summaryrefslogtreecommitdiff
path: root/deps/v8/src/wasm/baseline/arm64/liftoff-assembler-arm64.h
blob: c73a60fd7d276c9b4fd8e14742eda9d255d1d78d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_BASELINE_ARM64_LIFTOFF_ASSEMBLER_ARM64_H_
#define V8_WASM_BASELINE_ARM64_LIFTOFF_ASSEMBLER_ARM64_H_

#include "src/wasm/baseline/liftoff-assembler.h"

#define BAILOUT(reason) bailout("arm64 " reason)

namespace v8 {
namespace internal {
namespace wasm {

namespace liftoff {

// Liftoff Frames.
//
//  slot      Frame
//       +--------------------+---------------------------
//  n+4  | optional padding slot to keep the stack 16 byte aligned.
//  n+3  |   parameter n      |
//  ...  |       ...          |
//   4   |   parameter 1      | or parameter 2
//   3   |   parameter 0      | or parameter 1
//   2   |  (result address)  | or parameter 0
//  -----+--------------------+---------------------------
//   1   | return addr (lr)   |
//   0   | previous frame (fp)|
//  -----+--------------------+  <-- frame ptr (fp)
//  -1   | 0xa: WASM_COMPILED |
//  -2   |     instance       |
//  -----+--------------------+---------------------------
//  -3   |     slot 0         |   ^
//  -4   |     slot 1         |   |
//       |                    | Frame slots
//       |                    |   |
//       |                    |   v
//       | optional padding slot to keep the stack 16 byte aligned.
//  -----+--------------------+  <-- stack ptr (sp)
//

constexpr int32_t kInstanceOffset = 2 * kPointerSize;
constexpr int32_t kFirstStackSlotOffset = kInstanceOffset + kPointerSize;
constexpr int32_t kConstantStackSpace = 0;

inline MemOperand GetStackSlot(uint32_t index) {
  int32_t offset =
      kFirstStackSlotOffset + index * LiftoffAssembler::kStackSlotSize;
  return MemOperand(fp, -offset);
}

inline MemOperand GetInstanceOperand() {
  return MemOperand(fp, -kInstanceOffset);
}

inline CPURegister GetRegFromType(const LiftoffRegister& reg, ValueType type) {
  switch (type) {
    case kWasmI32:
      return reg.gp().W();
    case kWasmI64:
      return reg.gp().X();
    case kWasmF32:
      return reg.fp().S();
    case kWasmF64:
      return reg.fp().D();
    default:
      UNREACHABLE();
  }
}

inline CPURegList PadRegList(RegList list) {
  if ((base::bits::CountPopulation(list) & 1) != 0) list |= padreg.bit();
  return CPURegList(CPURegister::kRegister, kXRegSizeInBits, list);
}

inline CPURegList PadVRegList(RegList list) {
  if ((base::bits::CountPopulation(list) & 1) != 0) list |= fp_scratch.bit();
  return CPURegList(CPURegister::kVRegister, kDRegSizeInBits, list);
}

inline CPURegister AcquireByType(UseScratchRegisterScope* temps,
                                 ValueType type) {
  switch (type) {
    case kWasmI32:
      return temps->AcquireW();
    case kWasmI64:
      return temps->AcquireX();
    case kWasmF32:
      return temps->AcquireS();
    case kWasmF64:
      return temps->AcquireD();
    default:
      UNREACHABLE();
  }
}

inline MemOperand GetMemOp(LiftoffAssembler* assm,
                           UseScratchRegisterScope* temps, Register addr,
                           Register offset, uint32_t offset_imm) {
  // Wasm memory is limited to a size <2GB, so all offsets can be encoded as
  // immediate value (in 31 bits, interpreted as signed value).
  // If the offset is bigger, we always trap and this code is not reached.
  DCHECK(is_uint31(offset_imm));
  if (offset.IsValid()) {
    if (offset_imm == 0) return MemOperand(addr.X(), offset.W(), UXTW);
    Register tmp = temps->AcquireW();
    assm->Add(tmp, offset.W(), offset_imm);
    return MemOperand(addr.X(), tmp, UXTW);
  }
  return MemOperand(addr.X(), offset_imm);
}

