summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/liftoff-assembler.cc
blob: 0e913c19dc4033751cfeae36371cb778cf1b5267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/wasm/baseline/liftoff-assembler.h"

#include <sstream>

#include "src/assembler-inl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/wasm-compiler.h"
#include "src/macro-assembler-inl.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/wasm-opcodes.h"

namespace v8 {
namespace internal {
namespace wasm {

using VarState = LiftoffAssembler::VarState;

namespace {

#define __ asm_->

#define TRACE(...)                                            \
  do {                                                        \
    if (FLAG_trace_liftoff) PrintF("[liftoff] " __VA_ARGS__); \
  } while (false)

class StackTransferRecipe {
  struct RegisterMove {
    LiftoffRegister dst;
    LiftoffRegister src;
    ValueType type;
    constexpr RegisterMove(LiftoffRegister dst, LiftoffRegister src,
                           ValueType type)
        : dst(dst), src(src), type(type) {}
  };
  struct RegisterLoad {
    enum LoadKind : uint8_t {
      kConstant,  // load a constant value into a register.
      kStack,     // fill a register from a stack slot.
      kHalfStack  // fill one half of a register pair from half a stack slot.
    };

    LiftoffRegister dst;
    LoadKind kind;
    ValueType type;
    int32_t value;  // i32 constant value or stack index, depending on kind.

    // Named constructors.
    static RegisterLoad Const(LiftoffRegister dst, WasmValue constant) {
      if (constant.type() == kWasmI32) {
        return {dst, kConstant, kWasmI32, constant.to_i32()};
      }
      DCHECK_EQ(kWasmI64, constant.type());
      DCHECK_EQ(constant.to_i32_unchecked(), constant.to_i64_unchecked());
      return {dst, kConstant, kWasmI64, constant.to_i32_unchecked()};
    }
    static RegisterLoad Stack(LiftoffRegister dst, int32_t stack_index,
                              ValueType type) {
      return {dst, kStack, type, stack_index};
    }
    static RegisterLoad HalfStack(LiftoffRegister dst,
                                  int32_t half_stack_index) {
      return {dst, kHalfStack, kWasmI32, half_stack_index};
    }

   private:
    RegisterLoad(LiftoffRegister dst, LoadKind kind, ValueType type,
                 int32_t value)
        : dst(dst), kind(kind), type(type), value(value) {}
  };

 public:
  explicit StackTransferRecipe(LiftoffAssembler* wasm_asm) : asm_(wasm_asm) {}
  ~StackTransferRecipe() { Execute(); }

  void Execute() {
    // First, execute register moves. Then load constants and stack values into
    // registers.

    if ((move_dst_regs_ & move_src_regs_).is_empty()) {
      // No overlap in src and dst registers. Just execute the moves in any
      // order.
      for (RegisterMove& rm : register_moves_) {
        asm_->Move(rm.dst, rm.src, rm.type);
      }
      register_moves_.clear();
    } else {
      // Keep use counters of src registers.
      uint32_t src_reg_use_count[kAfterMaxLiftoffRegCode] = {0};
      for (RegisterMove& rm : register_moves_) {
        ++src_reg_use_count[rm.src.liftoff_code()];
      }
      // Now repeatedly iterate the list of register moves, and execute those
      // whose dst register does not appear as src any more. The remaining moves
      // are compacted during this iteration.
      // If no more moves can be executed (because of a cycle), spill one
      // register to the stack, add a RegisterLoad to reload it later, and
      // continue.
      uint32_t next_spill_slot = asm_->cache_state()->stack_height();
      while (!register_moves_.empty()) {
        int executed_moves = 0;
        for (auto& rm : register_moves_) {
          if (src_reg_use_count[rm.dst.liftoff_code()] == 0) {
            asm_->Move(rm.dst, rm.src, rm.type);
            ++executed_moves;
            DCHECK_LT(0, src_reg_use_count[rm.src.liftoff_code()]);
            --src_reg_use_count[rm.src.liftoff_code()];
          } else if (executed_moves) {
            // Compaction: Move not-executed moves to the beginning of the list.
            (&rm)[-executed_moves] = rm;
          }
        }
        if (executed_moves == 0) {
          // There is a cycle. Spill one register, then continue.
          // TODO(clemensh): Use an unused register if available.
          RegisterMove& rm = register_moves_.back();
          LiftoffRegister spill_reg = rm.src;
          asm_->Spill(next_spill_slot, spill_reg, rm.type);
          // Remember to reload into the destination register later.
          LoadStackSlot(register_moves_.back().dst, next_spill_slot, rm.type);
          DCHECK_EQ(1, src_reg_use_count[spill_reg.liftoff_code()]);
          src_reg_use_count[spill_reg.liftoff_code()] = 0;
          ++next_spill_slot;
          executed_moves = 1;
        }
        register_moves_.erase(register_moves_.end() - executed_moves,
                              register_moves_.end());
      }
    }

