summaryrefslogtreecommitdiff
path: root/deps/v8/src/types.h
blob: 746cca764ea08e38cce14cd5614ab5cb72a48c30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_TYPES_H_
#define V8_TYPES_H_

#include "src/conversions.h"
#include "src/handles.h"
#include "src/objects.h"
#include "src/ostreams.h"

namespace v8 {
namespace internal {

// SUMMARY
//
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// Types consist of two dimensions: semantic (value range) and representation.
// Both are related through subtyping.
//
//
// SEMANTIC DIMENSION
//
// The following equations and inequations hold for the semantic axis:
//
//   None <= T
//   T <= Any
//
//   Number = Signed32 \/ Unsigned32 \/ Double
//   Smi <= Signed32
//   Name = String \/ Symbol
//   UniqueName = InternalizedString \/ Symbol
//   InternalizedString < String
//
//   Receiver = Object \/ Proxy
//   Array < Object
//   Function < Object
//   RegExp < Object
//   OtherUndetectable < Object
//   DetectableReceiver = Receiver - OtherUndetectable
//
//   Class(map) < T   iff instance_type(map) < T
//   Constant(x) < T  iff instance_type(map(x)) < T
//   Array(T) < Array
//   Function(R, S, T0, T1, ...) < Function
//   Context(T) < Internal
//
// Both structural Array and Function types are invariant in all parameters;
// relaxing this would make Union and Intersect operations more involved.
// There is no subtyping relation between Array, Function, or Context types
// and respective Constant types, since these types cannot be reconstructed
// for arbitrary heap values.
// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
// However, we also define a 'temporal' variant of the subtyping relation that
// considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
//
//
// REPRESENTATIONAL DIMENSION
//
// For the representation axis, the following holds:
//
//   None <= R
//   R <= Any
//
//   UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
//                 UntaggedInt16 \/ UntaggedInt32
//   UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
//   UntaggedNumber = UntaggedInt \/ UntaggedFloat
//   Untagged = UntaggedNumber \/ UntaggedPtr
//   Tagged = TaggedInt \/ TaggedPtr
//
// Subtyping relates the two dimensions, for example:
//
//   Number <= Tagged \/ UntaggedNumber
//   Object <= TaggedPtr \/ UntaggedPtr
//
// That holds because the semantic type constructors defined by the API create
// types that allow for all possible representations, and dually, the ones for
// representation types initially include all semantic ranges. Representations
// can then e.g. be narrowed for a given semantic type using intersection:
//
//   SignedSmall /\ TaggedInt       (a 'smi')
//   Number /\ TaggedPtr            (a heap number)
//
//
// RANGE TYPES
//
// A range type represents a continuous integer interval by its minimum and
// maximum value.  Either value may be an infinity, in which case that infinity
// itself is also included in the range.   A range never contains NaN or -0.
//
// If a value v happens to be an integer n, then Constant(v) is considered a
// subtype of Range(n, n) (and therefore also a subtype of any larger range).
// In order to avoid large unions, however, it is usually a good idea to use
// Range rather than Constant.
//
//
// PREDICATES
//
// There are two main functions for testing types:
//
//   T1->Is(T2)     -- tests whether T1 is included in T2 (i.e., T1 <= T2)
//   T1->Maybe(T2)  -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(SignedSmall())), and the latter to check whether a specific case needs
// handling (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
// Consequently, do not normally use Equals for type tests, always use Is!
//
// The NowIs operator implements state-sensitive subtying, as described above.
// Any compilation decision based on such temporary properties requires runtime
// guarding!
//
//
// PROPERTIES
//
// Various formal properties hold for constructors, operators, and predicates
// over types. For example, constructors are injective and subtyping is a
// complete partial order.
//
// See test/cctest/test-types.cc for a comprehensive executable specification,
// especially with respect to the properties of the more exotic 'temporal'
// constructors and predicates (those prefixed 'Now').
//
//
// IMPLEMENTATION
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
// respective map. Only structured types require allocation.
// Note that the bitset representation is closed under both Union and Intersect.


