompilation(
            isolate, enabled, handle(isolate->context(), isolate),
            api_method_name_for_errors, std::move(resolver));
    streaming_decoder->OnBytesReceived(bytes.module_bytes());
    streaming_decoder->Finish();
    return;
  }
  // Make a copy of the wire bytes in case the user program changes them
  // during asynchronous compilation.
  std::unique_ptr<byte[]> copy(new byte[bytes.length()]);
  memcpy(copy.get(), bytes.start(), bytes.length());

  AsyncCompileJob* job =
      CreateAsyncCompileJob(isolate, enabled, std::move(copy), bytes.length(),
                            handle(isolate->context(), isolate),
                            api_method_name_for_errors, std::move(resolver));
  job->Start();
}

std::shared_ptr<StreamingDecoder> WasmEngine::StartStreamingCompilation(
    Isolate* isolate, const WasmFeatures& enabled, Handle<Context> context,
    const char* api_method_name,
    std::shared_ptr<CompilationResultResolver> resolver) {
  AsyncCompileJob* job =
      CreateAsyncCompileJob(isolate, enabled, std::unique_ptr<byte[]>(nullptr),
                            0, context, api_method_name, std::move(resolver));
  return job->CreateStreamingDecoder();
}

void WasmEngine::CompileFunction(Isolate* isolate, NativeModule* native_module,
                                 uint32_t function_index, ExecutionTier tier) {
  // Note we assume that "one-off" compilations can discard detected features.
  WasmFeatures detected = kNoWasmFeatures;
  WasmCompilationUnit::CompileWasmFunction(
      isolate, native_module, &detected,
      &native_module->module()->functions[function_index], tier);
}

std::shared_ptr<NativeModule> WasmEngine::ExportNativeModule(
    Handle<WasmModuleObject> module_object) {
  return module_object->shared_native_module();
}

Handle<WasmModuleObject> WasmEngine::ImportNativeModule(
    Isolate* isolate, std::shared_ptr<NativeModule> shared_native_module) {
  NativeModule* native_module = shared_native_module.get();
  ModuleWireBytes wire_bytes(native_module->wire_bytes());
  Handle<Script> script = CreateWasmScript(
      isolate, wire_bytes, native_module->module()->source_map_url);
  Handle<FixedArray> export_wrappers;
  CompileJsToWasmWrappers(isolate, native_module->module(), &export_wrappers);
  Handle<WasmModuleObject> module_object = WasmModuleObject::New(
      isolate, std::move(shared_native_module), script, export_wrappers,
      native_module->committed_code_space());
  {
    base::MutexGuard lock(&mutex_);
    DCHECK_EQ(1, isolates_.count(isolate));
    isolates_[isolate]->native_modules.insert(native_module);
    DCHECK_EQ(1, native_modules_.count(native_module));
    native_modules_[native_module]->isolates.insert(isolate);
  }

  // Finish the Wasm script now and make it public to the debugger.
  isolate->debug()->OnAfterCompile(script);
  return module_object;
}

CompilationStatistics* WasmEngine::GetOrCreateTurboStatistics() {
  base::MutexGuard guard(&mutex_);
  if (compilation_stats_ == nullptr) {
    compilation_stats_.reset(new CompilationStatistics());
  }
  return compilation_stats_.get();
}

void WasmEngine::DumpAndResetTurboStatistics() {
  base::MutexGuard guard(&mutex_);
  if (compilation_stats_ != nullptr) {
    StdoutStream os;
    os << AsPrintableStatistics{*compilation_stats_.get(), false} << std::endl;
  }
  compilation_stats_.reset();
}

CodeTracer* WasmEngine::GetCodeTracer() {
  base::MutexGuard guard(&mutex_);
  if (code_tracer_ == nullptr) code_tracer_.reset(new CodeTracer(-1));
  return code_tracer_.get();
}