    for (RegisterLoad& rl : register_loads_) {
      switch (rl.kind) {
        case RegisterLoad::kConstant:
          asm_->LoadConstant(rl.dst, rl.type == kWasmI64
                                         ? WasmValue(int64_t{rl.value})
                                         : WasmValue(int32_t{rl.value}));
          break;
        case RegisterLoad::kStack:
          asm_->Fill(rl.dst, rl.value, rl.type);
          break;
        case RegisterLoad::kHalfStack:
          // As half of a register pair, {rl.dst} must be a gp register.
          asm_->FillI64Half(rl.dst.gp(), rl.value);
          break;
      }
    }
    register_loads_.clear();
  }

  void TransferStackSlot(const LiftoffAssembler::CacheState& dst_state,
                         uint32_t dst_index, uint32_t src_index) {
    const VarState& dst = dst_state.stack_state[dst_index];
    const VarState& src = __ cache_state()->stack_state[src_index];
    DCHECK_EQ(dst.type(), src.type());
    switch (dst.loc()) {
      case VarState::kStack:
        switch (src.loc()) {
          case VarState::kStack:
            if (src_index == dst_index) break;
            asm_->MoveStackValue(dst_index, src_index, src.type());
            break;
          case VarState::kRegister:
            asm_->Spill(dst_index, src.reg(), src.type());
            break;
          case VarState::KIntConst:
            asm_->Spill(dst_index, src.constant());
            break;
        }
        break;
      case VarState::kRegister:
        LoadIntoRegister(dst.reg(), src, src_index);
        break;
      case VarState::KIntConst:
        DCHECK_EQ(dst, src);
        break;
    }
  }

  void LoadIntoRegister(LiftoffRegister dst,
                        const LiftoffAssembler::VarState& src,
                        uint32_t src_index) {
    switch (src.loc()) {
      case VarState::kStack:
        LoadStackSlot(dst, src_index, src.type());
        break;
      case VarState::kRegister:
        DCHECK_EQ(dst.reg_class(), src.reg_class());
        if (dst != src.reg()) MoveRegister(dst, src.reg(), src.type());
        break;
      case VarState::KIntConst:
        LoadConstant(dst, src.constant());
        break;
    }
  }

  void LoadI64HalfIntoRegister(LiftoffRegister dst,
                               const LiftoffAssembler::VarState& src,
                               uint32_t index, RegPairHalf half) {
    // Use CHECK such that the remaining code is statically dead if
    // {kNeedI64RegPair} is false.
    CHECK(kNeedI64RegPair);
    DCHECK_EQ(kWasmI64, src.type());
    switch (src.loc()) {
      case VarState::kStack:
        LoadI64HalfStackSlot(dst, 2 * index - (half == kLowWord ? 0 : 1));
        break;
      case VarState::kRegister: {
        LiftoffRegister src_half =
            half == kLowWord ? src.reg().low() : src.reg().high();
        if (dst != src_half) MoveRegister(dst, src_half, kWasmI32);
        break;
      }
      case VarState::KIntConst:
        int32_t value = src.i32_const();
        // The high word is the sign extension of the low word.
        if (half == kHighWord) value = value >> 31;
        LoadConstant(dst, WasmValue(value));
        break;
    }
  }

  void MoveRegister(LiftoffRegister dst, LiftoffRegister src, ValueType type) {
    DCHECK_NE(dst, src);
    DCHECK_EQ(dst.reg_class(), src.reg_class());
    DCHECK_EQ(reg_class_for(type), src.reg_class());
    if (src.is_pair()) {
      DCHECK_EQ(kWasmI64, type);
      if (dst.low() != src.low()) MoveRegister(dst.low(), src.low(), kWasmI32);
      if (dst.high() != src.high())
        MoveRegister(dst.high(), src.high(), kWasmI32);
      return;
    }
    DCHECK(!move_dst_regs_.has(dst));
    move_dst_regs_.set(dst);
    move_src_regs_.set(src);
    register_moves_.emplace_back(dst, src, type);
  }

  void LoadConstant(LiftoffRegister dst, WasmValue value) {
    register_loads_.push_back(RegisterLoad::Const(dst, value));
  }