}  // namespace liftoff

int LiftoffAssembler::PrepareStackFrame() {
  int offset = pc_offset();
  InstructionAccurateScope scope(this, 1);
  sub(sp, sp, 0);
  return offset;
}

void LiftoffAssembler::PatchPrepareStackFrame(int offset,
                                              uint32_t stack_slots) {
  static_assert(kStackSlotSize == kXRegSize,
                "kStackSlotSize must equal kXRegSize");
  uint32_t bytes = liftoff::kConstantStackSpace + kStackSlotSize * stack_slots;
  // The stack pointer is required to be quadword aligned.
  // Misalignment will cause a stack alignment fault.
  bytes = RoundUp(bytes, kQuadWordSizeInBytes);
  if (!IsImmAddSub(bytes)) {
    // Round the stack to a page to try to fit a add/sub immediate.
    bytes = RoundUp(bytes, 0x1000);
    if (!IsImmAddSub(bytes)) {
      // Stack greater than 4M! Because this is a quite improbable case, we
      // just fallback to Turbofan.
      BAILOUT("Stack too big");
      return;
    }
  }
#ifdef USE_SIMULATOR
  // When using the simulator, deal with Liftoff which allocates the stack
  // before checking it.
  // TODO(arm): Remove this when the stack check mechanism will be updated.
  if (bytes > KB / 2) {
    BAILOUT("Stack limited to 512 bytes to avoid a bug in StackCheck");
    return;
  }
#endif
  PatchingAssembler patching_assembler(AssemblerOptions{}, buffer_ + offset, 1);
  patching_assembler.PatchSubSp(bytes);
}

void LiftoffAssembler::FinishCode() { CheckConstPool(true, false); }

void LiftoffAssembler::AbortCompilation() { AbortedCodeGeneration(); }

void LiftoffAssembler::LoadConstant(LiftoffRegister reg, WasmValue value,
                                    RelocInfo::Mode rmode) {
  switch (value.type()) {
    case kWasmI32:
      Mov(reg.gp().W(), Immediate(value.to_i32(), rmode));
      break;
    case kWasmI64:
      Mov(reg.gp().X(), Immediate(value.to_i64(), rmode));
      break;
    case kWasmF32:
      Fmov(reg.fp().S(), value.to_f32_boxed().get_scalar());
      break;
    case kWasmF64:
      Fmov(reg.fp().D(), value.to_f64_boxed().get_scalar());
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::LoadFromInstance(Register dst, uint32_t offset,
                                        int size) {
  DCHECK_LE(offset, kMaxInt);
  Ldr(dst, liftoff::GetInstanceOperand());
  DCHECK(size == 4 || size == 8);
  if (size == 4) {
    Ldr(dst.W(), MemOperand(dst, offset));
  } else {
    Ldr(dst, MemOperand(dst, offset));
  }
}

void LiftoffAssembler::SpillInstance(Register instance) {
  Str(instance, liftoff::GetInstanceOperand());
}

void LiftoffAssembler::FillInstanceInto(Register dst) {
  Ldr(dst, liftoff::GetInstanceOperand());
}

void LiftoffAssembler::Load(LiftoffRegister dst, Register src_addr,
                            Register offset_reg, uint32_t offset_imm,
                            LoadType type, LiftoffRegList pinned,
                            uint32_t* protected_load_pc, bool is_load_mem) {
  UseScratchRegisterScope temps(this);
  MemOperand src_op =
      liftoff::GetMemOp(this, &temps, src_addr, offset_reg, offset_imm);
  if (protected_load_pc) *protected_load_pc = pc_offset();
  switch (type.value()) {
    case LoadType::kI32Load8U:
    case LoadType::kI64Load8U:
      Ldrb(dst.gp().W(), src_op);
      break;
    case LoadType::kI32Load8S:
      Ldrsb(dst.gp().W(), src_op);
      break;
    case LoadType::kI64Load8S:
      Ldrsb(dst.gp().X(), src_op);
      break;
    case LoadType::kI32Load16U:
    case LoadType::kI64Load16U:
      Ldrh(dst.gp().W(), src_op);
      break;
    case LoadType::kI32Load16S:
      Ldrsh(dst.gp().W(), src_op);
      break;
    case LoadType::kI64Load16S:
      Ldrsh(dst.gp().X(), src_op);
      break;
    case LoadType::kI32Load:
    case LoadType::kI64Load32U:
      Ldr(dst.gp().W(), src_op);
      break;
    case LoadType::kI64Load32S:
      Ldrsw(dst.gp().X(), src_op);
      break;
    case LoadType::kI64Load:
      Ldr(dst.gp().X(), src_op);
      break;
    case LoadType::kF32Load:
      Ldr(dst.fp().S(), src_op);
      break;
    case LoadType::kF64Load:
      Ldr(dst.fp().D(), src_op);
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::Store(Register dst_addr, Register offset_reg,
                             uint32_t offset_imm, LiftoffRegister src,
                             StoreType type, LiftoffRegList pinned,
                             uint32_t* protected_store_pc, bool is_store_mem) {
  UseScratchRegisterScope temps(this);
  MemOperand dst_op =
      liftoff::GetMemOp(this, &temps, dst_addr, offset_reg, offset_imm);
  if (protected_store_pc) *protected_store_pc = pc_offset();
  switch (type.value()) {
    case StoreType::kI32Store8:
    case StoreType::kI64Store8:
      Strb(src.gp().W(), dst_op);
      break;
    case StoreType::kI32Store16:
    case StoreType::kI64Store16:
      Strh(src.gp().W(), dst_op);
      break;
    case StoreType::kI32Store:
    case StoreType::kI64Store32:
      Str(src.gp().W(), dst_op);
      break;
    case StoreType::kI64Store:
      Str(src.gp().X(), dst_op);
      break;
    case StoreType::kF32Store:
      Str(src.fp().S(), dst_op);
      break;
    case StoreType::kF64Store:
      Str(src.fp().D(), dst_op);
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::LoadCallerFrameSlot(LiftoffRegister dst,
                                           uint32_t caller_slot_idx,
                                           ValueType type) {
  int32_t offset = (caller_slot_idx + 1) * LiftoffAssembler::kStackSlotSize;
  Ldr(liftoff::GetRegFromType(dst, type), MemOperand(fp, offset));
}