AsyncCompileJob* WasmEngine::CreateAsyncCompileJob(
    Isolate* isolate, const WasmFeatures& enabled,
    std::unique_ptr<byte[]> bytes_copy, size_t length, Handle<Context> context,
    const char* api_method_name,
    std::shared_ptr<CompilationResultResolver> resolver) {
  AsyncCompileJob* job =
      new AsyncCompileJob(isolate, enabled, std::move(bytes_copy), length,
                          context, api_method_name, std::move(resolver));
  // Pass ownership to the unique_ptr in {async_compile_jobs_}.
  base::MutexGuard guard(&mutex_);
  async_compile_jobs_[job] = std::unique_ptr<AsyncCompileJob>(job);
  return job;
}

std::unique_ptr<AsyncCompileJob> WasmEngine::RemoveCompileJob(
    AsyncCompileJob* job) {
  base::MutexGuard guard(&mutex_);
  auto item = async_compile_jobs_.find(job);
  DCHECK(item != async_compile_jobs_.end());
  std::unique_ptr<AsyncCompileJob> result = std::move(item->second);
  async_compile_jobs_.erase(item);
  return result;
}

bool WasmEngine::HasRunningCompileJob(Isolate* isolate) {
  base::MutexGuard guard(&mutex_);
  DCHECK_EQ(1, isolates_.count(isolate));
  for (auto& entry : async_compile_jobs_) {
    if (entry.first->isolate() == isolate) return true;
  }
  return false;
}

void WasmEngine::DeleteCompileJobsOnContext(Handle<Context> context) {
  // Under the mutex get all jobs to delete. Then delete them without holding
  // the mutex, such that deletion can reenter the WasmEngine.
  std::vector<std::unique_ptr<AsyncCompileJob>> jobs_to_delete;
  {
    base::MutexGuard guard(&mutex_);
    for (auto it = async_compile_jobs_.begin();
         it != async_compile_jobs_.end();) {
      if (!it->first->context().is_identical_to(context)) {
        ++it;
        continue;
      }
      jobs_to_delete.push_back(std::move(it->second));
      it = async_compile_jobs_.erase(it);
    }
  }
}

void WasmEngine::DeleteCompileJobsOnIsolate(Isolate* isolate) {
  // Under the mutex get all jobs to delete. Then delete them without holding
  // the mutex, such that deletion can reenter the WasmEngine.
  std::vector<std::unique_ptr<AsyncCompileJob>> jobs_to_delete;
  {
    base::MutexGuard guard(&mutex_);
    DCHECK_EQ(1, isolates_.count(isolate));
    for (auto it = async_compile_jobs_.begin();
         it != async_compile_jobs_.end();) {
      if (it->first->isolate() != isolate) {
        ++it;
        continue;
      }
      jobs_to_delete.push_back(std::move(it->second));
      it = async_compile_jobs_.erase(it);
    }
  }
}

namespace {
int GetGCTimeMicros(base::TimeTicks start) {
  DCHECK(!start.IsNull());
  int64_t duration_us = (base::TimeTicks::Now() - start).InMicroseconds();
  return static_cast<int>(
      std::min(std::max(int64_t{0}, duration_us), int64_t{kMaxInt}));
}
}  // namespace

void WasmEngine::AddIsolate(Isolate* isolate) {
  base::MutexGuard guard(&mutex_);
  DCHECK_EQ(0, isolates_.count(isolate));
  isolates_.emplace(isolate, base::make_unique<IsolateInfo>(isolate));

  // Install sampling GC callback.
  // TODO(v8:7424): For now we sample module sizes in a GC callback. This will
  // bias samples towards apps with high memory pressure. We should switch to
  // using sampling based on regular intervals independent of the GC.
  auto callback = [](v8::Isolate* v8_isolate, v8::GCType type,
                     v8::GCCallbackFlags flags, void* data) {
    Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
    Counters* counters = isolate->counters();
    WasmEngine* engine = isolate->wasm_engine();
    base::MutexGuard lock(&engine->mutex_);
    DCHECK_EQ(1, engine->isolates_.count(isolate));
    for (auto* native_module : engine->isolates_[isolate]->native_modules) {
      native_module->SampleCodeSize(counters, NativeModule::kSampling);
    }
    // If there is an ongoing code GC, sample its time here. This will record
    // samples for very long-running or never ending GCs.
    if (engine->current_gc_info_ &&
        !engine->current_gc_info_->start_time.IsNull()) {
      isolate->counters()->wasm_code_gc_time()->AddSample(
          GetGCTimeMicros(engine->current_gc_info_->start_time));
    }
  };
  isolate->heap()->AddGCEpilogueCallback(callback, v8::kGCTypeMarkSweepCompact,
                                         nullptr);
}

