summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-compiler.cc
blob: 255ee0347e1e8f04574ffe148c4f0df2ea383413 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/baseline/liftoff-assembler.h"

#include "src/assembler-inl.h"
#include "src/base/optional.h"
#include "src/compiler/linkage.h"
#include "src/compiler/wasm-compiler.h"
#include "src/counters.h"
#include "src/macro-assembler-inl.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/memory-tracing.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-opcodes.h"

namespace v8 {
namespace internal {
namespace wasm {

constexpr auto kRegister = LiftoffAssembler::VarState::kRegister;
constexpr auto kI32Const = LiftoffAssembler::VarState::kI32Const;
constexpr auto kStack = LiftoffAssembler::VarState::kStack;

namespace {

#define __ asm_->

#define TRACE(...)                                            \
  do {                                                        \
    if (FLAG_trace_liftoff) PrintF("[liftoff] " __VA_ARGS__); \
  } while (false)

#if V8_TARGET_ARCH_ARM64
// On ARM64, the Assembler keeps track of pointers to Labels to resolve
// branches to distant targets. Moving labels would confuse the Assembler,
// thus store the label on the heap and keep a unique_ptr.
class MovableLabel {
 public:
  Label* get() { return label_.get(); }
  MovableLabel() : MovableLabel(new Label()) {}

  static MovableLabel None() { return MovableLabel(nullptr); }

 private:
  std::unique_ptr<Label> label_;
  explicit MovableLabel(Label* label) : label_(label) {}
};
#else
// On all other platforms, just store the Label directly.
class MovableLabel {
 public:
  Label* get() { return &label_; }

  static MovableLabel None() { return MovableLabel(); }

 private:
  Label label_;
};
#endif

class LiftoffCompiler {
 public:
  MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(LiftoffCompiler);

  // TODO(clemensh): Make this a template parameter.
  static constexpr wasm::Decoder::ValidateFlag validate =
      wasm::Decoder::kValidate;

  using Value = ValueBase;

  struct ElseState {
    MovableLabel label;
    LiftoffAssembler::CacheState state;
  };

  struct Control : public ControlWithNamedConstructors<Control, Value> {
    MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(Control);

    std::unique_ptr<ElseState> else_state;
    LiftoffAssembler::CacheState label_state;
    MovableLabel label;
  };

  using Decoder = WasmFullDecoder<validate, LiftoffCompiler>;

  struct OutOfLineCode {
    MovableLabel label;
    MovableLabel continuation;
    Builtins::Name builtin;
    wasm::WasmCodePosition position;
    LiftoffRegList regs_to_save;
    uint32_t pc;  // for trap handler.

    // Named constructors:
    static OutOfLineCode Trap(Builtins::Name b, wasm::WasmCodePosition pos,
                              uint32_t pc) {
      return {{}, {}, b, pos, {}, pc};
    }
    static OutOfLineCode StackCheck(wasm::WasmCodePosition pos,
                                    LiftoffRegList regs) {
      return {{}, MovableLabel::None(), Builtins::kWasmStackGuard, pos, regs,
              0};
    }
  };

  LiftoffCompiler(LiftoffAssembler* liftoff_asm,
                  compiler::CallDescriptor* call_desc, compiler::ModuleEnv* env,
                  compiler::RuntimeExceptionSupport runtime_exception_support,
                  SourcePositionTableBuilder* source_position_table_builder,
                  std::vector<trap_handler::ProtectedInstructionData>*
                      protected_instructions,
                  Zone* compilation_zone, std::unique_ptr<Zone>* codegen_zone)
      : asm_(liftoff_asm),
        call_desc_(call_desc),
        env_(env),
        min_size_(env_->module->initial_pages * wasm::kWasmPageSize),
        max_size_((env_->module->has_maximum_pages
                       ? env_->module->maximum_pages
                       : wasm::kV8MaxWasmMemoryPages) *
                  wasm::kWasmPageSize),
        runtime_exception_support_(runtime_exception_support),
        source_position_table_builder_(source_position_table_builder),
        protected_instructions_(protected_instructions),
        compilation_zone_(compilation_zone),
        codegen_zone_(codegen_zone),
        safepoint_table_builder_(compilation_zone_) {
    // Check for overflow in max_size_.
    DCHECK_EQ(max_size_, uint64_t{env_->module->has_maximum_pages
                                      ? env_->module->maximum_pages
                                      : wasm::kV8MaxWasmMemoryPages} *
                             wasm::kWasmPageSize);
  }

  bool ok() const { return ok_; }

  void unsupported(Decoder* decoder, const char* reason) {
    ok_ = false;
    TRACE("unsupported: %s\n", reason);
    decoder->errorf(decoder->pc(), "unsupported liftoff operation: %s", reason);
    BindUnboundLabels(decoder);
  }

  int GetSafepointTableOffset() const {
    return safepoint_table_builder_.GetCodeOffset();
  }

  void BindUnboundLabels(Decoder* decoder) {
#ifdef DEBUG
    // Bind all labels now, otherwise their destructor will fire a DCHECK error
    // if they where referenced before.
    for (uint32_t i = 0, e = decoder->control_depth(); i < e; ++i) {
      Control* c = decoder->control_at(i);
      Label* label = c->label.get();
      if (!label->is_bound()) __ bind(label);
      if (c->else_state) {
        Label* else_label = c->else_state->label.get();
        if (!else_label->is_bound()) __ bind(else_label);
      }
    }
    for (auto& ool : out_of_line_code_) {
      if (!ool.label.get()->is_bound()) __ bind(ool.label.get());
    }
#endif
  }