void LiftoffAssembler::MoveStackValue(uint32_t dst_index, uint32_t src_index,
                                      ValueType type) {
  UseScratchRegisterScope temps(this);
  CPURegister scratch = liftoff::AcquireByType(&temps, type);
  Ldr(scratch, liftoff::GetStackSlot(src_index));
  Str(scratch, liftoff::GetStackSlot(dst_index));
}

void LiftoffAssembler::Move(Register dst, Register src, ValueType type) {
  if (type == kWasmI32) {
    Mov(dst.W(), src.W());
  } else {
    DCHECK_EQ(kWasmI64, type);
    Mov(dst.X(), src.X());
  }
}

void LiftoffAssembler::Move(DoubleRegister dst, DoubleRegister src,
                            ValueType type) {
  if (type == kWasmF32) {
    Fmov(dst.S(), src.S());
  } else {
    DCHECK_EQ(kWasmF64, type);
    Fmov(dst.D(), src.D());
  }
}

void LiftoffAssembler::Spill(uint32_t index, LiftoffRegister reg,
                             ValueType type) {
  RecordUsedSpillSlot(index);
  MemOperand dst = liftoff::GetStackSlot(index);
  Str(liftoff::GetRegFromType(reg, type), dst);
}

void LiftoffAssembler::Spill(uint32_t index, WasmValue value) {
  RecordUsedSpillSlot(index);
  MemOperand dst = liftoff::GetStackSlot(index);
  UseScratchRegisterScope temps(this);
  CPURegister src = CPURegister::no_reg();
  switch (value.type()) {
    case kWasmI32:
      src = temps.AcquireW();
      Mov(src.W(), value.to_i32());
      break;
    case kWasmI64:
      src = temps.AcquireX();
      Mov(src.X(), value.to_i64());
      break;
    default:
      // We do not track f32 and f64 constants, hence they are unreachable.
      UNREACHABLE();
  }
  Str(src, dst);
}

void LiftoffAssembler::Fill(LiftoffRegister reg, uint32_t index,
                            ValueType type) {
  MemOperand src = liftoff::GetStackSlot(index);
  Ldr(liftoff::GetRegFromType(reg, type), src);
}

void LiftoffAssembler::FillI64Half(Register, uint32_t half_index) {
  UNREACHABLE();
}

#define I32_BINOP(name, instruction)                             \
  void LiftoffAssembler::emit_##name(Register dst, Register lhs, \
                                     Register rhs) {             \
    instruction(dst.W(), lhs.W(), rhs.W());                      \
  }
#define I64_BINOP(name, instruction)                                           \
  void LiftoffAssembler::emit_##name(LiftoffRegister dst, LiftoffRegister lhs, \
                                     LiftoffRegister rhs) {                    \
    instruction(dst.gp().X(), lhs.gp().X(), rhs.gp().X());                     \
  }
#define FP32_BINOP(name, instruction)                                        \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister lhs, \
                                     DoubleRegister rhs) {                   \
    instruction(dst.S(), lhs.S(), rhs.S());                                  \
  }
#define FP32_UNOP(name, instruction)                                           \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \
    instruction(dst.S(), src.S());                                             \
  }
#define FP64_BINOP(name, instruction)                                        \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister lhs, \
                                     DoubleRegister rhs) {                   \
    instruction(dst.D(), lhs.D(), rhs.D());                                  \
  }
#define FP64_UNOP(name, instruction)                                           \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \
    instruction(dst.D(), src.D());                                             \
  }
#define FP64_UNOP_RETURN_TRUE(name, instruction)                               \
  bool LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \
    instruction(dst.D(), src.D());                                             \
    return true;                                                               \
  }
#define I32_SHIFTOP(name, instruction)                                         \
  void LiftoffAssembler::emit_##name(Register dst, Register src,               \
                                     Register amount, LiftoffRegList pinned) { \
    instruction(dst.W(), src.W(), amount.W());                                 \
  }
#define I32_SHIFTOP_I(name, instruction)                                       \
  I32_SHIFTOP(name, instruction)                                               \
  void LiftoffAssembler::emit_##name(Register dst, Register src, int amount) { \
    DCHECK(is_uint5(amount));                                                  \
    instruction(dst.W(), src.W(), amount);                                     \
  }
#define I64_SHIFTOP(name, instruction)                                         \
  void LiftoffAssembler::emit_##name(LiftoffRegister dst, LiftoffRegister src, \
                                     Register amount, LiftoffRegList pinned) { \
    instruction(dst.gp().X(), src.gp().X(), amount.X());                       \
  }
#define I64_SHIFTOP_I(name, instruction)                                       \
  I64_SHIFTOP(name, instruction)                                               \
  void LiftoffAssembler::emit_##name(LiftoffRegister dst, LiftoffRegister src, \
                                     int amount) {                             \
    DCHECK(is_uint6(amount));                                                  \
    instruction(dst.gp().X(), src.gp().X(), amount);                           \
  }

