summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-assembler.h
blob: 99d9814dea33bc3f6dae62fe13d464ad89a843f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_
#define V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_

#include <iosfwd>
#include <memory>

#include "src/base/bits.h"
#include "src/frames.h"
#include "src/macro-assembler.h"
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/baseline/liftoff-register.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-value.h"

namespace v8 {
namespace internal {
namespace wasm {

// Forward declarations.
struct ModuleEnv;

class LiftoffAssembler : public TurboAssembler {
 public:
  // Each slot in our stack frame currently has exactly 8 bytes.
  static constexpr uint32_t kStackSlotSize = 8;

  static constexpr ValueType kWasmIntPtr =
      kPointerSize == 8 ? kWasmI64 : kWasmI32;

  class VarState {
   public:
    enum Location : uint8_t { kStack, kRegister, KIntConst };

    explicit VarState(ValueType type) : loc_(kStack), type_(type) {}
    explicit VarState(ValueType type, LiftoffRegister r)
        : loc_(kRegister), type_(type), reg_(r) {
      DCHECK_EQ(r.reg_class(), reg_class_for(type));
    }
    explicit VarState(ValueType type, int32_t i32_const)
        : loc_(KIntConst), type_(type), i32_const_(i32_const) {
      DCHECK(type_ == kWasmI32 || type_ == kWasmI64);
    }

    bool operator==(const VarState& other) const {
      if (loc_ != other.loc_) return false;
      if (type_ != other.type_) return false;
      switch (loc_) {
        case kStack:
          return true;
        case kRegister:
          return reg_ == other.reg_;
        case KIntConst:
          return i32_const_ == other.i32_const_;
      }
      UNREACHABLE();
    }

    bool is_stack() const { return loc_ == kStack; }
    bool is_gp_reg() const { return loc_ == kRegister && reg_.is_gp(); }
    bool is_fp_reg() const { return loc_ == kRegister && reg_.is_fp(); }
    bool is_reg() const { return loc_ == kRegister; }
    bool is_const() const { return loc_ == KIntConst; }

    ValueType type() const { return type_; }

    Location loc() const { return loc_; }

    int32_t i32_const() const {
      DCHECK_EQ(loc_, KIntConst);
      return i32_const_;
    }
    WasmValue constant() const {
      DCHECK(type_ == kWasmI32 || type_ == kWasmI64);
      DCHECK_EQ(loc_, KIntConst);
      return type_ == kWasmI32 ? WasmValue(i32_const_)
                               : WasmValue(int64_t{i32_const_});
    }

    Register gp_reg() const { return reg().gp(); }
    DoubleRegister fp_reg() const { return reg().fp(); }
    LiftoffRegister reg() const {
      DCHECK_EQ(loc_, kRegister);
      return reg_;
    }
    RegClass reg_class() const { return reg().reg_class(); }

    void MakeStack() { loc_ = kStack; }

   private:
    Location loc_;
    // TODO(wasm): This is redundant, the decoder already knows the type of each
    // stack value. Try to collapse.
    ValueType type_;

    union {
      LiftoffRegister reg_;  // used if loc_ == kRegister
      int32_t i32_const_;    // used if loc_ == KIntConst
    };
  };

  static_assert(IS_TRIVIALLY_COPYABLE(VarState),
                "VarState should be trivially copyable");

  struct CacheState {
    // Allow default construction, move construction, and move assignment.
    CacheState() = default;
    CacheState(CacheState&&) = default;
    CacheState& operator=(CacheState&&) = default;