void WasmEngine::RemoveIsolate(Isolate* isolate) {
  base::MutexGuard guard(&mutex_);
  auto it = isolates_.find(isolate);
  DCHECK_NE(isolates_.end(), it);
  std::unique_ptr<IsolateInfo> info = std::move(it->second);
  isolates_.erase(it);
  for (NativeModule* native_module : info->native_modules) {
    DCHECK_EQ(1, native_modules_.count(native_module));
    DCHECK_EQ(1, native_modules_[native_module]->isolates.count(isolate));
    auto* info = native_modules_[native_module].get();
    info->isolates.erase(isolate);
    if (current_gc_info_) {
      for (WasmCode* code : info->potentially_dead_code) {
        current_gc_info_->dead_code.erase(code);
      }
    }
  }
  if (current_gc_info_) {
    if (RemoveIsolateFromCurrentGC(isolate)) PotentiallyFinishCurrentGC();
  }
  if (auto* task = info->log_codes_task) task->Cancel();
  if (!info->code_to_log.empty()) {
    WasmCode::DecrementRefCount(VectorOf(info->code_to_log));
    info->code_to_log.clear();
  }
}

void WasmEngine::LogCode(WasmCode* code) {
  base::MutexGuard guard(&mutex_);
  NativeModule* native_module = code->native_module();
  DCHECK_EQ(1, native_modules_.count(native_module));
  for (Isolate* isolate : native_modules_[native_module]->isolates) {
    DCHECK_EQ(1, isolates_.count(isolate));
    IsolateInfo* info = isolates_[isolate].get();
    if (info->log_codes == false) continue;
    if (info->log_codes_task == nullptr) {
      auto new_task = base::make_unique<LogCodesTask>(
          &mutex_, &info->log_codes_task, isolate, this);
      info->log_codes_task = new_task.get();
      info->foreground_task_runner->PostTask(std::move(new_task));
    }
    if (info->code_to_log.empty()) {
      isolate->stack_guard()->RequestLogWasmCode();
    }
    info->code_to_log.push_back(code);
    code->IncRef();
  }
}

void WasmEngine::EnableCodeLogging(Isolate* isolate) {
  base::MutexGuard guard(&mutex_);
  auto it = isolates_.find(isolate);
  DCHECK_NE(isolates_.end(), it);
  it->second->log_codes = true;
}

void WasmEngine::LogOutstandingCodesForIsolate(Isolate* isolate) {
  // If by now we should not log code any more, do not log it.
  if (!WasmCode::ShouldBeLogged(isolate)) return;

  // Under the mutex, get the vector of wasm code to log. Then log and decrement
  // the ref count without holding the mutex.
  std::vector<WasmCode*> code_to_log;
  {
    base::MutexGuard guard(&mutex_);
    DCHECK_EQ(1, isolates_.count(isolate));
    code_to_log.swap(isolates_[isolate]->code_to_log);
  }
  if (code_to_log.empty()) return;
  for (WasmCode* code : code_to_log) {
    code->LogCode(isolate);
  }
  WasmCode::DecrementRefCount(VectorOf(code_to_log));
}

std::shared_ptr<NativeModule> WasmEngine::NewNativeModule(
    Isolate* isolate, const WasmFeatures& enabled,
    std::shared_ptr<const WasmModule> module) {
  size_t code_size_estimate =
      wasm::WasmCodeManager::EstimateNativeModuleCodeSize(module.get());
  return NewNativeModule(isolate, enabled, code_size_estimate,
                         wasm::NativeModule::kCanAllocateMoreMemory,
                         std::move(module));
}

std::shared_ptr<NativeModule> WasmEngine::NewNativeModule(
    Isolate* isolate, const WasmFeatures& enabled, size_t code_size_estimate,
    bool can_request_more, std::shared_ptr<const WasmModule> module) {
  std::shared_ptr<NativeModule> native_module =
      code_manager_.NewNativeModule(this, isolate, enabled, code_size_estimate,
                                    can_request_more, std::move(module));
  base::MutexGuard lock(&mutex_);
  auto pair = native_modules_.insert(std::make_pair(
      native_module.get(), base::make_unique<NativeModuleInfo>()));
  DCHECK(pair.second);  // inserted new entry.
  pair.first->second.get()->isolates.insert(isolate);
  isolates_[isolate]->native_modules.insert(native_module.get());
  return native_module;
}