  void CheckStackSizeLimit(Decoder* decoder) {
    DCHECK_GE(__ cache_state()->stack_height(), __ num_locals());
    int stack_height = __ cache_state()->stack_height() - __ num_locals();
    if (stack_height > LiftoffAssembler::kMaxValueStackHeight) {
      unsupported(decoder, "value stack grows too large");
    }
  }

  void StartFunction(Decoder* decoder) {
    int num_locals = decoder->NumLocals();
    __ set_num_locals(num_locals);
    for (int i = 0; i < num_locals; ++i) {
      __ set_local_type(i, decoder->GetLocalType(i));
    }
  }

  void ProcessParameter(uint32_t param_idx, uint32_t input_location) {
    ValueType type = __ local_type(param_idx);
    RegClass rc = reg_class_for(type);
    compiler::LinkageLocation param_loc =
        call_desc_->GetInputLocation(input_location);
    if (param_loc.IsRegister()) {
      DCHECK(!param_loc.IsAnyRegister());
      int reg_code = param_loc.AsRegister();
      LiftoffRegister reg =
          rc == kGpReg ? LiftoffRegister(Register::from_code(reg_code))
                       : LiftoffRegister(DoubleRegister::from_code(reg_code));
      LiftoffRegList cache_regs =
          rc == kGpReg ? kGpCacheRegList : kFpCacheRegList;
      if (cache_regs.has(reg)) {
        // This is a cache register, just use it.
        __ PushRegister(type, reg);
        return;
      }
      // Move to a cache register.
      LiftoffRegister cache_reg = __ GetUnusedRegister(rc);
      __ Move(cache_reg, reg);
      __ PushRegister(type, reg);
      return;
    }
    if (param_loc.IsCallerFrameSlot()) {
      LiftoffRegister tmp_reg = __ GetUnusedRegister(rc);
      __ LoadCallerFrameSlot(tmp_reg, -param_loc.AsCallerFrameSlot());
      __ PushRegister(type, tmp_reg);
      return;
    }
    UNREACHABLE();
  }

  void StackCheck(wasm::WasmCodePosition position) {
    if (FLAG_wasm_no_stack_checks || !runtime_exception_support_) return;
    out_of_line_code_.push_back(
        OutOfLineCode::StackCheck(position, __ cache_state()->used_registers));
    OutOfLineCode& ool = out_of_line_code_.back();
    __ StackCheck(ool.label.get());
    __ bind(ool.continuation.get());
  }

  void StartFunctionBody(Decoder* decoder, Control* block) {
    if (!kLiftoffAssemblerImplementedOnThisPlatform) {
      unsupported(decoder, "platform");
      return;
    }
    __ EnterFrame(StackFrame::WASM_COMPILED);
    __ set_has_frame(true);
    __ ReserveStackSpace(LiftoffAssembler::kStackSlotSize *
                         __ GetTotalFrameSlotCount());
    // Parameter 0 is the wasm context.
    uint32_t num_params =
        static_cast<uint32_t>(call_desc_->ParameterCount()) - 1;
    for (uint32_t i = 0; i < __ num_locals(); ++i) {
      switch (__ local_type(i)) {
        case kWasmI32:
        case kWasmF32:
          // supported.
          break;
        case kWasmI64:
          unsupported(decoder, "i64 param/local");
          return;
        case kWasmF64:
          unsupported(decoder, "f64 param/local");
          return;
        default:
          unsupported(decoder, "exotic param/local");
          return;
      }
    }
    // Input 0 is the call target, the context is at 1.
    constexpr int kContextParameterIndex = 1;
    // Store the context parameter to a special stack slot.
    compiler::LinkageLocation context_loc =
        call_desc_->GetInputLocation(kContextParameterIndex);
    DCHECK(context_loc.IsRegister());
    DCHECK(!context_loc.IsAnyRegister());
    Register context_reg = Register::from_code(context_loc.AsRegister());
    __ SpillContext(context_reg);
    uint32_t param_idx = 0;
    for (; param_idx < num_params; ++param_idx) {
      constexpr int kFirstActualParameterIndex = kContextParameterIndex + 1;
      ProcessParameter(param_idx, param_idx + kFirstActualParameterIndex);
    }
    // Set to a gp register, to mark this uninitialized.
    LiftoffRegister zero_double_reg(Register::from_code<0>());
    DCHECK(zero_double_reg.is_gp());
    for (; param_idx < __ num_locals(); ++param_idx) {
      ValueType type = decoder->GetLocalType(param_idx);
      switch (type) {
        case kWasmI32:
          __ cache_state()->stack_state.emplace_back(kWasmI32, uint32_t{0});
          break;
        case kWasmF32:
          if (zero_double_reg.is_gp()) {
            // Note: This might spill one of the registers used to hold
            // parameters.
            zero_double_reg = __ GetUnusedRegister(kFpReg);
            __ LoadConstant(zero_double_reg, WasmValue(0.f));
          }
          __ PushRegister(kWasmF32, zero_double_reg);
          break;
        default:
          UNIMPLEMENTED();
      }
    }
    block->label_state.stack_base = __ num_locals();

    // The function-prologue stack check is associated with position 0, which
    // is never a position of any instruction in the function.
    StackCheck(0);