  void LoadStackSlot(LiftoffRegister dst, uint32_t stack_index,
                     ValueType type) {
    register_loads_.push_back(RegisterLoad::Stack(dst, stack_index, type));
  }

  void LoadI64HalfStackSlot(LiftoffRegister dst, uint32_t half_stack_index) {
    register_loads_.push_back(RegisterLoad::HalfStack(dst, half_stack_index));
  }

 private:
  // TODO(clemensh): Avoid unconditionally allocating on the heap.
  std::vector<RegisterMove> register_moves_;
  std::vector<RegisterLoad> register_loads_;
  LiftoffRegList move_dst_regs_;
  LiftoffRegList move_src_regs_;
  LiftoffAssembler* const asm_;
};

}  // namespace

// TODO(clemensh): Don't copy the full parent state (this makes us N^2).
void LiftoffAssembler::CacheState::InitMerge(const CacheState& source,
                                             uint32_t num_locals,
                                             uint32_t arity) {
  DCHECK(stack_state.empty());
  DCHECK_GE(source.stack_height(), stack_base);
  stack_state.resize(stack_base + arity, VarState(kWasmStmt));

  // |------locals------|--(in between)--|--(discarded)--|----merge----|
  //  <-- num_locals -->                 ^stack_base      <-- arity -->

  // First, initialize merge slots and locals. Keep them in the registers which
  // are being used in {source}, but avoid using a register multiple times. Use
  // unused registers where necessary and possible.
  for (int range = 0; range < 2; ++range) {
    auto src_idx = range ? 0 : source.stack_state.size() - arity;
    auto src_end = range ? num_locals : source.stack_state.size();
    auto dst_idx = range ? 0 : stack_state.size() - arity;
    for (; src_idx < src_end; ++src_idx, ++dst_idx) {
      auto& dst = stack_state[dst_idx];
      auto& src = source.stack_state[src_idx];
      // Just initialize to any register; will be overwritten before use.
      LiftoffRegister reg(Register::from_code<0>());
      RegClass rc = src.is_reg() ? src.reg_class() : reg_class_for(src.type());
      if (src.is_reg() && is_free(src.reg())) {
        reg = src.reg();
      } else if (has_unused_register(rc)) {
        reg = unused_register(rc);
      } else {
        // Make this a stack slot.
        dst = VarState(src.type());
        continue;
      }
      dst = VarState(src.type(), reg);
      inc_used(reg);
    }
  }
  // Last, initialize the section in between. Here, constants are allowed, but
  // registers which are already used for the merge region or locals must be
  // spilled.
  for (uint32_t i = num_locals; i < stack_base; ++i) {
    auto& dst = stack_state[i];
    auto& src = source.stack_state[i];
    if (src.is_reg()) {
      if (is_used(src.reg())) {
        // Make this a stack slot.
        dst = VarState(src.type());
      } else {
        dst = VarState(src.type(), src.reg());
        inc_used(src.reg());
      }
    } else if (src.is_const()) {
      dst = src;
    } else {
      DCHECK(src.is_stack());
      // Make this a stack slot.
      dst = VarState(src.type());
    }
  }
  last_spilled_regs = source.last_spilled_regs;
}

void LiftoffAssembler::CacheState::Steal(CacheState& source) {
  // Just use the move assignment operator.
  *this = std::move(source);
}

void LiftoffAssembler::CacheState::Split(const CacheState& source) {
  // Call the private copy assignment operator.
  *this = source;
}

namespace {

constexpr AssemblerOptions DefaultLiftoffOptions() {
  return AssemblerOptions{};
}

}  // namespace

// TODO(clemensh): Provide a reasonably sized buffer, based on wasm function
// size.
LiftoffAssembler::LiftoffAssembler()
    : TurboAssembler(nullptr, DefaultLiftoffOptions(), nullptr, 0,
                     CodeObjectRequired::kNo) {
  set_trap_on_abort(true);  // Avoid calls to Abort.
}

LiftoffAssembler::~LiftoffAssembler() {
  if (num_locals_ > kInlineLocalTypes) {
    free(more_local_types_);
  }
}