I32_BINOP(i32_add, Add)
I32_BINOP(i32_sub, Sub)
I32_BINOP(i32_mul, Mul)
I32_BINOP(i32_and, And)
I32_BINOP(i32_or, Orr)
I32_BINOP(i32_xor, Eor)
I32_SHIFTOP(i32_shl, Lsl)
I32_SHIFTOP(i32_sar, Asr)
I32_SHIFTOP_I(i32_shr, Lsr)
I64_BINOP(i64_add, Add)
I64_BINOP(i64_sub, Sub)
I64_BINOP(i64_mul, Mul)
I64_BINOP(i64_and, And)
I64_BINOP(i64_or, Orr)
I64_BINOP(i64_xor, Eor)
I64_SHIFTOP(i64_shl, Lsl)
I64_SHIFTOP(i64_sar, Asr)
I64_SHIFTOP_I(i64_shr, Lsr)
FP32_BINOP(f32_add, Fadd)
FP32_BINOP(f32_sub, Fsub)
FP32_BINOP(f32_mul, Fmul)
FP32_BINOP(f32_div, Fdiv)
FP32_BINOP(f32_min, Fmin)
FP32_BINOP(f32_max, Fmax)
FP32_UNOP(f32_abs, Fabs)
FP32_UNOP(f32_neg, Fneg)
FP32_UNOP(f32_ceil, Frintp)
FP32_UNOP(f32_floor, Frintm)
FP32_UNOP(f32_trunc, Frintz)
FP32_UNOP(f32_nearest_int, Frintn)
FP32_UNOP(f32_sqrt, Fsqrt)
FP64_BINOP(f64_add, Fadd)
FP64_BINOP(f64_sub, Fsub)
FP64_BINOP(f64_mul, Fmul)
FP64_BINOP(f64_div, Fdiv)
FP64_BINOP(f64_min, Fmin)
FP64_BINOP(f64_max, Fmax)
FP64_UNOP(f64_abs, Fabs)
FP64_UNOP(f64_neg, Fneg)
FP64_UNOP_RETURN_TRUE(f64_ceil, Frintp)
FP64_UNOP_RETURN_TRUE(f64_floor, Frintm)
FP64_UNOP_RETURN_TRUE(f64_trunc, Frintz)
FP64_UNOP_RETURN_TRUE(f64_nearest_int, Frintn)
FP64_UNOP(f64_sqrt, Fsqrt)

#undef I32_BINOP
#undef I64_BINOP
#undef FP32_BINOP
#undef FP32_UNOP
#undef FP64_BINOP
#undef FP64_UNOP
#undef FP64_UNOP_RETURN_TRUE
#undef I32_SHIFTOP
#undef I32_SHIFTOP_I
#undef I64_SHIFTOP
#undef I64_SHIFTOP_I

bool LiftoffAssembler::emit_i32_clz(Register dst, Register src) {
  Clz(dst.W(), src.W());
  return true;
}

bool LiftoffAssembler::emit_i32_ctz(Register dst, Register src) {
  Rbit(dst.W(), src.W());
  Clz(dst.W(), dst.W());
  return true;
}

bool LiftoffAssembler::emit_i32_popcnt(Register dst, Register src) {
  UseScratchRegisterScope temps(this);
  VRegister scratch = temps.AcquireV(kFormat8B);
  Fmov(scratch.S(), src.W());
  Cnt(scratch, scratch);
  Addv(scratch.B(), scratch);
  Fmov(dst.W(), scratch.S());
  return true;
}