    DCHECK_EQ(__ num_locals(), param_idx);
    DCHECK_EQ(__ num_locals(), __ cache_state()->stack_height());
    CheckStackSizeLimit(decoder);
  }

  void GenerateOutOfLineCode(OutOfLineCode& ool) {
    __ bind(ool.label.get());
    const bool is_stack_check = ool.builtin == Builtins::kWasmStackGuard;
    if (!runtime_exception_support_) {
      // We cannot test calls to the runtime in cctest/test-run-wasm.
      // Therefore we emit a call to C here instead of a call to the runtime.
      // In this mode, we never generate stack checks.
      DCHECK(!is_stack_check);
      __ CallTrapCallbackForTesting();
      __ LeaveFrame(StackFrame::WASM_COMPILED);
      __ Ret();
      return;
    }

    if (!is_stack_check && env_->use_trap_handler) {
      uint32_t pc = static_cast<uint32_t>(__ pc_offset());
      DCHECK_EQ(pc, __ pc_offset());
      protected_instructions_->emplace_back(
          trap_handler::ProtectedInstructionData{ool.pc, pc});
    }

    if (!ool.regs_to_save.is_empty()) __ PushRegisters(ool.regs_to_save);

    source_position_table_builder_->AddPosition(
        __ pc_offset(), SourcePosition(ool.position), false);
    __ Call(__ isolate()->builtins()->builtin_handle(ool.builtin),
            RelocInfo::CODE_TARGET);
    safepoint_table_builder_.DefineSafepoint(asm_, Safepoint::kSimple, 0,
                                             Safepoint::kNoLazyDeopt);
    DCHECK_EQ(ool.continuation.get()->is_bound(), is_stack_check);
    if (!ool.regs_to_save.is_empty()) __ PopRegisters(ool.regs_to_save);
    if (is_stack_check) {
      __ emit_jump(ool.continuation.get());
    } else {
      __ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap);
    }
  }

  void FinishFunction(Decoder* decoder) {
    for (OutOfLineCode& ool : out_of_line_code_) {
      GenerateOutOfLineCode(ool);
    }
    safepoint_table_builder_.Emit(asm_, __ GetTotalFrameSlotCount());
  }

  void OnFirstError(Decoder* decoder) {
    ok_ = false;
    BindUnboundLabels(decoder);
  }

  void NextInstruction(Decoder* decoder, WasmOpcode) {
    TraceCacheState(decoder);
  }

  void Block(Decoder* decoder, Control* block) {
    block->label_state.stack_base = __ cache_state()->stack_height();
  }

  void Loop(Decoder* decoder, Control* loop) {
    loop->label_state.stack_base = __ cache_state()->stack_height();

    // Before entering a loop, spill all locals to the stack, in order to free
    // the cache registers, and to avoid unnecessarily reloading stack values
    // into registers at branches.
    // TODO(clemensh): Come up with a better strategy here, involving
    // pre-analysis of the function.
    __ SpillLocals();

    // Loop labels bind at the beginning of the block.
    __ bind(loop->label.get());

    // Save the current cache state for the merge when jumping to this loop.
    loop->label_state.Split(*__ cache_state());

    // Execute a stack check in the loop header.
    StackCheck(decoder->position());
  }

  void Try(Decoder* decoder, Control* block) { unsupported(decoder, "try"); }

  void If(Decoder* decoder, const Value& cond, Control* if_block) {
    DCHECK_EQ(if_block, decoder->control_at(0));
    DCHECK(if_block->is_if());

    if (if_block->start_merge.arity > 0 || if_block->end_merge.arity > 1)
      return unsupported(decoder, "multi-value if");

    // Allocate the else state.
    if_block->else_state = base::make_unique<ElseState>();

    // Test the condition, jump to else if zero.
    Register value = __ PopToRegister(kGpReg).gp();
    __ emit_i32_test(value);
    __ emit_cond_jump(kEqual, if_block->else_state->label.get());

    if_block->label_state.stack_base = __ cache_state()->stack_height();
    // Store the state (after popping the value) for executing the else branch.
    if_block->else_state->state.Split(*__ cache_state());
  }

  void FallThruTo(Decoder* decoder, Control* c) {
    if (c->end_merge.reached) {
      __ MergeFullStackWith(c->label_state);
    } else if (c->is_onearmed_if()) {
      c->label_state.InitMerge(*__ cache_state(), __ num_locals(),
                               c->br_merge()->arity);
      __ MergeFullStackWith(c->label_state);
    } else {
      c->label_state.Split(*__ cache_state());
    }
    TraceCacheState(decoder);
  }

  void PopControl(Decoder* decoder, Control* c) {
    if (!c->is_loop() && c->end_merge.reached) {
      __ cache_state()->Steal(c->label_state);
    }
    if (!c->label.get()->is_bound()) {
      __ bind(c->label.get());
    }
  }

  void EndControl(Decoder* decoder, Control* c) {}

  void GenerateCCall(Register res_reg, uint32_t num_args,
                     const Register* arg_regs, ExternalReference ext_ref) {
    static constexpr int kNumReturns = 1;
    static constexpr int kMaxArgs = 2;
    static constexpr MachineType kReps[]{
        MachineType::Uint32(), MachineType::Pointer(), MachineType::Pointer()};
    static_assert(arraysize(kReps) == kNumReturns + kMaxArgs, "mismatch");
    DCHECK_LE(num_args, kMaxArgs);

    MachineSignature sig(kNumReturns, num_args, kReps);
    compiler::CallDescriptor* desc =
        compiler::Linkage::GetSimplifiedCDescriptor(compilation_zone_, &sig);

    // Before making a call, spill all cache registers.
    __ SpillAllRegisters();

    // Store arguments on our stack, then align the stack for calling to C.
    uint32_t num_params = static_cast<uint32_t>(desc->ParameterCount());
    __ PrepareCCall(num_params, arg_regs);

    // Set parameters (in sp[0], sp[8], ...).
    uint32_t num_stack_params = 0;
    for (uint32_t param = 0; param < num_params; ++param) {
      constexpr size_t kInputShift = 1;  // Input 0 is the call target.