LiftoffRegister LiftoffAssembler::PopToRegister(LiftoffRegList pinned) {
  DCHECK(!cache_state_.stack_state.empty());
  VarState slot = cache_state_.stack_state.back();
  cache_state_.stack_state.pop_back();
  switch (slot.loc()) {
    case VarState::kStack: {
      LiftoffRegister reg =
          GetUnusedRegister(reg_class_for(slot.type()), pinned);
      Fill(reg, cache_state_.stack_height(), slot.type());
      return reg;
    }
    case VarState::kRegister:
      cache_state_.dec_used(slot.reg());
      return slot.reg();
    case VarState::KIntConst: {
      RegClass rc =
          kNeedI64RegPair && slot.type() == kWasmI64 ? kGpRegPair : kGpReg;
      LiftoffRegister reg = GetUnusedRegister(rc, pinned);
      LoadConstant(reg, slot.constant());
      return reg;
    }
  }
  UNREACHABLE();
}

void LiftoffAssembler::MergeFullStackWith(CacheState& target) {
  DCHECK_EQ(cache_state_.stack_height(), target.stack_height());
  // TODO(clemensh): Reuse the same StackTransferRecipe object to save some
  // allocations.
  StackTransferRecipe transfers(this);
  for (uint32_t i = 0, e = cache_state_.stack_height(); i < e; ++i) {
    transfers.TransferStackSlot(target, i, i);
  }
}

void LiftoffAssembler::MergeStackWith(CacheState& target, uint32_t arity) {
  // Before: ----------------|------ pop_count -----|--- arity ---|
  //                         ^target_stack_height   ^stack_base   ^stack_height
  // After:  ----|-- arity --|
  //             ^           ^target_stack_height
  //             ^target_stack_base
  uint32_t stack_height = cache_state_.stack_height();
  uint32_t target_stack_height = target.stack_height();
  DCHECK_LE(target_stack_height, stack_height);
  DCHECK_LE(arity, target_stack_height);
  uint32_t stack_base = stack_height - arity;
  uint32_t target_stack_base = target_stack_height - arity;
  StackTransferRecipe transfers(this);
  for (uint32_t i = 0; i < target_stack_base; ++i) {
    transfers.TransferStackSlot(target, i, i);
  }
  for (uint32_t i = 0; i < arity; ++i) {
    transfers.TransferStackSlot(target, target_stack_base + i, stack_base + i);
  }
}

void LiftoffAssembler::Spill(uint32_t index) {
  auto& slot = cache_state_.stack_state[index];
  switch (slot.loc()) {
    case VarState::kStack:
      return;
    case VarState::kRegister:
      Spill(index, slot.reg(), slot.type());
      cache_state_.dec_used(slot.reg());
      break;
    case VarState::KIntConst:
      Spill(index, slot.constant());
      break;
  }
  slot.MakeStack();
}

void LiftoffAssembler::SpillLocals() {
  for (uint32_t i = 0; i < num_locals_; ++i) {
    Spill(i);
  }
}

void LiftoffAssembler::SpillAllRegisters() {
  for (uint32_t i = 0, e = cache_state_.stack_height(); i < e; ++i) {
    auto& slot = cache_state_.stack_state[i];
    if (!slot.is_reg()) continue;
    Spill(i, slot.reg(), slot.type());
    slot.MakeStack();
  }
  cache_state_.reset_used_registers();
}

void LiftoffAssembler::PrepareCall(wasm::FunctionSig* sig,
                                   compiler::CallDescriptor* call_descriptor,
                                   Register* target,
                                   LiftoffRegister* target_instance) {
  uint32_t num_params = static_cast<uint32_t>(sig->parameter_count());
  // Input 0 is the call target.
  constexpr size_t kInputShift = 1;

  // Spill all cache slots which are not being used as parameters.
  // Don't update any register use counters, they will be reset later anyway.
  for (uint32_t idx = 0, end = cache_state_.stack_height() - num_params;
       idx < end; ++idx) {
    VarState& slot = cache_state_.stack_state[idx];
    if (!slot.is_reg()) continue;
    Spill(idx, slot.reg(), slot.type());
    slot.MakeStack();
  }

  LiftoffStackSlots stack_slots(this);
  StackTransferRecipe stack_transfers(this);
  LiftoffRegList param_regs;

  // Move the target instance (if supplied) into the correct instance register.
  compiler::LinkageLocation instance_loc =
      call_descriptor->GetInputLocation(kInputShift);
  DCHECK(instance_loc.IsRegister() && !instance_loc.IsAnyRegister());
  LiftoffRegister instance_reg(Register::from_code(instance_loc.AsRegister()));
  param_regs.set(instance_reg);
  if (target_instance && *target_instance != instance_reg) {
    stack_transfers.MoveRegister(instance_reg, *target_instance, kWasmIntPtr);
  }