// -----------------------------------------------------------------------------
// Values for bitset types

// clang-format off

#define MASK_BITSET_TYPE_LIST(V) \
  V(Representation, 0xffc00000u) \
  V(Semantic,       0x003ffffeu)

#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
#define SEMANTIC(k)       ((k) & BitsetType::kSemantic)

#define REPRESENTATION_BITSET_TYPE_LIST(V)    \
  V(None,               0)                    \
  V(UntaggedBit,        1u << 22 | kSemantic) \
  V(UntaggedIntegral8,  1u << 23 | kSemantic) \
  V(UntaggedIntegral16, 1u << 24 | kSemantic) \
  V(UntaggedIntegral32, 1u << 25 | kSemantic) \
  V(UntaggedFloat32,    1u << 26 | kSemantic) \
  V(UntaggedFloat64,    1u << 27 | kSemantic) \
  V(UntaggedSimd128,    1u << 28 | kSemantic) \
  V(UntaggedPointer,    1u << 29 | kSemantic) \
  V(TaggedSigned,       1u << 30 | kSemantic) \
  V(TaggedPointer,      1u << 31 | kSemantic) \
  \
  V(UntaggedIntegral,   kUntaggedBit | kUntaggedIntegral8 |        \
                        kUntaggedIntegral16 | kUntaggedIntegral32) \
  V(UntaggedFloat,      kUntaggedFloat32 | kUntaggedFloat64)       \
  V(UntaggedNumber,     kUntaggedIntegral | kUntaggedFloat)        \
  V(Untagged,           kUntaggedNumber | kUntaggedPointer)        \
  V(Tagged,             kTaggedSigned | kTaggedPointer)

#define INTERNAL_BITSET_TYPE_LIST(V)                                      \
  V(OtherUnsigned31, 1u << 1 | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(OtherUnsigned32, 1u << 2 | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(OtherSigned32,   1u << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(OtherNumber,     1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber))