    // TODO(clemensh): Improve memory management here; avoid std::vector.
    std::vector<VarState> stack_state;
    LiftoffRegList used_registers;
    uint32_t register_use_count[kAfterMaxLiftoffRegCode] = {0};
    LiftoffRegList last_spilled_regs;
    // TODO(clemensh): Remove stack_base; use ControlBase::stack_depth.
    uint32_t stack_base = 0;

    bool has_unused_register(RegClass rc, LiftoffRegList pinned = {}) const {
      if (kNeedI64RegPair && rc == kGpRegPair) {
        LiftoffRegList available_regs =
            kGpCacheRegList & ~used_registers & ~pinned;
        return available_regs.GetNumRegsSet() >= 2;
      }
      DCHECK(rc == kGpReg || rc == kFpReg);
      LiftoffRegList candidates = GetCacheRegList(rc);
      return has_unused_register(candidates, pinned);
    }

    bool has_unused_register(LiftoffRegList candidates,
                             LiftoffRegList pinned = {}) const {
      LiftoffRegList available_regs = candidates & ~used_registers & ~pinned;
      return !available_regs.is_empty();
    }

    LiftoffRegister unused_register(RegClass rc,
                                    LiftoffRegList pinned = {}) const {
      if (kNeedI64RegPair && rc == kGpRegPair) {
        LiftoffRegister low = pinned.set(unused_register(kGpReg, pinned));
        LiftoffRegister high = unused_register(kGpReg, pinned);
        return LiftoffRegister::ForPair(low, high);
      }
      DCHECK(rc == kGpReg || rc == kFpReg);
      LiftoffRegList candidates = GetCacheRegList(rc);
      return unused_register(candidates, pinned);
    }

    LiftoffRegister unused_register(LiftoffRegList candidates,
                                    LiftoffRegList pinned = {}) const {
      LiftoffRegList available_regs = candidates & ~used_registers & ~pinned;
      return available_regs.GetFirstRegSet();
    }

    void inc_used(LiftoffRegister reg) {
      if (reg.is_pair()) {
        inc_used(reg.low());
        inc_used(reg.high());
        return;
      }
      used_registers.set(reg);
      DCHECK_GT(kMaxInt, register_use_count[reg.liftoff_code()]);
      ++register_use_count[reg.liftoff_code()];
    }

    // Returns whether this was the last use.
    void dec_used(LiftoffRegister reg) {
      DCHECK(is_used(reg));
      if (reg.is_pair()) {
        dec_used(reg.low());
        dec_used(reg.high());
        return;
      }
      int code = reg.liftoff_code();
      DCHECK_LT(0, register_use_count[code]);
      if (--register_use_count[code] == 0) used_registers.clear(reg);
    }

    bool is_used(LiftoffRegister reg) const {
      if (reg.is_pair()) return is_used(reg.low()) || is_used(reg.high());
      bool used = used_registers.has(reg);
      DCHECK_EQ(used, register_use_count[reg.liftoff_code()] != 0);
      return used;
    }

    uint32_t get_use_count(LiftoffRegister reg) const {
      DCHECK_GT(arraysize(register_use_count), reg.liftoff_code());
      return register_use_count[reg.liftoff_code()];
    }

    void clear_used(LiftoffRegister reg) {
      register_use_count[reg.liftoff_code()] = 0;
      used_registers.clear(reg);
    }

    bool is_free(LiftoffRegister reg) const { return !is_used(reg); }

    void reset_used_registers() {
      used_registers = {};
      memset(register_use_count, 0, sizeof(register_use_count));
    }

    LiftoffRegister GetNextSpillReg(LiftoffRegList candidates,
                                    LiftoffRegList pinned = {}) {
      LiftoffRegList unpinned = candidates.MaskOut(pinned);
      DCHECK(!unpinned.is_empty());
      // This method should only be called if none of the candidates is free.
      DCHECK(unpinned.MaskOut(used_registers).is_empty());
      LiftoffRegList unspilled = unpinned.MaskOut(last_spilled_regs);
      if (unspilled.is_empty()) {
        unspilled = unpinned;
        last_spilled_regs = {};
      }
      LiftoffRegister reg = unspilled.GetFirstRegSet();
      last_spilled_regs.set(reg);
      return reg;
    }