  // Now move all parameter values into the right slot for the call.
  // Don't pop values yet, such that the stack height is still correct when
  // executing the {stack_transfers}.
  // Process parameters backwards, such that pushes of caller frame slots are
  // in the correct order.
  uint32_t param_base = cache_state_.stack_height() - num_params;
  uint32_t call_desc_input_idx =
      static_cast<uint32_t>(call_descriptor->InputCount());
  for (uint32_t i = num_params; i > 0; --i) {
    const uint32_t param = i - 1;
    ValueType type = sig->GetParam(param);
    const bool is_pair = kNeedI64RegPair && type == kWasmI64;
    const int num_lowered_params = is_pair ? 2 : 1;
    const uint32_t stack_idx = param_base + param;
    const VarState& slot = cache_state_.stack_state[stack_idx];
    // Process both halfs of a register pair separately, because they are passed
    // as separate parameters. One or both of them could end up on the stack.
    for (int lowered_idx = 0; lowered_idx < num_lowered_params; ++lowered_idx) {
      const RegPairHalf half =
          is_pair && lowered_idx == 0 ? kHighWord : kLowWord;
      --call_desc_input_idx;
      compiler::LinkageLocation loc =
          call_descriptor->GetInputLocation(call_desc_input_idx);
      if (loc.IsRegister()) {
        DCHECK(!loc.IsAnyRegister());
        RegClass rc = is_pair ? kGpReg : reg_class_for(type);
        LiftoffRegister reg = LiftoffRegister::from_code(rc, loc.AsRegister());
        param_regs.set(reg);
        if (is_pair) {
          stack_transfers.LoadI64HalfIntoRegister(reg, slot, stack_idx, half);
        } else {
          stack_transfers.LoadIntoRegister(reg, slot, stack_idx);
        }
      } else {
        DCHECK(loc.IsCallerFrameSlot());
        stack_slots.Add(slot, stack_idx, half);
      }
    }
  }
  // {call_desc_input_idx} should point after the instance parameter now.
  DCHECK_EQ(call_desc_input_idx, kInputShift + 1);

  // If the target register overlaps with a parameter register, then move the
  // target to another free register, or spill to the stack.
  if (target && param_regs.has(LiftoffRegister(*target))) {
    // Try to find another free register.
    LiftoffRegList free_regs = kGpCacheRegList.MaskOut(param_regs);
    if (!free_regs.is_empty()) {
      LiftoffRegister new_target = free_regs.GetFirstRegSet();
      stack_transfers.MoveRegister(new_target, LiftoffRegister(*target),
                                   kWasmIntPtr);
      *target = new_target.gp();
    } else {
      stack_slots.Add(LiftoffAssembler::VarState(LiftoffAssembler::kWasmIntPtr,
                                                 LiftoffRegister(*target)));
      *target = no_reg;
    }
  }

  // Create all the slots.
  stack_slots.Construct();
  // Execute the stack transfers before filling the instance register.
  stack_transfers.Execute();

  // Pop parameters from the value stack.
  auto stack_end = cache_state_.stack_state.end();
  cache_state_.stack_state.erase(stack_end - num_params, stack_end);

  // Reset register use counters.
  cache_state_.reset_used_registers();

  // Reload the instance from the stack.
  if (!target_instance) {
    FillInstanceInto(instance_reg.gp());
  }
}

void LiftoffAssembler::FinishCall(wasm::FunctionSig* sig,
                                  compiler::CallDescriptor* call_descriptor) {
  const size_t return_count = sig->return_count();
  if (return_count != 0) {
    DCHECK_EQ(1, return_count);
    ValueType return_type = sig->GetReturn(0);
    const bool need_pair = kNeedI64RegPair && return_type == kWasmI64;
    DCHECK_EQ(need_pair ? 2 : 1, call_descriptor->ReturnCount());
    RegClass rc = need_pair ? kGpReg : reg_class_for(return_type);
    LiftoffRegister return_reg = LiftoffRegister::from_code(
        rc, call_descriptor->GetReturnLocation(0).AsRegister());
    DCHECK(GetCacheRegList(rc).has(return_reg));
    if (need_pair) {
      LiftoffRegister high_reg = LiftoffRegister::from_code(
          rc, call_descriptor->GetReturnLocation(1).AsRegister());
      DCHECK(GetCacheRegList(rc).has(high_reg));
      return_reg = LiftoffRegister::ForPair(return_reg.gp(), high_reg.gp());
    }
    DCHECK(!cache_state_.is_used(return_reg));
    PushRegister(return_type, return_reg);
  }
}