void WasmEngine::FreeNativeModule(NativeModule* native_module) {
  base::MutexGuard guard(&mutex_);
  auto it = native_modules_.find(native_module);
  DCHECK_NE(native_modules_.end(), it);
  for (Isolate* isolate : it->second->isolates) {
    DCHECK_EQ(1, isolates_.count(isolate));
    IsolateInfo* info = isolates_[isolate].get();
    DCHECK_EQ(1, info->native_modules.count(native_module));
    info->native_modules.erase(native_module);
    // If there are {WasmCode} objects of the deleted {NativeModule}
    // outstanding to be logged in this isolate, remove them. Decrementing the
    // ref count is not needed, since the {NativeModule} dies anyway.
    size_t remaining = info->code_to_log.size();
    if (remaining > 0) {
      for (size_t i = 0; i < remaining; ++i) {
        while (i < remaining &&
               info->code_to_log[i]->native_module() == native_module) {
          // Move the last remaining item to this slot (this can be the same
          // as {i}, which is OK).
          info->code_to_log[i] = info->code_to_log[--remaining];
        }
      }
      info->code_to_log.resize(remaining);
    }
  }
  // If there is a GC running which has references to code contained in the
  // deleted {NativeModule}, remove those references.
  if (current_gc_info_) {
    for (auto it = current_gc_info_->dead_code.begin(),
              end = current_gc_info_->dead_code.end();
         it != end;) {
      if ((*it)->native_module() == native_module) {
        it = current_gc_info_->dead_code.erase(it);
      } else {
        ++it;
      }
    }
    TRACE_CODE_GC("Native module %p died, reducing dead code objects to %zu.\n",
                  native_module, current_gc_info_->dead_code.size());
  }
  native_modules_.erase(it);
}

namespace {
class SampleTopTierCodeSizeTask : public CancelableTask {
 public:
  SampleTopTierCodeSizeTask(Isolate* isolate,
                            std::weak_ptr<NativeModule> native_module)
      : CancelableTask(isolate),
        isolate_(isolate),
        native_module_(std::move(native_module)) {}

  void RunInternal() override {
    if (std::shared_ptr<NativeModule> native_module = native_module_.lock()) {
      native_module->SampleCodeSize(isolate_->counters(),
                                    NativeModule::kAfterTopTier);
    }
  }

 private:
  Isolate* const isolate_;
  const std::weak_ptr<NativeModule> native_module_;
};
}  // namespace

void WasmEngine::SampleTopTierCodeSizeInAllIsolates(
    const std::shared_ptr<NativeModule>& native_module) {
  base::MutexGuard lock(&mutex_);
  DCHECK_EQ(1, native_modules_.count(native_module.get()));
  for (Isolate* isolate : native_modules_[native_module.get()]->isolates) {
    DCHECK_EQ(1, isolates_.count(isolate));
    IsolateInfo* info = isolates_[isolate].get();
    info->foreground_task_runner->PostTask(
        base::make_unique<SampleTopTierCodeSizeTask>(isolate, native_module));
  }
}

void WasmEngine::ReportLiveCodeForGC(Isolate* isolate,
                                     Vector<WasmCode*> live_code) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm"), "ReportLiveCodeForGC");
  TRACE_CODE_GC("Isolate %d reporting %zu live code objects.\n", isolate->id(),
                live_code.size());
  base::MutexGuard guard(&mutex_);
  // This report might come in late (note that we trigger both a stack guard and
  // a foreground task). In that case, ignore it.
  if (current_gc_info_ == nullptr) return;
  if (!RemoveIsolateFromCurrentGC(isolate)) return;
  isolate->counters()->wasm_module_num_triggered_code_gcs()->AddSample(
      current_gc_info_->gc_sequence_index);
  for (WasmCode* code : live_code) current_gc_info_->dead_code.erase(code);
  PotentiallyFinishCurrentGC();
}

void WasmEngine::ReportLiveCodeFromStackForGC(Isolate* isolate) {
  wasm::WasmCodeRefScope code_ref_scope;
  std::unordered_set<wasm::WasmCode*> live_wasm_code;
  for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
    StackFrame* const frame = it.frame();
    if (frame->type() != StackFrame::WASM_COMPILED) continue;
    live_wasm_code.insert(WasmCompiledFrame::cast(frame)->wasm_code());
  }