void LiftoffAssembler::emit_i32_divs(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero,
                                     Label* trap_div_unrepresentable) {
  Register dst_w = dst.W();
  Register lhs_w = lhs.W();
  Register rhs_w = rhs.W();
  bool can_use_dst = !dst_w.Aliases(lhs_w) && !dst_w.Aliases(rhs_w);
  if (can_use_dst) {
    // Do div early.
    Sdiv(dst_w, lhs_w, rhs_w);
  }
  // Check for division by zero.
  Cbz(rhs_w, trap_div_by_zero);
  // Check for kMinInt / -1. This is unrepresentable.
  Cmp(rhs_w, -1);
  Ccmp(lhs_w, 1, NoFlag, eq);
  B(trap_div_unrepresentable, vs);
  if (!can_use_dst) {
    // Do div.
    Sdiv(dst_w, lhs_w, rhs_w);
  }
}

void LiftoffAssembler::emit_i32_divu(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  // Check for division by zero.
  Cbz(rhs.W(), trap_div_by_zero);
  // Do div.
  Udiv(dst.W(), lhs.W(), rhs.W());
}

void LiftoffAssembler::emit_i32_rems(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  Register dst_w = dst.W();
  Register lhs_w = lhs.W();
  Register rhs_w = rhs.W();
  // Do early div.
  // No need to check kMinInt / -1 because the result is kMinInt and then
  // kMinInt * -1 -> kMinInt. In this case, the Msub result is therefore 0.
  UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireW();
  Sdiv(scratch, lhs_w, rhs_w);
  // Check for division by zero.
  Cbz(rhs_w, trap_div_by_zero);
  // Compute remainder.
  Msub(dst_w, scratch, rhs_w, lhs_w);
}

void LiftoffAssembler::emit_i32_remu(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  Register dst_w = dst.W();
  Register lhs_w = lhs.W();
  Register rhs_w = rhs.W();
  // Do early div.
  UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireW();
  Udiv(scratch, lhs_w, rhs_w);
  // Check for division by zero.
  Cbz(rhs_w, trap_div_by_zero);
  // Compute remainder.
  Msub(dst_w, scratch, rhs_w, lhs_w);
}

bool LiftoffAssembler::emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero,
                                     Label* trap_div_unrepresentable) {
  Register dst_x = dst.gp().X();
  Register lhs_x = lhs.gp().X();
  Register rhs_x = rhs.gp().X();
  bool can_use_dst = !dst_x.Aliases(lhs_x) && !dst_x.Aliases(rhs_x);
  if (can_use_dst) {
    // Do div early.
    Sdiv(dst_x, lhs_x, rhs_x);
  }
  // Check for division by zero.
  Cbz(rhs_x, trap_div_by_zero);
  // Check for kMinInt / -1. This is unrepresentable.
  Cmp(rhs_x, -1);
  Ccmp(lhs_x, 1, NoFlag, eq);
  B(trap_div_unrepresentable, vs);
  if (!can_use_dst) {
    // Do div.
    Sdiv(dst_x, lhs_x, rhs_x);
  }
  return true;
}

bool LiftoffAssembler::emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  // Check for division by zero.
  Cbz(rhs.gp().X(), trap_div_by_zero);
  // Do div.
  Udiv(dst.gp().X(), lhs.gp().X(), rhs.gp().X());
  return true;
}

bool LiftoffAssembler::emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  Register dst_x = dst.gp().X();
  Register lhs_x = lhs.gp().X();
  Register rhs_x = rhs.gp().X();
  // Do early div.
  // No need to check kMinInt / -1 because the result is kMinInt and then
  // kMinInt * -1 -> kMinInt. In this case, the Msub result is therefore 0.
  UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX();
  Sdiv(scratch, lhs_x, rhs_x);
  // Check for division by zero.
  Cbz(rhs_x, trap_div_by_zero);
  // Compute remainder.
  Msub(dst_x, scratch, rhs_x, lhs_x);
  return true;
}

bool LiftoffAssembler::emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  Register dst_x = dst.gp().X();
  Register lhs_x = lhs.gp().X();
  Register rhs_x = rhs.gp().X();
  // Do early div.
  UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX();
  Udiv(scratch, lhs_x, rhs_x);
  // Check for division by zero.
  Cbz(rhs_x, trap_div_by_zero);
  // Compute remainder.
  Msub(dst_x, scratch, rhs_x, lhs_x);
  return true;
}

void LiftoffAssembler::emit_i32_to_intptr(Register dst, Register src) {
  Sxtw(dst, src);
}

void LiftoffAssembler::emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  BAILOUT("f32_copysign");
}

void LiftoffAssembler::emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  BAILOUT("f64_copysign");
}

bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode,
                                            LiftoffRegister dst,
                                            LiftoffRegister src, Label* trap) {
  switch (opcode) {
    case kExprI32ConvertI64:
      if (src != dst) Mov(dst.gp().W(), src.gp().W());
      return true;
    case kExprI32SConvertF32:
      Fcvtzs(dst.gp().W(), src.fp().S());  // f32 -> i32 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().S(), static_cast<float>(INT32_MIN));
      // Check overflow.
      Ccmp(dst.gp().W(), -1, VFlag, ge);
      B(trap, vs);
      return true;
    case kExprI32UConvertF32:
      Fcvtzu(dst.gp().W(), src.fp().S());  // f32 -> i32 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().S(), -1.0);
      // Check overflow.
      Ccmp(dst.gp().W(), -1, ZFlag, gt);
      B(trap, eq);
      return true;
    case kExprI32SConvertF64: {
      // INT32_MIN and INT32_MAX are valid results, we cannot test the result
      // to detect the overflows. We could have done two immediate floating
      // point comparisons but it would have generated two conditional branches.
      UseScratchRegisterScope temps(this);
      VRegister fp_ref = temps.AcquireD();
      VRegister fp_cmp = temps.AcquireD();
      Fcvtzs(dst.gp().W(), src.fp().D());  // f64 -> i32 round to zero.
      Frintz(fp_ref, src.fp().D());        // f64 -> f64 round to zero.
      Scvtf(fp_cmp, dst.gp().W());         // i32 -> f64.
      // If comparison fails, we have an overflow or a NaN.
      Fcmp(fp_cmp, fp_ref);
      B(trap, ne);
      return true;
    }
    case kExprI32UConvertF64: {
      // INT32_MAX is a valid result, we cannot test the result to detect the
      // overflows. We could have done two immediate floating point comparisons
      // but it would have generated two conditional branches.
      UseScratchRegisterScope temps(this);
      VRegister fp_ref = temps.AcquireD();
      VRegister fp_cmp = temps.AcquireD();
      Fcvtzu(dst.gp().W(), src.fp().D());  // f64 -> i32 round to zero.
      Frintz(fp_ref, src.fp().D());        // f64 -> f64 round to zero.
      Ucvtf(fp_cmp, dst.gp().W());         // i32 -> f64.
      // If comparison fails, we have an overflow or a NaN.
      Fcmp(fp_cmp, fp_ref);
      B(trap, ne);
      return true;
    }
    case kExprI32ReinterpretF32:
      Fmov(dst.gp().W(), src.fp().S());
      return true;
    case kExprI64SConvertI32:
      Sxtw(dst.gp().X(), src.gp().W());
      return true;
    case kExprI64SConvertF32:
      Fcvtzs(dst.gp().X(), src.fp().S());  // f32 -> i64 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().S(), static_cast<float>(INT64_MIN));
      // Check overflow.
      Ccmp(dst.gp().X(), -1, VFlag, ge);
      B(trap, vs);
      return true;
    case kExprI64UConvertF32:
      Fcvtzu(dst.gp().X(), src.fp().S());  // f32 -> i64 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().S(), -1.0);
      // Check overflow.
      Ccmp(dst.gp().X(), -1, ZFlag, gt);
      B(trap, eq);
      return true;
    case kExprI64SConvertF64:
      Fcvtzs(dst.gp().X(), src.fp().D());  // f64 -> i64 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().D(), static_cast<float>(INT64_MIN));
      // Check overflow.
      Ccmp(dst.gp().X(), -1, VFlag, ge);
      B(trap, vs);
      return true;
    case kExprI64UConvertF64:
      Fcvtzu(dst.gp().X(), src.fp().D());  // f64 -> i64 round to zero.
      // Check underflow and NaN.
      Fcmp(src.fp().D(), -1.0);
      // Check overflow.
      Ccmp(dst.gp().X(), -1, ZFlag, gt);
      B(trap, eq);
      return true;
    case kExprI64UConvertI32:
      Mov(dst.gp().W(), src.gp().W());
      return true;
    case kExprI64ReinterpretF64:
      Fmov(dst.gp().X(), src.fp().D());
      return true;
    case kExprF32SConvertI32:
      Scvtf(dst.fp().S(), src.gp().W());
      return true;
    case kExprF32UConvertI32:
      Ucvtf(dst.fp().S(), src.gp().W());
      return true;
    case kExprF32SConvertI64:
      Scvtf(dst.fp().S(), src.gp().X());
      return true;
    case kExprF32UConvertI64:
      Ucvtf(dst.fp().S(), src.gp().X());
      return true;
    case kExprF32ConvertF64:
      Fcvt(dst.fp().S(), src.fp().D());
      return true;
    case kExprF32ReinterpretI32:
      Fmov(dst.fp().S(), src.gp().W());
      return true;
    case kExprF64SConvertI32:
      Scvtf(dst.fp().D(), src.gp().W());
      return true;
    case kExprF64UConvertI32:
      Ucvtf(dst.fp().D(), src.gp().W());
      return true;
    case kExprF64SConvertI64:
      Scvtf(dst.fp().D(), src.gp().X());
      return true;
    case kExprF64UConvertI64:
      Ucvtf(dst.fp().D(), src.gp().X());
      return true;
    case kExprF64ConvertF32:
      Fcvt(dst.fp().D(), src.fp().S());
      return true;
    case kExprF64ReinterpretI64:
      Fmov(dst.fp().D(), src.gp().X());
      return true;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::emit_i32_signextend_i8(Register dst, Register src) {
  sxtb(dst, src);
}