#define SEMANTIC_BITSET_TYPE_LIST(V) \
  V(Negative31,          1u << 5  | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(Null,                1u << 6  | REPRESENTATION(kTaggedPointer)) \
  V(Undefined,           1u << 7  | REPRESENTATION(kTaggedPointer)) \
  V(Boolean,             1u << 8  | REPRESENTATION(kTaggedPointer)) \
  V(Unsigned30,          1u << 9  | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(MinusZero,           1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(NaN,                 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
  V(Symbol,              1u << 12 | REPRESENTATION(kTaggedPointer)) \
  V(InternalizedString,  1u << 13 | REPRESENTATION(kTaggedPointer)) \
  V(OtherString,         1u << 14 | REPRESENTATION(kTaggedPointer)) \
  V(Simd,                1u << 15 | REPRESENTATION(kTaggedPointer)) \
  V(OtherObject,         1u << 17 | REPRESENTATION(kTaggedPointer)) \
  V(OtherUndetectable,   1u << 16 | REPRESENTATION(kTaggedPointer)) \
  V(Proxy,               1u << 18 | REPRESENTATION(kTaggedPointer)) \
  V(Function,            1u << 19 | REPRESENTATION(kTaggedPointer)) \
  V(Hole,                1u << 20 | REPRESENTATION(kTaggedPointer)) \
  V(OtherInternal,       1u << 21 | REPRESENTATION(kTagged | kUntagged)) \
  \
  V(Signed31,                   kUnsigned30 | kNegative31) \
  V(Signed32,                   kSigned31 | kOtherUnsigned31 | kOtherSigned32) \
  V(Signed32OrMinusZero,        kSigned32 | kMinusZero) \
  V(Signed32OrMinusZeroOrNaN,   kSigned32 | kMinusZero | kNaN) \
  V(Negative32,                 kNegative31 | kOtherSigned32) \
  V(Unsigned31,                 kUnsigned30 | kOtherUnsigned31) \
  V(Unsigned32,                 kUnsigned30 | kOtherUnsigned31 | \
                                kOtherUnsigned32) \
  V(Unsigned32OrMinusZero,      kUnsigned32 | kMinusZero) \
  V(Unsigned32OrMinusZeroOrNaN, kUnsigned32 | kMinusZero | kNaN) \
  V(Integral32,                 kSigned32 | kUnsigned32) \
  V(PlainNumber,                kIntegral32 | kOtherNumber) \
  V(OrderedNumber,              kPlainNumber | kMinusZero) \
  V(MinusZeroOrNaN,             kMinusZero | kNaN) \
  V(Number,                     kOrderedNumber | kNaN) \
  V(String,                     kInternalizedString | kOtherString) \
  V(UniqueName,                 kSymbol | kInternalizedString) \
  V(Name,                       kSymbol | kString) \
  V(BooleanOrNumber,            kBoolean | kNumber) \
  V(BooleanOrNullOrNumber,      kBooleanOrNumber | kNull) \
  V(BooleanOrNullOrUndefined,   kBoolean | kNull | kUndefined) \
  V(NullOrNumber,               kNull | kNumber) \
  V(NullOrUndefined,            kNull | kUndefined) \
  V(Undetectable,               kNullOrUndefined | kOtherUndetectable) \
  V(NumberOrOddball,            kNumber | kNullOrUndefined | kBoolean | kHole) \
  V(NumberOrSimdOrString,       kNumber | kSimd | kString) \
  V(NumberOrString,             kNumber | kString) \
  V(NumberOrUndefined,          kNumber | kUndefined) \
  V(PlainPrimitive,             kNumberOrString | kBoolean | kNullOrUndefined) \
  V(Primitive,                  kSymbol | kSimd | kPlainPrimitive) \
  V(DetectableReceiver,         kFunction | kOtherObject | kProxy) \
  V(Object,                     kFunction | kOtherObject | kOtherUndetectable) \
  V(Receiver,                   kObject | kProxy) \
  V(StringOrReceiver,           kString | kReceiver) \
  V(Unique,                     kBoolean | kUniqueName | kNull | kUndefined | \
                                kReceiver) \
  V(Internal,                   kHole | kOtherInternal) \
  V(NonInternal,                kPrimitive | kReceiver) \
  V(NonNumber,                  kUnique | kString | kInternal) \
  V(Any,                        0xfffffffeu)

// clang-format on

/*
 * The following diagrams show how integers (in the mathematical sense) are
 * divided among the different atomic numerical types.
 *
 *   ON    OS32     N31     U30     OU31    OU32     ON
 * ______[_______[_______[_______[_______[_______[_______
 *     -2^31   -2^30     0      2^30    2^31    2^32
 *
 * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
 *
 * Some of the atomic numerical bitsets are internal only (see
 * INTERNAL_BITSET_TYPE_LIST).  To a types user, they should only occur in
 * union with certain other bitsets.  For instance, OtherNumber should only
 * occur as part of PlainNumber.
 */

#define PROPER_BITSET_TYPE_LIST(V) \
  REPRESENTATION_BITSET_TYPE_LIST(V) \
  SEMANTIC_BITSET_TYPE_LIST(V)

#define BITSET_TYPE_LIST(V)          \
  MASK_BITSET_TYPE_LIST(V)           \
  REPRESENTATION_BITSET_TYPE_LIST(V) \
  INTERNAL_BITSET_TYPE_LIST(V)       \
  SEMANTIC_BITSET_TYPE_LIST(V)

class Type;

// -----------------------------------------------------------------------------
// Bitset types (internal).