    // TODO(clemensh): Don't copy the full parent state (this makes us N^2).
    void InitMerge(const CacheState& source, uint32_t num_locals,
                   uint32_t arity);

    void Steal(CacheState& source);

    void Split(const CacheState& source);

    uint32_t stack_height() const {
      return static_cast<uint32_t>(stack_state.size());
    }

   private:
    // Make the copy assignment operator private (to be used from {Split()}).
    CacheState& operator=(const CacheState&) = default;
    // Disallow copy construction.
    CacheState(const CacheState&) = delete;
  };

  explicit LiftoffAssembler(Isolate* isolate);
  ~LiftoffAssembler();

  LiftoffRegister GetBinaryOpTargetRegister(RegClass,
                                            LiftoffRegList pinned = {});
  LiftoffRegister GetUnaryOpTargetRegister(RegClass,
                                           LiftoffRegList pinned = {});

  LiftoffRegister PopToRegister(RegClass, LiftoffRegList pinned = {});

  void PushRegister(ValueType type, LiftoffRegister reg) {
    DCHECK_EQ(reg_class_for(type), reg.reg_class());
    cache_state_.inc_used(reg);
    cache_state_.stack_state.emplace_back(type, reg);
  }

  void SpillRegister(LiftoffRegister);

  uint32_t GetNumUses(LiftoffRegister reg) {
    return cache_state_.get_use_count(reg);
  }

  // Get an unused register for class {rc}, potentially spilling to free one.
  LiftoffRegister GetUnusedRegister(RegClass rc, LiftoffRegList pinned = {}) {
    if (kNeedI64RegPair && rc == kGpRegPair) {
      LiftoffRegList candidates = kGpCacheRegList;
      LiftoffRegister low = pinned.set(GetUnusedRegister(candidates, pinned));
      LiftoffRegister high = GetUnusedRegister(candidates, pinned);
      return LiftoffRegister::ForPair(low, high);
    }
    DCHECK(rc == kGpReg || rc == kFpReg);
    LiftoffRegList candidates = GetCacheRegList(rc);
    return GetUnusedRegister(candidates, pinned);
  }

  // Get an unused register of {candidates}, potentially spilling to free one.
  LiftoffRegister GetUnusedRegister(LiftoffRegList candidates,
                                    LiftoffRegList pinned = {}) {
    if (cache_state_.has_unused_register(candidates, pinned)) {
      return cache_state_.unused_register(candidates, pinned);
    }
    return SpillOneRegister(candidates, pinned);
  }

  void DropStackSlot(VarState* slot) {
    // The only loc we care about is register. Other types don't occupy
    // anything.
    if (!slot->is_reg()) return;
    // Free the register, then set the loc to "stack".
    // No need to write back, the value should be dropped.
    cache_state_.dec_used(slot->reg());
    slot->MakeStack();
  }

  void MergeFullStackWith(CacheState&);
  void MergeStackWith(CacheState&, uint32_t arity);

  void Spill(uint32_t index);
  void SpillLocals();
  void SpillAllRegisters();

  // Call this method whenever spilling something, such that the number of used
  // spill slot can be tracked and the stack frame will be allocated big enough.
  void RecordUsedSpillSlot(uint32_t index) {
    if (index >= num_used_spill_slots_) num_used_spill_slots_ = index + 1;
  }

  // Load parameters into the right registers / stack slots for the call.
  // Move {*target} into another register if needed and update {*target} to that
  // register, or {no_reg} if target was spilled to the stack.
  void PrepareCall(wasm::FunctionSig*, compiler::CallDescriptor*,
                   Register* target = nullptr,
                   LiftoffRegister* explicit_context = nullptr);
  // Process return values of the call.
  void FinishCall(wasm::FunctionSig*, compiler::CallDescriptor*);

  void Move(LiftoffRegister dst, LiftoffRegister src, ValueType);

  ////////////////////////////////////
  // Platform-specific part.        //
  ////////////////////////////////////