void LiftoffAssembler::emit_i32_signextend_i16(Register dst, Register src) {
  sxth(dst, src);
}

void LiftoffAssembler::emit_i64_signextend_i8(LiftoffRegister dst,
                                              LiftoffRegister src) {
  sxtb(dst.gp(), src.gp());
}

void LiftoffAssembler::emit_i64_signextend_i16(LiftoffRegister dst,
                                               LiftoffRegister src) {
  sxth(dst.gp(), src.gp());
}

void LiftoffAssembler::emit_i64_signextend_i32(LiftoffRegister dst,
                                               LiftoffRegister src) {
  sxtw(dst.gp(), src.gp());
}

void LiftoffAssembler::emit_jump(Label* label) { B(label); }

void LiftoffAssembler::emit_jump(Register target) { Br(target); }

void LiftoffAssembler::emit_cond_jump(Condition cond, Label* label,
                                      ValueType type, Register lhs,
                                      Register rhs) {
  switch (type) {
    case kWasmI32:
      if (rhs.IsValid()) {
        Cmp(lhs.W(), rhs.W());
      } else {
        Cmp(lhs.W(), wzr);
      }
      break;
    case kWasmI64:
      if (rhs.IsValid()) {
        Cmp(lhs.X(), rhs.X());
      } else {
        Cmp(lhs.X(), xzr);
      }
      break;
    default:
      UNREACHABLE();
  }
  B(label, cond);
}

void LiftoffAssembler::emit_i32_eqz(Register dst, Register src) {
  Cmp(src.W(), wzr);
  Cset(dst.W(), eq);
}

void LiftoffAssembler::emit_i32_set_cond(Condition cond, Register dst,
                                         Register lhs, Register rhs) {
  Cmp(lhs.W(), rhs.W());
  Cset(dst.W(), cond);
}

void LiftoffAssembler::emit_i64_eqz(Register dst, LiftoffRegister src) {
  Cmp(src.gp().X(), xzr);
  Cset(dst.W(), eq);
}

void LiftoffAssembler::emit_i64_set_cond(Condition cond, Register dst,
                                         LiftoffRegister lhs,
                                         LiftoffRegister rhs) {
  Cmp(lhs.gp().X(), rhs.gp().X());
  Cset(dst.W(), cond);
}

void LiftoffAssembler::emit_f32_set_cond(Condition cond, Register dst,
                                         DoubleRegister lhs,
                                         DoubleRegister rhs) {
  Fcmp(lhs.S(), rhs.S());
  Cset(dst.W(), cond);
  if (cond != ne) {
    // If V flag set, at least one of the arguments was a Nan -> false.
    Csel(dst.W(), wzr, dst.W(), vs);
  }
}

void LiftoffAssembler::emit_f64_set_cond(Condition cond, Register dst,
                                         DoubleRegister lhs,
                                         DoubleRegister rhs) {
  Fcmp(lhs.D(), rhs.D());
  Cset(dst.W(), cond);
  if (cond != ne) {
    // If V flag set, at least one of the arguments was a Nan -> false.
    Csel(dst.W(), wzr, dst.W(), vs);
  }
}

void LiftoffAssembler::StackCheck(Label* ool_code, Register limit_address) {
  Ldr(limit_address, MemOperand(limit_address));
  Cmp(sp, limit_address);
  B(ool_code, ls);
}

void LiftoffAssembler::CallTrapCallbackForTesting() {
  CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0);
}

void LiftoffAssembler::AssertUnreachable(AbortReason reason) {
  TurboAssembler::AssertUnreachable(reason);
}

void LiftoffAssembler::PushRegisters(LiftoffRegList regs) {
  PushCPURegList(liftoff::PadRegList(regs.GetGpList()));
  PushCPURegList(liftoff::PadVRegList(regs.GetFpList()));
}

void LiftoffAssembler::PopRegisters(LiftoffRegList regs) {
  PopCPURegList(liftoff::PadVRegList(regs.GetFpList()));
  PopCPURegList(liftoff::PadRegList(regs.GetGpList()));
}

void LiftoffAssembler::DropStackSlotsAndRet(uint32_t num_stack_slots) {
  DropSlots(num_stack_slots);
  Ret();
}