class BitsetType {
 public:
  typedef uint32_t bitset;  // Internal

  enum : uint32_t {
#define DECLARE_TYPE(type, value) k##type = (value),
    BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
        kUnusedEOL = 0
  };

  static bitset SignedSmall();
  static bitset UnsignedSmall();

  bitset Bitset() {
    return static_cast<bitset>(reinterpret_cast<uintptr_t>(this) ^ 1u);
  }

  static bool IsInhabited(bitset bits) {
    return SEMANTIC(bits) != kNone && REPRESENTATION(bits) != kNone;
  }

  static bool SemanticIsInhabited(bitset bits) {
    return SEMANTIC(bits) != kNone;
  }

  static bool Is(bitset bits1, bitset bits2) {
    return (bits1 | bits2) == bits2;
  }

  static double Min(bitset);
  static double Max(bitset);

  static bitset Glb(Type* type);  // greatest lower bound that's a bitset
  static bitset Glb(double min, double max);
  static bitset Lub(Type* type);  // least upper bound that's a bitset
  static bitset Lub(i::Map* map);
  static bitset Lub(i::Object* value);
  static bitset Lub(double value);
  static bitset Lub(double min, double max);
  static bitset ExpandInternals(bitset bits);

  static const char* Name(bitset);
  static void Print(std::ostream& os, bitset);  // NOLINT
#ifdef DEBUG
  static void Print(bitset);
#endif

  static bitset NumberBits(bitset bits);

  static bool IsBitset(Type* type) {
    return reinterpret_cast<uintptr_t>(type) & 1;
  }

  static Type* NewForTesting(bitset bits) { return New(bits); }

 private:
  friend class Type;

  static Type* New(bitset bits) {
    return reinterpret_cast<Type*>(static_cast<uintptr_t>(bits | 1u));
  }

  struct Boundary {
    bitset internal;
    bitset external;
    double min;
  };
  static const Boundary BoundariesArray[];
  static inline const Boundary* Boundaries();
  static inline size_t BoundariesSize();
};

// -----------------------------------------------------------------------------
// Superclass for non-bitset types (internal).
class TypeBase {
 protected:
  friend class Type;

  enum Kind {
    kClass,
    kConstant,
    kContext,
    kArray,
    kFunction,
    kTuple,
    kUnion,
    kRange
  };

  Kind kind() const { return kind_; }
  explicit TypeBase(Kind kind) : kind_(kind) {}

  static bool IsKind(Type* type, Kind kind) {
    if (BitsetType::IsBitset(type)) return false;
    TypeBase* base = reinterpret_cast<TypeBase*>(type);
    return base->kind() == kind;
  }

  // The hacky conversion to/from Type*.
  static Type* AsType(TypeBase* type) { return reinterpret_cast<Type*>(type); }
  static TypeBase* FromType(Type* type) {
    return reinterpret_cast<TypeBase*>(type);
  }

 private:
  Kind kind_;
};

// -----------------------------------------------------------------------------
// Class types.

class ClassType : public TypeBase {
 public:
  i::Handle<i::Map> Map() { return map_; }

 private:
  friend class Type;
  friend class BitsetType;

  static Type* New(i::Handle<i::Map> map, Zone* zone) {
    return AsType(new (zone->New(sizeof(ClassType)))
                      ClassType(BitsetType::Lub(*map), map));
  }

  static ClassType* cast(Type* type) {
    DCHECK(IsKind(type, kClass));
    return static_cast<ClassType*>(FromType(type));
  }

  ClassType(BitsetType::bitset bitset, i::Handle<i::Map> map)
      : TypeBase(kClass), bitset_(bitset), map_(map) {}

  BitsetType::bitset Lub() { return bitset_; }

  BitsetType::bitset bitset_;
  Handle<i::Map> map_;
};

// -----------------------------------------------------------------------------
// Constant types.