      compiler::LinkageLocation loc =
          desc->GetInputLocation(param + kInputShift);
      if (loc.IsRegister()) {
        Register reg = Register::from_code(loc.AsRegister());
        // Load address of that parameter to the register.
        __ SetCCallRegParamAddr(reg, param, num_params);
      } else {
        DCHECK(loc.IsCallerFrameSlot());
        __ SetCCallStackParamAddr(num_stack_params, param, num_params);
        ++num_stack_params;
      }
    }

    // Now execute the call.
    __ CallC(ext_ref, num_params);

    // Load return value.
    compiler::LinkageLocation return_loc = desc->GetReturnLocation(0);
    DCHECK(return_loc.IsRegister());
    Register return_reg = Register::from_code(return_loc.AsRegister());
    if (return_reg != res_reg) {
      __ Move(LiftoffRegister(res_reg), LiftoffRegister(return_reg));
    }
  }

  void I32UnOp(bool (LiftoffAssembler::*emit_fn)(Register, Register),
               ExternalReference (*fallback_fn)(Isolate*)) {
    LiftoffRegList pinned;
    LiftoffRegister dst_reg = pinned.set(__ GetUnaryOpTargetRegister(kGpReg));
    LiftoffRegister src_reg = pinned.set(__ PopToRegister(kGpReg, pinned));
    if (!emit_fn || !(asm_->*emit_fn)(dst_reg.gp(), src_reg.gp())) {
      ExternalReference ext_ref = fallback_fn(asm_->isolate());
      Register args[] = {src_reg.gp()};
      GenerateCCall(dst_reg.gp(), arraysize(args), args, ext_ref);
    }
    __ PushRegister(kWasmI32, dst_reg);
  }

  void UnOp(Decoder* decoder, WasmOpcode opcode, FunctionSig*,
            const Value& value, Value* result) {
#define CASE_UNOP(opcode, type, fn, ext_ref_fn)           \
  case WasmOpcode::kExpr##opcode:                         \
    type##UnOp(&LiftoffAssembler::emit_##fn, ext_ref_fn); \
    break;
    switch (opcode) {
      CASE_UNOP(I32Eqz, I32, i32_eqz, nullptr)
      CASE_UNOP(I32Clz, I32, i32_clz, nullptr)
      CASE_UNOP(I32Ctz, I32, i32_ctz, nullptr)
      CASE_UNOP(I32Popcnt, I32, i32_popcnt,
                &ExternalReference::wasm_word32_popcnt)
      default:
        return unsupported(decoder, WasmOpcodes::OpcodeName(opcode));
    }
#undef CASE_UNOP
  }

  void I32BinOp(void (LiftoffAssembler::*emit_fn)(Register, Register,
                                                  Register)) {
    LiftoffRegList pinned;
    LiftoffRegister dst_reg = pinned.set(__ GetBinaryOpTargetRegister(kGpReg));
    LiftoffRegister rhs_reg = pinned.set(__ PopToRegister(kGpReg, pinned));
    LiftoffRegister lhs_reg = __ PopToRegister(kGpReg, pinned);
    (asm_->*emit_fn)(dst_reg.gp(), lhs_reg.gp(), rhs_reg.gp());
    __ PushRegister(kWasmI32, dst_reg);
  }

  void I32CCallBinOp(ExternalReference ext_ref) {
    LiftoffRegList pinned;
    LiftoffRegister dst_reg = pinned.set(__ GetBinaryOpTargetRegister(kGpReg));
    LiftoffRegister rhs_reg = pinned.set(__ PopToRegister(kGpReg, pinned));
    LiftoffRegister lhs_reg = __ PopToRegister(kGpReg, pinned);
    Register args[] = {lhs_reg.gp(), rhs_reg.gp()};
    GenerateCCall(dst_reg.gp(), arraysize(args), args, ext_ref);
    __ PushRegister(kWasmI32, dst_reg);
  }

  void F32BinOp(void (LiftoffAssembler::*emit_fn)(DoubleRegister,
                                                  DoubleRegister,
                                                  DoubleRegister)) {
    LiftoffRegList pinned;
    LiftoffRegister target_reg =
        pinned.set(__ GetBinaryOpTargetRegister(kFpReg));
    LiftoffRegister rhs_reg = pinned.set(__ PopToRegister(kFpReg, pinned));
    LiftoffRegister lhs_reg = __ PopToRegister(kFpReg, pinned);
    (asm_->*emit_fn)(target_reg.fp(), lhs_reg.fp(), rhs_reg.fp());
    __ PushRegister(kWasmF32, target_reg);
  }

  void BinOp(Decoder* decoder, WasmOpcode opcode, FunctionSig*,
             const Value& lhs, const Value& rhs, Value* result) {
#define CASE_BINOP(opcode, type, fn) \
  case WasmOpcode::kExpr##opcode:    \
    return type##BinOp(&LiftoffAssembler::emit_##fn);
#define CASE_CCALL_BINOP(opcode, type, ext_ref_fn)                    \
  case WasmOpcode::kExpr##opcode:                                     \
    type##CCallBinOp(ExternalReference::ext_ref_fn(asm_->isolate())); \
    break;
    switch (opcode) {
      CASE_BINOP(I32Add, I32, i32_add)
      CASE_BINOP(I32Sub, I32, i32_sub)
      CASE_BINOP(I32Mul, I32, i32_mul)
      CASE_BINOP(I32And, I32, i32_and)
      CASE_BINOP(I32Ior, I32, i32_or)
      CASE_BINOP(I32Xor, I32, i32_xor)
      CASE_BINOP(I32Shl, I32, i32_shl)
      CASE_BINOP(I32ShrS, I32, i32_sar)
      CASE_BINOP(I32ShrU, I32, i32_shr)
      CASE_CCALL_BINOP(I32Rol, I32, wasm_word32_rol)
      CASE_CCALL_BINOP(I32Ror, I32, wasm_word32_ror)
      CASE_BINOP(F32Add, F32, f32_add)
      CASE_BINOP(F32Sub, F32, f32_sub)
      CASE_BINOP(F32Mul, F32, f32_mul)
      default:
        return unsupported(decoder, WasmOpcodes::OpcodeName(opcode));
    }
#undef CASE_BINOP
#undef CASE_CCALL_BINOP
  }