  CheckNoArchivedThreads(isolate);

  ReportLiveCodeForGC(isolate,
                      OwnedVector<WasmCode*>::Of(live_wasm_code).as_vector());
}

bool WasmEngine::AddPotentiallyDeadCode(WasmCode* code) {
  base::MutexGuard guard(&mutex_);
  auto it = native_modules_.find(code->native_module());
  DCHECK_NE(native_modules_.end(), it);
  NativeModuleInfo* info = it->second.get();
  if (info->dead_code.count(code)) return false;  // Code is already dead.
  auto added = info->potentially_dead_code.insert(code);
  if (!added.second) return false;  // An entry already existed.
  new_potentially_dead_code_size_ += code->instructions().size();
  if (FLAG_wasm_code_gc) {
    // Trigger a GC if 64kB plus 10% of committed code are potentially dead.
    size_t dead_code_limit =
        FLAG_stress_wasm_code_gc
            ? 0
            : 64 * KB + code_manager_.committed_code_space() / 10;
    if (new_potentially_dead_code_size_ > dead_code_limit) {
      bool inc_gc_count =
          info->num_code_gcs_triggered < std::numeric_limits<int8_t>::max();
      if (current_gc_info_ == nullptr) {
        if (inc_gc_count) ++info->num_code_gcs_triggered;
        TRACE_CODE_GC(
            "Triggering GC (potentially dead: %zu bytes; limit: %zu bytes).\n",
            new_potentially_dead_code_size_, dead_code_limit);
        TriggerGC(info->num_code_gcs_triggered);
      } else if (current_gc_info_->next_gc_sequence_index == 0) {
        if (inc_gc_count) ++info->num_code_gcs_triggered;
        TRACE_CODE_GC(
            "Scheduling another GC after the current one (potentially dead: "
            "%zu bytes; limit: %zu bytes).\n",
            new_potentially_dead_code_size_, dead_code_limit);
        current_gc_info_->next_gc_sequence_index = info->num_code_gcs_triggered;
        DCHECK_NE(0, current_gc_info_->next_gc_sequence_index);
      }
    }
  }
  return true;
}

void WasmEngine::FreeDeadCode(const DeadCodeMap& dead_code) {
  base::MutexGuard guard(&mutex_);
  FreeDeadCodeLocked(dead_code);
}

void WasmEngine::FreeDeadCodeLocked(const DeadCodeMap& dead_code) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm"), "FreeDeadCode");
  DCHECK(!mutex_.TryLock());
  for (auto& dead_code_entry : dead_code) {
    NativeModule* native_module = dead_code_entry.first;
    const std::vector<WasmCode*>& code_vec = dead_code_entry.second;
    DCHECK_EQ(1, native_modules_.count(native_module));
    auto* info = native_modules_[native_module].get();
    TRACE_CODE_GC("Freeing %zu code object%s of module %p.\n", code_vec.size(),
                  code_vec.size() == 1 ? "" : "s", native_module);
    for (WasmCode* code : code_vec) {
      DCHECK_EQ(1, info->dead_code.count(code));
      info->dead_code.erase(code);
    }
    native_module->FreeCode(VectorOf(code_vec));
  }
}

void WasmEngine::TriggerGC(int8_t gc_sequence_index) {
  DCHECK_NULL(current_gc_info_);
  DCHECK(FLAG_wasm_code_gc);
  new_potentially_dead_code_size_ = 0;
  current_gc_info_.reset(new CurrentGCInfo(gc_sequence_index));
  if (base::TimeTicks::IsHighResolution()) {
    current_gc_info_->start_time = base::TimeTicks::Now();
  }
  // Add all potentially dead code to this GC, and trigger a GC task in each
  // isolate.
  for (auto& entry : native_modules_) {
    NativeModuleInfo* info = entry.second.get();
    if (info->potentially_dead_code.empty()) continue;
    for (auto* isolate : native_modules_[entry.first]->isolates) {
      auto& gc_task = current_gc_info_->outstanding_isolates[isolate];
      if (!gc_task) {
        auto new_task = base::make_unique<WasmGCForegroundTask>(isolate);
        gc_task = new_task.get();
        DCHECK_EQ(1, isolates_.count(isolate));
        isolates_[isolate]->foreground_task_runner->PostTask(
            std::move(new_task));
      }
      isolate->stack_guard()->RequestWasmCodeGC();
    }
    for (WasmCode* code : info->potentially_dead_code) {
      current_gc_info_->dead_code.insert(code);
    }
  }
  TRACE_CODE_GC(
      "Starting GC. Total number of potentially dead code objects: %zu\n",
      current_gc_info_->dead_code.size());
}