class ConstantType : public TypeBase {
 public:
  i::Handle<i::Object> Value() { return object_; }

 private:
  friend class Type;
  friend class BitsetType;

  static Type* New(i::Handle<i::Object> value, Zone* zone) {
    BitsetType::bitset bitset = BitsetType::Lub(*value);
    return AsType(new (zone->New(sizeof(ConstantType)))
                      ConstantType(bitset, value));
  }

  static ConstantType* cast(Type* type) {
    DCHECK(IsKind(type, kConstant));
    return static_cast<ConstantType*>(FromType(type));
  }

  ConstantType(BitsetType::bitset bitset, i::Handle<i::Object> object)
      : TypeBase(kConstant), bitset_(bitset), object_(object) {}

  BitsetType::bitset Lub() { return bitset_; }

  BitsetType::bitset bitset_;
  Handle<i::Object> object_;
};
// TODO(neis): Also cache value if numerical.
// TODO(neis): Allow restricting the representation.

// -----------------------------------------------------------------------------
// Range types.

class RangeType : public TypeBase {
 public:
  struct Limits {
    double min;
    double max;
    Limits(double min, double max) : min(min), max(max) {}
    explicit Limits(RangeType* range) : min(range->Min()), max(range->Max()) {}
    bool IsEmpty();
    static Limits Empty() { return Limits(1, 0); }
    static Limits Intersect(Limits lhs, Limits rhs);
    static Limits Union(Limits lhs, Limits rhs);
  };

  double Min() { return limits_.min; }
  double Max() { return limits_.max; }

 private:
  friend class Type;
  friend class BitsetType;
  friend class UnionType;

  static Type* New(double min, double max, BitsetType::bitset representation,
                   Zone* zone) {
    return New(Limits(min, max), representation, zone);
  }

  static bool IsInteger(double x) {
    return nearbyint(x) == x && !i::IsMinusZero(x);  // Allows for infinities.
  }

  static Type* New(Limits lim, BitsetType::bitset representation, Zone* zone) {
    DCHECK(IsInteger(lim.min) && IsInteger(lim.max));
    DCHECK(lim.min <= lim.max);
    DCHECK(REPRESENTATION(representation) == representation);
    BitsetType::bitset bits =
        SEMANTIC(BitsetType::Lub(lim.min, lim.max)) | representation;

    return AsType(new (zone->New(sizeof(RangeType))) RangeType(bits, lim));
  }

  static RangeType* cast(Type* type) {
    DCHECK(IsKind(type, kRange));
    return static_cast<RangeType*>(FromType(type));
  }

  RangeType(BitsetType::bitset bitset, Limits limits)
      : TypeBase(kRange), bitset_(bitset), limits_(limits) {}

  BitsetType::bitset Lub() { return bitset_; }

  BitsetType::bitset bitset_;
  Limits limits_;
};

// -----------------------------------------------------------------------------
// Context types.

class ContextType : public TypeBase {
 public:
  Type* Outer() { return outer_; }

 private:
  friend class Type;

  static Type* New(Type* outer, Zone* zone) {
    return AsType(new (zone->New(sizeof(ContextType))) ContextType(outer));
  }

  static ContextType* cast(Type* type) {
    DCHECK(IsKind(type, kContext));
    return static_cast<ContextType*>(FromType(type));
  }

  explicit ContextType(Type* outer) : TypeBase(kContext), outer_(outer) {}

  Type* outer_;
};

// -----------------------------------------------------------------------------
// Array types.

class ArrayType : public TypeBase {
 public:
  Type* Element() { return element_; }

 private:
  friend class Type;

  explicit ArrayType(Type* element) : TypeBase(kArray), element_(element) {}

  static Type* New(Type* element, Zone* zone) {
    return AsType(new (zone->New(sizeof(ArrayType))) ArrayType(element));
  }

  static ArrayType* cast(Type* type) {
    DCHECK(IsKind(type, kArray));
    return static_cast<ArrayType*>(FromType(type));
  }

  Type* element_;
};