void LiftoffAssembler::CallC(wasm::FunctionSig* sig,
                             const LiftoffRegister* args,
                             const LiftoffRegister* rets,
                             ValueType out_argument_type, int stack_bytes,
                             ExternalReference ext_ref) {
  // The stack pointer is required to be quadword aligned.
  int total_size = RoundUp(stack_bytes, kQuadWordSizeInBytes);
  // Reserve space in the stack.
  Claim(total_size, 1);

  int arg_bytes = 0;
  for (ValueType param_type : sig->parameters()) {
    Poke(liftoff::GetRegFromType(*args++, param_type), arg_bytes);
    arg_bytes += ValueTypes::MemSize(param_type);
  }
  DCHECK_LE(arg_bytes, stack_bytes);

  // Pass a pointer to the buffer with the arguments to the C function.
  Mov(x0, sp);

  // Now call the C function.
  constexpr int kNumCCallArgs = 1;
  CallCFunction(ext_ref, kNumCCallArgs);

  // Move return value to the right register.
  const LiftoffRegister* next_result_reg = rets;
  if (sig->return_count() > 0) {
    DCHECK_EQ(1, sig->return_count());
    constexpr Register kReturnReg = x0;
    if (kReturnReg != next_result_reg->gp()) {
      Move(*next_result_reg, LiftoffRegister(kReturnReg), sig->GetReturn(0));
    }
    ++next_result_reg;
  }

  // Load potential output value from the buffer on the stack.
  if (out_argument_type != kWasmStmt) {
    Peek(liftoff::GetRegFromType(*next_result_reg, out_argument_type), 0);
  }

  Drop(total_size, 1);
}

void LiftoffAssembler::CallNativeWasmCode(Address addr) {
  Call(addr, RelocInfo::WASM_CALL);
}

void LiftoffAssembler::CallIndirect(wasm::FunctionSig* sig,
                                    compiler::CallDescriptor* call_descriptor,
                                    Register target) {
  // For Arm64, we have more cache registers than wasm parameters. That means
  // that target will always be in a register.
  DCHECK(target.IsValid());
  Call(target);
}

void LiftoffAssembler::CallRuntimeStub(WasmCode::RuntimeStubId sid) {
  // A direct call to a wasm runtime stub defined in this module.
  // Just encode the stub index. This will be patched at relocation.
  Call(static_cast<Address>(sid), RelocInfo::WASM_STUB_CALL);
}

void LiftoffAssembler::AllocateStackSlot(Register addr, uint32_t size) {
  // The stack pointer is required to be quadword aligned.
  size = RoundUp(size, kQuadWordSizeInBytes);
  Claim(size, 1);
  Mov(addr, sp);
}

void LiftoffAssembler::DeallocateStackSlot(uint32_t size) {
  // The stack pointer is required to be quadword aligned.
  size = RoundUp(size, kQuadWordSizeInBytes);
  Drop(size, 1);
}

void LiftoffStackSlots::Construct() {
  size_t slot_count = slots_.size();
  // The stack pointer is required to be quadword aligned.
  asm_->Claim(RoundUp(slot_count, 2));
  size_t slot_index = 0;
  for (auto& slot : slots_) {
    size_t poke_offset = (slot_count - slot_index - 1) * kXRegSize;
    switch (slot.src_.loc()) {
      case LiftoffAssembler::VarState::kStack: {
        UseScratchRegisterScope temps(asm_);
        CPURegister scratch = liftoff::AcquireByType(&temps, slot.src_.type());
        asm_->Ldr(scratch, liftoff::GetStackSlot(slot.src_index_));
        asm_->Poke(scratch, poke_offset);
        break;
      }
      case LiftoffAssembler::VarState::kRegister:
        asm_->Poke(liftoff::GetRegFromType(slot.src_.reg(), slot.src_.type()),
                   poke_offset);
        break;
      case LiftoffAssembler::VarState::KIntConst:
        DCHECK(slot.src_.type() == kWasmI32 || slot.src_.type() == kWasmI64);
        if (slot.src_.i32_const() == 0) {
          Register zero_reg = slot.src_.type() == kWasmI32 ? wzr : xzr;
          asm_->Poke(zero_reg, poke_offset);
        } else {
          UseScratchRegisterScope temps(asm_);
          Register scratch = slot.src_.type() == kWasmI32 ? temps.AcquireW()
                                                          : temps.AcquireX();
          asm_->Mov(scratch, int64_t{slot.src_.i32_const()});
          asm_->Poke(scratch, poke_offset);
        }
        break;
    }
    slot_index++;
  }
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8

#undef BAILOUT

#endif  // V8_WASM_BASELINE_ARM64_LIFTOFF_ASSEMBLER_ARM64_H_