  // This function emits machine code to prepare the stack frame, before the
  // size of the stack frame is known. It returns an offset in the machine code
  // which can later be patched (via {PatchPrepareStackFrame)} when the size of
  // the frame is known.
  inline uint32_t PrepareStackFrame();
  inline void PatchPrepareStackFrame(uint32_t offset, uint32_t stack_slots);

  inline void LoadConstant(LiftoffRegister, WasmValue,
                           RelocInfo::Mode rmode = RelocInfo::NONE);
  inline void LoadFromContext(Register dst, uint32_t offset, int size);
  inline void SpillContext(Register context);
  inline void FillContextInto(Register dst);
  inline void Load(LiftoffRegister dst, Register src_addr, Register offset_reg,
                   uint32_t offset_imm, LoadType type, LiftoffRegList pinned,
                   uint32_t* protected_load_pc = nullptr);
  inline void Store(Register dst_addr, Register offset_reg, uint32_t offset_imm,
                    LiftoffRegister src, StoreType type, LiftoffRegList pinned,
                    uint32_t* protected_store_pc = nullptr);
  inline void LoadCallerFrameSlot(LiftoffRegister, uint32_t caller_slot_idx,
                                  ValueType);
  inline void MoveStackValue(uint32_t dst_index, uint32_t src_index, ValueType);

  inline void MoveToReturnRegister(LiftoffRegister src, ValueType);
  inline void Move(Register dst, Register src, ValueType);
  inline void Move(DoubleRegister dst, DoubleRegister src, ValueType);

  inline void Spill(uint32_t index, LiftoffRegister, ValueType);
  inline void Spill(uint32_t index, WasmValue);
  inline void Fill(LiftoffRegister, uint32_t index, ValueType);
  inline void FillI64Half(Register, uint32_t half_index);

  // i32 binops.
  inline void emit_i32_add(Register dst, Register lhs, Register rhs);
  inline void emit_i32_sub(Register dst, Register lhs, Register rhs);
  inline void emit_i32_mul(Register dst, Register lhs, Register rhs);
  inline void emit_i32_and(Register dst, Register lhs, Register rhs);
  inline void emit_i32_or(Register dst, Register lhs, Register rhs);
  inline void emit_i32_xor(Register dst, Register lhs, Register rhs);
  inline void emit_i32_shl(Register dst, Register lhs, Register rhs,
                           LiftoffRegList pinned = {});
  inline void emit_i32_sar(Register dst, Register lhs, Register rhs,
                           LiftoffRegList pinned = {});
  inline void emit_i32_shr(Register dst, Register lhs, Register rhs,
                           LiftoffRegList pinned = {});

  // i32 unops.
  inline bool emit_i32_clz(Register dst, Register src);
  inline bool emit_i32_ctz(Register dst, Register src);
  inline bool emit_i32_popcnt(Register dst, Register src);

  inline void emit_ptrsize_add(Register dst, Register lhs, Register rhs);

  // f32 binops.
  inline void emit_f32_add(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_sub(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f32_mul(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  // f32 unops.
  inline void emit_f32_neg(DoubleRegister dst, DoubleRegister src);

  // f64 binops.
  inline void emit_f64_add(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_sub(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);
  inline void emit_f64_mul(DoubleRegister dst, DoubleRegister lhs,
                           DoubleRegister rhs);

  // f64 unops.
  inline void emit_f64_neg(DoubleRegister dst, DoubleRegister src);

  inline void emit_jump(Label*);
  inline void emit_cond_jump(Condition, Label*, ValueType value, Register lhs,
                             Register rhs = no_reg);
  // Set {dst} to 1 if condition holds, 0 otherwise.
  inline void emit_i32_set_cond(Condition, Register dst, Register lhs,
                                Register rhs = no_reg);
  inline void emit_f32_set_cond(Condition, Register dst, DoubleRegister lhs,
                                DoubleRegister rhs);

  inline void StackCheck(Label* ool_code);

  inline void CallTrapCallbackForTesting();

  inline void AssertUnreachable(AbortReason reason);