  void I32Const(Decoder* decoder, Value* result, int32_t value) {
    __ cache_state()->stack_state.emplace_back(kWasmI32, value);
    CheckStackSizeLimit(decoder);
  }

  void I64Const(Decoder* decoder, Value* result, int64_t value) {
    unsupported(decoder, "i64.const");
  }

  void F32Const(Decoder* decoder, Value* result, float value) {
    LiftoffRegister reg = __ GetUnusedRegister(kFpReg);
    __ LoadConstant(reg, WasmValue(value));
    __ PushRegister(kWasmF32, reg);
    CheckStackSizeLimit(decoder);
  }

  void F64Const(Decoder* decoder, Value* result, double value) {
    unsupported(decoder, "f64.const");
  }

  void Drop(Decoder* decoder, const Value& value) {
    __ DropStackSlot(&__ cache_state()->stack_state.back());
    __ cache_state()->stack_state.pop_back();
  }

  void DoReturn(Decoder* decoder, Vector<Value> values, bool implicit) {
    if (implicit) {
      DCHECK_EQ(1, decoder->control_depth());
      Control* func_block = decoder->control_at(0);
      __ bind(func_block->label.get());
      __ cache_state()->Steal(func_block->label_state);
    }
    if (!values.is_empty()) {
      if (values.size() > 1) return unsupported(decoder, "multi-return");
      RegClass rc = reg_class_for(values[0].type);
      LiftoffRegister reg = __ PopToRegister(rc);
      __ MoveToReturnRegister(reg);
    }
    __ LeaveFrame(StackFrame::WASM_COMPILED);
    __ DropStackSlotsAndRet(
        static_cast<uint32_t>(call_desc_->StackParameterCount()));
  }

  void GetLocal(Decoder* decoder, Value* result,
                const LocalIndexOperand<validate>& operand) {
    auto& slot = __ cache_state()->stack_state[operand.index];
    DCHECK_EQ(slot.type(), operand.type);
    switch (slot.loc()) {
      case kRegister:
        __ PushRegister(slot.type(), slot.reg());
        break;
      case kI32Const:
        __ cache_state()->stack_state.emplace_back(operand.type,
                                                   slot.i32_const());
        break;
      case kStack: {
        auto rc = reg_class_for(operand.type);
        LiftoffRegister reg = __ GetUnusedRegister(rc);
        __ Fill(reg, operand.index);
        __ PushRegister(slot.type(), reg);
        break;
      }
    }
    CheckStackSizeLimit(decoder);
  }

  void SetLocalFromStackSlot(LiftoffAssembler::VarState& dst_slot,
                             uint32_t local_index) {
    auto& state = *__ cache_state();
    if (dst_slot.is_reg()) {
      LiftoffRegister slot_reg = dst_slot.reg();
      if (state.get_use_count(slot_reg) == 1) {
        __ Fill(dst_slot.reg(), state.stack_height() - 1);
        return;
      }
      state.dec_used(slot_reg);
    }
    ValueType type = dst_slot.type();
    DCHECK_EQ(type, __ local_type(local_index));
    RegClass rc = reg_class_for(type);
    LiftoffRegister dst_reg = __ GetUnusedRegister(rc);
    __ Fill(dst_reg, __ cache_state()->stack_height() - 1);
    dst_slot = LiftoffAssembler::VarState(type, dst_reg);
    __ cache_state()->inc_used(dst_reg);
  }

  void SetLocal(uint32_t local_index, bool is_tee) {
    auto& state = *__ cache_state();
    auto& source_slot = state.stack_state.back();
    auto& target_slot = state.stack_state[local_index];
    switch (source_slot.loc()) {
      case kRegister:
        __ DropStackSlot(&target_slot);
        target_slot = source_slot;
        if (is_tee) state.inc_used(target_slot.reg());
        break;
      case kI32Const:
        __ DropStackSlot(&target_slot);
        target_slot = source_slot;
        break;
      case kStack:
        SetLocalFromStackSlot(target_slot, local_index);
        break;
    }
    if (!is_tee) __ cache_state()->stack_state.pop_back();
  }

  void SetLocal(Decoder* decoder, const Value& value,
                const LocalIndexOperand<validate>& operand) {
    SetLocal(operand.index, false);
  }

  void TeeLocal(Decoder* decoder, const Value& value, Value* result,
                const LocalIndexOperand<validate>& operand) {
    SetLocal(operand.index, true);
  }

  void GetGlobal(Decoder* decoder, Value* result,
                 const GlobalIndexOperand<validate>& operand) {
    const auto* global = &env_->module->globals[operand.index];
    if (global->type != kWasmI32 && global->type != kWasmI64)
      return unsupported(decoder, "non-int global");
    LiftoffRegList pinned;
    Register addr = pinned.set(__ GetUnusedRegister(kGpReg)).gp();
    __ LoadFromContext(addr, offsetof(WasmContext, globals_start),
                       kPointerSize);
    LiftoffRegister value =
        pinned.set(__ GetUnusedRegister(reg_class_for(global->type), pinned));
    LoadType type =
        global->type == kWasmI32 ? LoadType::kI32Load : LoadType::kI64Load;
    if (type.size() > kPointerSize)
      return unsupported(decoder, "global > kPointerSize");
    __ Load(value, addr, no_reg, global->offset, type, pinned);
    __ PushRegister(global->type, value);
    CheckStackSizeLimit(decoder);
  }