// -----------------------------------------------------------------------------
// Superclass for types with variable number of type fields.
class StructuralType : public TypeBase {
 public:
  int LengthForTesting() { return Length(); }

 protected:
  friend class Type;

  int Length() { return length_; }

  Type* Get(int i) {
    DCHECK(0 <= i && i < this->Length());
    return elements_[i];
  }

  void Set(int i, Type* type) {
    DCHECK(0 <= i && i < this->Length());
    elements_[i] = type;
  }

  void Shrink(int length) {
    DCHECK(2 <= length && length <= this->Length());
    length_ = length;
  }

  StructuralType(Kind kind, int length, i::Zone* zone)
      : TypeBase(kind), length_(length) {
    elements_ = reinterpret_cast<Type**>(zone->New(sizeof(Type*) * length));
  }

 private:
  int length_;
  Type** elements_;
};

// -----------------------------------------------------------------------------
// Function types.

class FunctionType : public StructuralType {
 public:
  int Arity() { return this->Length() - 2; }
  Type* Result() { return this->Get(0); }
  Type* Receiver() { return this->Get(1); }
  Type* Parameter(int i) { return this->Get(2 + i); }

  void InitParameter(int i, Type* type) { this->Set(2 + i, type); }

 private:
  friend class Type;

  FunctionType(Type* result, Type* receiver, int arity, Zone* zone)
      : StructuralType(kFunction, 2 + arity, zone) {
    Set(0, result);
    Set(1, receiver);
  }

  static Type* New(Type* result, Type* receiver, int arity, Zone* zone) {
    return AsType(new (zone->New(sizeof(FunctionType)))
                      FunctionType(result, receiver, arity, zone));
  }

  static FunctionType* cast(Type* type) {
    DCHECK(IsKind(type, kFunction));
    return static_cast<FunctionType*>(FromType(type));
  }
};

// -----------------------------------------------------------------------------
// Tuple types.

class TupleType : public StructuralType {
 public:
  int Arity() { return this->Length(); }
  Type* Element(int i) { return this->Get(i); }

  void InitElement(int i, Type* type) { this->Set(i, type); }

 private:
  friend class Type;

  TupleType(int length, Zone* zone) : StructuralType(kTuple, length, zone) {}

  static Type* New(int length, Zone* zone) {
    return AsType(new (zone->New(sizeof(TupleType))) TupleType(length, zone));
  }

  static TupleType* cast(Type* type) {
    DCHECK(IsKind(type, kTuple));
    return static_cast<TupleType*>(FromType(type));
  }
};

// -----------------------------------------------------------------------------
// Union types (internal).
// A union is a structured type with the following invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
// - no field is a subtype of any other field
class UnionType : public StructuralType {
 private:
  friend Type;
  friend BitsetType;

  UnionType(int length, Zone* zone) : StructuralType(kUnion, length, zone) {}

  static Type* New(int length, Zone* zone) {
    return AsType(new (zone->New(sizeof(UnionType))) UnionType(length, zone));
  }

  static UnionType* cast(Type* type) {
    DCHECK(IsKind(type, kUnion));
    return static_cast<UnionType*>(FromType(type));
  }

  bool Wellformed();
};

class Type {
 public:
  typedef BitsetType::bitset bitset;  // Internal

// Constructors.
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
  static Type* type() { return BitsetType::New(BitsetType::k##type); }
  PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR

  static Type* SignedSmall() {
    return BitsetType::New(BitsetType::SignedSmall());
  }
  static Type* UnsignedSmall() {
    return BitsetType::New(BitsetType::UnsignedSmall());
  }