  // Push a value to the stack (will become a caller frame slot).
  inline void PushCallerFrameSlot(const VarState& src, uint32_t src_index,
                                  RegPairHalf half);
  inline void PushCallerFrameSlot(LiftoffRegister reg, ValueType type);
  inline void PushRegisters(LiftoffRegList);
  inline void PopRegisters(LiftoffRegList);

  inline void DropStackSlotsAndRet(uint32_t num_stack_slots);

  // Push arguments on the stack (in the caller frame), then align the stack.
  // The address of the last argument will be stored to {arg_addr_dst}. Previous
  // arguments will be located at pointer sized buckets above that address.
  inline void PrepareCCall(uint32_t num_params, const Register* args);
  inline void SetCCallRegParamAddr(Register dst, uint32_t param_idx,
                                   uint32_t num_params);
  inline void SetCCallStackParamAddr(uint32_t stack_param_idx,
                                     uint32_t param_idx, uint32_t num_params);
  inline void CallC(ExternalReference ext_ref, uint32_t num_params);

  inline void CallNativeWasmCode(Address addr);
  inline void CallRuntime(Zone* zone, Runtime::FunctionId fid);
  // Indirect call: If {target == no_reg}, then pop the target from the stack.
  inline void CallIndirect(wasm::FunctionSig* sig,
                           compiler::CallDescriptor* call_descriptor,
                           Register target);

  // Reserve space in the current frame, store address to space in {addr}.
  inline void AllocateStackSlot(Register addr, uint32_t size);
  inline void DeallocateStackSlot(uint32_t size);

  ////////////////////////////////////
  // End of platform-specific part. //
  ////////////////////////////////////

  uint32_t num_locals() const { return num_locals_; }
  void set_num_locals(uint32_t num_locals);

  uint32_t GetTotalFrameSlotCount() const {
    return num_locals_ + num_used_spill_slots_;
  }

  ValueType local_type(uint32_t index) {
    DCHECK_GT(num_locals_, index);
    ValueType* locals =
        num_locals_ <= kInlineLocalTypes ? local_types_ : more_local_types_;
    return locals[index];
  }

  void set_local_type(uint32_t index, ValueType type) {
    ValueType* locals =
        num_locals_ <= kInlineLocalTypes ? local_types_ : more_local_types_;
    locals[index] = type;
  }

  CacheState* cache_state() { return &cache_state_; }

  bool did_bailout() { return bailout_reason_ != nullptr; }
  const char* bailout_reason() const { return bailout_reason_; }

 private:
  uint32_t num_locals_ = 0;
  static constexpr uint32_t kInlineLocalTypes = 8;
  union {
    ValueType local_types_[kInlineLocalTypes];
    ValueType* more_local_types_;
  };
  static_assert(sizeof(ValueType) == 1,
                "Reconsider this inlining if ValueType gets bigger");
  CacheState cache_state_;
  uint32_t num_used_spill_slots_ = 0;
  const char* bailout_reason_ = nullptr;

  LiftoffRegister SpillOneRegister(LiftoffRegList candidates,
                                   LiftoffRegList pinned);

  void bailout(const char* reason) {
    if (bailout_reason_ == nullptr) bailout_reason_ = reason;
  }
};

std::ostream& operator<<(std::ostream& os, LiftoffAssembler::VarState);

}  // namespace wasm
}  // namespace internal
}  // namespace v8

// Include platform specific implementation.
#if V8_TARGET_ARCH_IA32
#include "src/wasm/baseline/ia32/liftoff-assembler-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/wasm/baseline/x64/liftoff-assembler-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/wasm/baseline/arm64/liftoff-assembler-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/wasm/baseline/arm/liftoff-assembler-arm.h"
#elif V8_TARGET_ARCH_PPC
#include "src/wasm/baseline/ppc/liftoff-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/wasm/baseline/mips/liftoff-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/wasm/baseline/mips64/liftoff-assembler-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/wasm/baseline/s390/liftoff-assembler-s390.h"
#else
#error Unsupported architecture.
#endif

#endif  // V8_WASM_BASELINE_LIFTOFF_ASSEMBLER_H_