bool WasmEngine::RemoveIsolateFromCurrentGC(Isolate* isolate) {
  DCHECK(!mutex_.TryLock());
  DCHECK_NOT_NULL(current_gc_info_);
  return current_gc_info_->outstanding_isolates.erase(isolate) != 0;
}

void WasmEngine::PotentiallyFinishCurrentGC() {
  DCHECK(!mutex_.TryLock());
  TRACE_CODE_GC(
      "Remaining dead code objects: %zu; outstanding isolates: %zu.\n",
      current_gc_info_->dead_code.size(),
      current_gc_info_->outstanding_isolates.size());

  // If there are more outstanding isolates, return immediately.
  if (!current_gc_info_->outstanding_isolates.empty()) return;

  // All remaining code in {current_gc_info->dead_code} is really dead.
  // Move it from the set of potentially dead code to the set of dead code,
  // and decrement its ref count.
  size_t num_freed = 0;
  DeadCodeMap dead_code;
  for (WasmCode* code : current_gc_info_->dead_code) {
    DCHECK_EQ(1, native_modules_.count(code->native_module()));
    auto* native_module_info = native_modules_[code->native_module()].get();
    DCHECK_EQ(1, native_module_info->potentially_dead_code.count(code));
    native_module_info->potentially_dead_code.erase(code);
    DCHECK_EQ(0, native_module_info->dead_code.count(code));
    native_module_info->dead_code.insert(code);
    if (code->DecRefOnDeadCode()) {
      dead_code[code->native_module()].push_back(code);
      ++num_freed;
    }
  }

  FreeDeadCodeLocked(dead_code);

  int duration_us = 0;
  if (!current_gc_info_->start_time.IsNull()) {
    duration_us = GetGCTimeMicros(current_gc_info_->start_time);
    for (auto& entry : isolates_) {
      entry.second->async_counters->wasm_code_gc_time()->AddSample(duration_us);
    }
  }

  TRACE_CODE_GC("Took %d us; found %zu dead code objects, freed %zu.\n",
                duration_us, current_gc_info_->dead_code.size(), num_freed);
  USE(num_freed);

  int8_t next_gc_sequence_index = current_gc_info_->next_gc_sequence_index;
  current_gc_info_.reset();
  if (next_gc_sequence_index != 0) TriggerGC(next_gc_sequence_index);
}

namespace {

DEFINE_LAZY_LEAKY_OBJECT_GETTER(std::shared_ptr<WasmEngine>,
                                GetSharedWasmEngine)

}  // namespace

// static
void WasmEngine::InitializeOncePerProcess() {
  if (!FLAG_wasm_shared_engine) return;
  *GetSharedWasmEngine() = std::make_shared<WasmEngine>();
}

// static
void WasmEngine::GlobalTearDown() {
  if (!FLAG_wasm_shared_engine) return;
  GetSharedWasmEngine()->reset();
}

// static
std::shared_ptr<WasmEngine> WasmEngine::GetWasmEngine() {
  if (FLAG_wasm_shared_engine) return *GetSharedWasmEngine();
  return std::make_shared<WasmEngine>();
}

// {max_mem_pages} is declared in wasm-limits.h.
uint32_t max_mem_pages() {
  STATIC_ASSERT(kV8MaxWasmMemoryPages <= kMaxUInt32);
  return std::min(uint32_t{kV8MaxWasmMemoryPages}, FLAG_wasm_max_mem_pages);
}

// {max_table_init_entries} is declared in wasm-limits.h.
uint32_t max_table_init_entries() {
  return std::min(uint32_t{kV8MaxWasmTableInitEntries},
                  FLAG_wasm_max_table_size);
}

#undef TRACE_CODE_GC

}  // namespace wasm
}  // namespace internal
}  // namespace v8