  void SetGlobal(Decoder* decoder, const Value& value,
                 const GlobalIndexOperand<validate>& operand) {
    auto* global = &env_->module->globals[operand.index];
    if (global->type != kWasmI32) return unsupported(decoder, "non-i32 global");
    LiftoffRegList pinned;
    Register addr = pinned.set(__ GetUnusedRegister(kGpReg)).gp();
    __ LoadFromContext(addr, offsetof(WasmContext, globals_start),
                       kPointerSize);
    LiftoffRegister reg =
        pinned.set(__ PopToRegister(reg_class_for(global->type), pinned));
    StoreType type =
        global->type == kWasmI32 ? StoreType::kI32Store : StoreType::kI64Store;
    __ Store(addr, no_reg, global->offset, reg, type, pinned);
  }

  void Unreachable(Decoder* decoder) { unsupported(decoder, "unreachable"); }

  void Select(Decoder* decoder, const Value& cond, const Value& fval,
              const Value& tval, Value* result) {
    unsupported(decoder, "select");
  }

  void Br(Control* target) {
    if (!target->br_merge()->reached) {
      target->label_state.InitMerge(*__ cache_state(), __ num_locals(),
                                    target->br_merge()->arity);
    }
    __ MergeStackWith(target->label_state, target->br_merge()->arity);
    __ jmp(target->label.get());
  }

  void Br(Decoder* decoder, Control* target) {
    Br(target);
  }

  void BrIf(Decoder* decoder, const Value& cond, Control* target) {
    Label cont_false;
    Register value = __ PopToRegister(kGpReg).gp();
    __ emit_i32_test(value);
    __ emit_cond_jump(kEqual, &cont_false);

    Br(target);
    __ bind(&cont_false);
  }

  void BrTable(Decoder* decoder, const BranchTableOperand<validate>& operand,
               const Value& key) {
    unsupported(decoder, "br_table");
  }

  void Else(Decoder* decoder, Control* if_block) {
    if (if_block->reachable()) __ emit_jump(if_block->label.get());
    __ bind(if_block->else_state->label.get());
    __ cache_state()->Steal(if_block->else_state->state);
  }

  Label* AddOutOfLineTrap(wasm::WasmCodePosition position, uint32_t pc = 0) {
    DCHECK(!FLAG_wasm_no_bounds_checks);
    // The pc is needed exactly if trap handlers are enabled.
    DCHECK_EQ(pc != 0, env_->use_trap_handler);

    out_of_line_code_.push_back(OutOfLineCode::Trap(
        Builtins::kThrowWasmTrapMemOutOfBounds, position, pc));
    return out_of_line_code_.back().label.get();
  }

  void BoundsCheckMem(uint32_t access_size, uint32_t offset, Register index,
                      wasm::WasmCodePosition position, LiftoffRegList pinned) {
    DCHECK(!env_->use_trap_handler);
    if (FLAG_wasm_no_bounds_checks) return;

    Label* trap_label = AddOutOfLineTrap(position);

    if (access_size > max_size_ || offset > max_size_ - access_size) {
      // The access will be out of bounds, even for the largest memory.
      __ emit_jump(trap_label);
      return;
    }
    uint32_t end_offset = offset + access_size - 1;

    // If the end offset is larger than the smallest memory, dynamically check
    // the end offset against the actual memory size, which is not known at
    // compile time. Otherwise, only one check is required (see below).
    LiftoffRegister end_offset_reg =
        pinned.set(__ GetUnusedRegister(kGpReg, pinned));
    LiftoffRegister mem_size = __ GetUnusedRegister(kGpReg, pinned);
    __ LoadFromContext(mem_size.gp(), offsetof(WasmContext, mem_size), 4);
    __ LoadConstant(end_offset_reg, WasmValue(end_offset));
    if (end_offset >= min_size_) {
      __ emit_i32_compare(end_offset_reg.gp(), mem_size.gp());
      __ emit_cond_jump(kUnsignedGreaterEqual, trap_label);
    }

    // Just reuse the end_offset register for computing the effective size.
    LiftoffRegister effective_size_reg = end_offset_reg;
    __ emit_i32_sub(effective_size_reg.gp(), mem_size.gp(),
                    end_offset_reg.gp());

    __ emit_i32_compare(index, effective_size_reg.gp());
    __ emit_cond_jump(kUnsignedGreaterEqual, trap_label);
  }

  void TraceMemoryOperation(bool is_store, MachineRepresentation rep,
                            Register index, uint32_t offset,
                            WasmCodePosition position) {
    // Before making the runtime call, spill all cache registers.
    __ SpillAllRegisters();

    LiftoffRegList pinned = LiftoffRegList::ForRegs(index);
    // Get one register for computing the address (offset + index).
    LiftoffRegister address = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
    // Compute offset+index in address.
    __ LoadConstant(address, WasmValue(offset));
    __ emit_i32_add(address.gp(), address.gp(), index);

    // Get a register to hold the stack slot for wasm::MemoryTracingInfo.
    LiftoffRegister info = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
    // Allocate stack slot for wasm::MemoryTracingInfo.
    __ AllocateStackSlot(info.gp(), sizeof(wasm::MemoryTracingInfo));