void LiftoffAssembler::Move(LiftoffRegister dst, LiftoffRegister src,
                            ValueType type) {
  DCHECK_EQ(dst.reg_class(), src.reg_class());
  DCHECK_NE(dst, src);
  if (kNeedI64RegPair && dst.is_pair()) {
    // Use the {StackTransferRecipe} to move pairs, as the registers in the
    // pairs might overlap.
    StackTransferRecipe(this).MoveRegister(dst, src, type);
  } else if (dst.is_gp()) {
    Move(dst.gp(), src.gp(), type);
  } else {
    Move(dst.fp(), src.fp(), type);
  }
}

void LiftoffAssembler::ParallelRegisterMove(
    std::initializer_list<ParallelRegisterMoveTuple> tuples) {
  StackTransferRecipe stack_transfers(this);
  for (auto tuple : tuples) {
    if (tuple.dst == tuple.src) continue;
    stack_transfers.MoveRegister(tuple.dst, tuple.src, tuple.type);
  }
}

bool LiftoffAssembler::ValidateCacheState() const {
  uint32_t register_use_count[kAfterMaxLiftoffRegCode] = {0};
  LiftoffRegList used_regs;
  for (const VarState& var : cache_state_.stack_state) {
    if (!var.is_reg()) continue;
    LiftoffRegister reg = var.reg();
    if (kNeedI64RegPair && reg.is_pair()) {
      ++register_use_count[reg.low().liftoff_code()];
      ++register_use_count[reg.high().liftoff_code()];
    } else {
      ++register_use_count[reg.liftoff_code()];
    }
    used_regs.set(reg);
  }
  bool valid = memcmp(register_use_count, cache_state_.register_use_count,
                      sizeof(register_use_count)) == 0 &&
               used_regs == cache_state_.used_registers;
  if (valid) return true;
  std::ostringstream os;
  os << "Error in LiftoffAssembler::ValidateCacheState().\n";
  os << "expected: used_regs " << used_regs << ", counts "
     << PrintCollection(register_use_count) << "\n";
  os << "found:    used_regs " << cache_state_.used_registers << ", counts "
     << PrintCollection(cache_state_.register_use_count) << "\n";
  os << "Use --trace-liftoff to debug.";
  FATAL("%s", os.str().c_str());
}

LiftoffRegister LiftoffAssembler::SpillOneRegister(LiftoffRegList candidates,
                                                   LiftoffRegList pinned) {
  // Spill one cached value to free a register.
  LiftoffRegister spill_reg = cache_state_.GetNextSpillReg(candidates, pinned);
  SpillRegister(spill_reg);
  return spill_reg;
}

void LiftoffAssembler::SpillRegister(LiftoffRegister reg) {
  int remaining_uses = cache_state_.get_use_count(reg);
  DCHECK_LT(0, remaining_uses);
  for (uint32_t idx = cache_state_.stack_height() - 1;; --idx) {
    DCHECK_GT(cache_state_.stack_height(), idx);
    auto* slot = &cache_state_.stack_state[idx];
    if (!slot->is_reg() || !slot->reg().overlaps(reg)) continue;
    if (slot->reg().is_pair()) {
      // Make sure to decrement *both* registers in a pair, because the
      // {clear_used} call below only clears one of them.
      cache_state_.dec_used(slot->reg().low());
      cache_state_.dec_used(slot->reg().high());
    }
    Spill(idx, slot->reg(), slot->type());
    slot->MakeStack();
    if (--remaining_uses == 0) break;
  }
  cache_state_.clear_used(reg);
}

void LiftoffAssembler::set_num_locals(uint32_t num_locals) {
  DCHECK_EQ(0, num_locals_);  // only call this once.
  num_locals_ = num_locals;
  if (num_locals > kInlineLocalTypes) {
    more_local_types_ =
        reinterpret_cast<ValueType*>(malloc(num_locals * sizeof(ValueType)));
    DCHECK_NOT_NULL(more_local_types_);
  }
}

std::ostream& operator<<(std::ostream& os, VarState slot) {
  os << ValueTypes::TypeName(slot.type()) << ":";
  switch (slot.loc()) {
    case VarState::kStack:
      return os << "s";
    case VarState::kRegister:
      return os << slot.reg();
    case VarState::KIntConst:
      return os << "c" << slot.i32_const();
  }
  UNREACHABLE();
}

#undef __
#undef TRACE

}  // namespace wasm
}  // namespace internal
}  // namespace v8