    // Now store all information into the wasm::MemoryTracingInfo struct.
    __ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, address),
             address, StoreType::kI32Store, pinned);
    __ LoadConstant(address, WasmValue(is_store ? 1 : 0));
    __ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, is_store),
             address, StoreType::kI32Store8, pinned);
    __ LoadConstant(address, WasmValue(static_cast<int>(rep)));
    __ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, mem_rep),
             address, StoreType::kI32Store8, pinned);

    source_position_table_builder_->AddPosition(
        __ pc_offset(), SourcePosition(position), false);

    Register args[] = {info.gp()};
    GenerateRuntimeCall(arraysize(args), args);
  }

  void GenerateRuntimeCall(int num_args, Register* args) {
    compiler::CallDescriptor* desc =
        compiler::Linkage::GetRuntimeCallDescriptor(
            compilation_zone_, Runtime::kWasmTraceMemory, num_args,
            compiler::Operator::kNoProperties,
            compiler::CallDescriptor::kNoFlags);
    // Currently, only one argument is supported. More arguments require some
    // caution for the parallel register moves (reuse StackTransferRecipe).
    DCHECK_EQ(1, num_args);
    constexpr size_t kInputShift = 1;  // Input 0 is the call target.
    compiler::LinkageLocation param_loc = desc->GetInputLocation(kInputShift);
    if (param_loc.IsRegister()) {
      Register reg = Register::from_code(param_loc.AsRegister());
      __ Move(LiftoffRegister(reg), LiftoffRegister(args[0]));
    } else {
      DCHECK(param_loc.IsCallerFrameSlot());
      __ PushCallerFrameSlot(LiftoffRegister(args[0]));
    }

    // Allocate the codegen zone if not done before.
    if (!*codegen_zone_) {
      codegen_zone_->reset(
          new Zone(__ isolate()->allocator(), "LiftoffCodegenZone"));
    }
    __ CallRuntime(codegen_zone_->get(), Runtime::kWasmTraceMemory);
    __ DeallocateStackSlot(sizeof(wasm::MemoryTracingInfo));
  }

  void LoadMem(Decoder* decoder, LoadType type,
               const MemoryAccessOperand<validate>& operand,
               const Value& index_val, Value* result) {
    ValueType value_type = type.value_type();
    if (value_type != kWasmI32 && value_type != kWasmF32)
      return unsupported(decoder, "unsupported load type");
    LiftoffRegList pinned;
    Register index = pinned.set(__ PopToRegister(kGpReg)).gp();
    if (!env_->use_trap_handler) {
      // Emit an explicit bounds check.
      BoundsCheckMem(type.size(), operand.offset, index, decoder->position(),
                     pinned);
    }
    Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
    __ LoadFromContext(addr, offsetof(WasmContext, mem_start), kPointerSize);
    RegClass rc = reg_class_for(value_type);
    LiftoffRegister value = pinned.set(__ GetUnusedRegister(rc, pinned));
    uint32_t protected_load_pc = 0;
    __ Load(value, addr, index, operand.offset, type, pinned,
            &protected_load_pc);
    if (env_->use_trap_handler) {
      AddOutOfLineTrap(decoder->position(), protected_load_pc);
    }
    __ PushRegister(value_type, value);
    CheckStackSizeLimit(decoder);

    if (FLAG_wasm_trace_memory) {
      TraceMemoryOperation(false, type.mem_type().representation(), index,
                           operand.offset, decoder->position());
    }
  }

  void StoreMem(Decoder* decoder, StoreType type,
                const MemoryAccessOperand<validate>& operand,
                const Value& index_val, const Value& value_val) {
    ValueType value_type = type.value_type();
    if (value_type != kWasmI32 && value_type != kWasmF32)
      return unsupported(decoder, "unsupported store type");
    RegClass rc = reg_class_for(value_type);
    LiftoffRegList pinned;
    LiftoffRegister value = pinned.set(__ PopToRegister(rc));
    Register index = pinned.set(__ PopToRegister(kGpReg, pinned)).gp();
    if (!env_->use_trap_handler) {
      // Emit an explicit bounds check.
      BoundsCheckMem(type.size(), operand.offset, index, decoder->position(),
                     pinned);
    }
    Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
    __ LoadFromContext(addr, offsetof(WasmContext, mem_start), kPointerSize);
    uint32_t protected_store_pc = 0;
    __ Store(addr, index, operand.offset, value, type, pinned,
             &protected_store_pc);
    if (env_->use_trap_handler) {
      AddOutOfLineTrap(decoder->position(), protected_store_pc);
    }
    if (FLAG_wasm_trace_memory) {
      TraceMemoryOperation(true, type.mem_rep(), index, operand.offset,
                           decoder->position());
    }
  }

  void CurrentMemoryPages(Decoder* decoder, Value* result) {
    unsupported(decoder, "current_memory");
  }
  void GrowMemory(Decoder* decoder, const Value& value, Value* result) {
    unsupported(decoder, "grow_memory");
  }

  void CallDirect(Decoder* decoder,
                  const CallFunctionOperand<validate>& operand,
                  const Value args[], Value returns[]) {
    if (operand.sig->return_count() > 1)
      return unsupported(decoder, "multi-return");

    compiler::CallDescriptor* call_desc =
        compiler::GetWasmCallDescriptor(compilation_zone_, operand.sig);

    __ PrepareCall(operand.sig, call_desc);

    source_position_table_builder_->AddPosition(
        __ pc_offset(), SourcePosition(decoder->position()), false);

    if (FLAG_wasm_jit_to_native) {
      // Just encode the function index. This will be patched at instantiation.
      Address addr = reinterpret_cast<Address>(operand.index);
      __ CallNativeWasmCode(addr);
    } else {
      Handle<Code> target = operand.index < env_->function_code.size()
                                ? env_->function_code[operand.index]
                                : env_->default_function_code;
      __ Call(target, RelocInfo::CODE_TARGET);
    }

    safepoint_table_builder_.DefineSafepoint(asm_, Safepoint::kSimple, 0,
                                             Safepoint::kNoLazyDeopt);

    __ FinishCall(operand.sig, call_desc);
  }

  void CallIndirect(Decoder* decoder, const Value& index,
                    const CallIndirectOperand<validate>& operand,
                    const Value args[], Value returns[]) {
    unsupported(decoder, "call_indirect");
  }
  void SimdOp(Decoder* decoder, WasmOpcode opcode, Vector<Value> args,
              Value* result) {
    unsupported(decoder, "simd");
  }
  void SimdLaneOp(Decoder* decoder, WasmOpcode opcode,
                  const SimdLaneOperand<validate>& operand,
                  const Vector<Value> inputs, Value* result) {
    unsupported(decoder, "simd");
  }
  void SimdShiftOp(Decoder* decoder, WasmOpcode opcode,
                   const SimdShiftOperand<validate>& operand,
                   const Value& input, Value* result) {
    unsupported(decoder, "simd");
  }
  void Simd8x16ShuffleOp(Decoder* decoder,
                         const Simd8x16ShuffleOperand<validate>& operand,
                         const Value& input0, const Value& input1,
                         Value* result) {
    unsupported(decoder, "simd");
  }
  void Throw(Decoder* decoder, const ExceptionIndexOperand<validate>&,
             Control* block, const Vector<Value>& args) {
    unsupported(decoder, "throw");
  }
  void CatchException(Decoder* decoder,
                      const ExceptionIndexOperand<validate>& operand,
                      Control* block, Vector<Value> caught_values) {
    unsupported(decoder, "catch");
  }
  void AtomicOp(Decoder* decoder, WasmOpcode opcode, Vector<Value> args,
                const MemoryAccessOperand<validate>& operand, Value* result) {
    unsupported(decoder, "atomicop");
  }

 private:
  LiftoffAssembler* const asm_;
  compiler::CallDescriptor* const call_desc_;
  compiler::ModuleEnv* const env_;
  // {min_size_} and {max_size_} are cached values computed from the ModuleEnv.
  const uint32_t min_size_;
  const uint32_t max_size_;
  const compiler::RuntimeExceptionSupport runtime_exception_support_;
  bool ok_ = true;
  std::vector<OutOfLineCode> out_of_line_code_;
  SourcePositionTableBuilder* const source_position_table_builder_;
  std::vector<trap_handler::ProtectedInstructionData>* protected_instructions_;
  // Zone used to store information during compilation. The result will be
  // stored independently, such that this zone can die together with the
  // LiftoffCompiler after compilation.
  Zone* compilation_zone_;
  // This zone is allocated when needed, held externally, and survives until
  // code generation (in FinishCompilation).
  std::unique_ptr<Zone>* codegen_zone_;
  SafepointTableBuilder safepoint_table_builder_;

  void TraceCacheState(Decoder* decoder) const {
#ifdef DEBUG
    if (!FLAG_trace_liftoff || !FLAG_trace_wasm_decoder) return;
    OFStream os(stdout);
    for (int control_depth = decoder->control_depth() - 1; control_depth >= -1;
         --control_depth) {
      LiftoffAssembler::CacheState* cache_state =
          control_depth == -1
              ? asm_->cache_state()
              : &decoder->control_at(control_depth)->label_state;
      bool first = true;
      for (LiftoffAssembler::VarState& slot : cache_state->stack_state) {
        os << (first ? "" : "-") << slot;
        first = false;
      }
      if (control_depth != -1) PrintF("; ");
    }
    os << "\n";
#endif
  }
};

}  // namespace
}  // namespace wasm

bool compiler::WasmCompilationUnit::ExecuteLiftoffCompilation() {
  base::ElapsedTimer compile_timer;
  if (FLAG_trace_wasm_decode_time) {
    compile_timer.Start();
  }

  Zone zone(isolate_->allocator(), "LiftoffCompilationZone");
  const wasm::WasmModule* module = env_ ? env_->module : nullptr;
  auto* call_desc = compiler::GetWasmCallDescriptor(&zone, func_body_.sig);
  base::Optional<TimedHistogramScope> liftoff_compile_time_scope(
      base::in_place, counters()->liftoff_compile_time());
  wasm::WasmFullDecoder<wasm::Decoder::kValidate, wasm::LiftoffCompiler>
      decoder(&zone, module, func_body_, &liftoff_.asm_, call_desc, env_,
              runtime_exception_support_,
              &liftoff_.source_position_table_builder_,
              protected_instructions_.get(), &zone, &liftoff_.codegen_zone_);
  decoder.Decode();
  liftoff_compile_time_scope.reset();
  if (!decoder.interface().ok()) {
    // Liftoff compilation failed.
    isolate_->counters()->liftoff_unsupported_functions()->Increment();
    return false;
  }
  if (decoder.failed()) return false;  // Validation error

  if (FLAG_trace_wasm_decode_time) {
    double compile_ms = compile_timer.Elapsed().InMillisecondsF();
    PrintF(
        "wasm-compilation liftoff phase 1 ok: %u bytes, %0.3f ms decode and "
        "compile\n",
        static_cast<unsigned>(func_body_.end - func_body_.start), compile_ms);
  }

  // Record the memory cost this unit places on the system until
  // it is finalized.
  memory_cost_ = liftoff_.asm_.pc_offset();
  liftoff_.safepoint_table_offset_ =
      decoder.interface().GetSafepointTableOffset();
  isolate_->counters()->liftoff_compiled_functions()->Increment();
  return true;
}

#undef __
#undef TRACE

}  // namespace internal
}  // namespace v8