  static Type* Class(i::Handle<i::Map> map, Zone* zone) {
    return ClassType::New(map, zone);
  }
  static Type* Constant(i::Handle<i::Object> value, Zone* zone) {
    return ConstantType::New(value, zone);
  }
  static Type* Range(double min, double max, Zone* zone) {
    return RangeType::New(min, max, REPRESENTATION(BitsetType::kTagged |
                                                   BitsetType::kUntaggedNumber),
                          zone);
  }
  static Type* Context(Type* outer, Zone* zone) {
    return ContextType::New(outer, zone);
  }
  static Type* Array(Type* element, Zone* zone) {
    return ArrayType::New(element, zone);
  }
  static Type* Function(Type* result, Type* receiver, int arity, Zone* zone) {
    return FunctionType::New(result, receiver, arity, zone);
  }
  static Type* Function(Type* result, Zone* zone) {
    return Function(result, Any(), 0, zone);
  }
  static Type* Function(Type* result, Type* param0, Zone* zone) {
    Type* function = Function(result, Any(), 1, zone);
    function->AsFunction()->InitParameter(0, param0);
    return function;
  }
  static Type* Function(Type* result, Type* param0, Type* param1, Zone* zone) {
    Type* function = Function(result, Any(), 2, zone);
    function->AsFunction()->InitParameter(0, param0);
    function->AsFunction()->InitParameter(1, param1);
    return function;
  }
  static Type* Function(Type* result, Type* param0, Type* param1, Type* param2,
                        Zone* zone) {
    Type* function = Function(result, Any(), 3, zone);
    function->AsFunction()->InitParameter(0, param0);
    function->AsFunction()->InitParameter(1, param1);
    function->AsFunction()->InitParameter(2, param2);
    return function;
  }
  static Type* Function(Type* result, int arity, Type** params, Zone* zone) {
    Type* function = Function(result, Any(), arity, zone);
    for (int i = 0; i < arity; ++i) {
      function->AsFunction()->InitParameter(i, params[i]);
    }
    return function;
  }
  static Type* Tuple(Type* first, Type* second, Type* third, Zone* zone) {
    Type* tuple = TupleType::New(3, zone);
    tuple->AsTuple()->InitElement(0, first);
    tuple->AsTuple()->InitElement(1, second);
    tuple->AsTuple()->InitElement(2, third);
    return tuple;
  }

#define CONSTRUCT_SIMD_TYPE(NAME, Name, name, lane_count, lane_type) \
  static Type* Name(Isolate* isolate, Zone* zone);
  SIMD128_TYPES(CONSTRUCT_SIMD_TYPE)
#undef CONSTRUCT_SIMD_TYPE

  static Type* Union(Type* type1, Type* type2, Zone* zone);
  static Type* Intersect(Type* type1, Type* type2, Zone* zone);

  static Type* Of(double value, Zone* zone) {
    return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value)));
  }
  static Type* Of(i::Object* value, Zone* zone) {
    return BitsetType::New(BitsetType::ExpandInternals(BitsetType::Lub(value)));
  }
  static Type* Of(i::Handle<i::Object> value, Zone* zone) {
    return Of(*value, zone);
  }

  // Extraction of components.
  static Type* Representation(Type* t, Zone* zone);
  static Type* Semantic(Type* t, Zone* zone);

  // Predicates.
  bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }

  bool Is(Type* that) { return this == that || this->SlowIs(that); }
  bool Maybe(Type* that);
  bool Equals(Type* that) { return this->Is(that) && that->Is(this); }

  // Equivalent to Constant(val)->Is(this), but avoiding allocation.
  bool Contains(i::Object* val);
  bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }

  // State-dependent versions of the above that consider subtyping between
  // a constant and its map class.
  static Type* NowOf(i::Object* value, Zone* zone);
  static Type* NowOf(i::Handle<i::Object> value, Zone* zone) {
    return NowOf(*value, zone);
  }
  bool NowIs(Type* that);
  bool NowContains(i::Object* val);
  bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }

  bool NowStable();

  // Inspection.
  bool IsRange() { return IsKind(TypeBase::kRange); }
  bool IsClass() { return IsKind(TypeBase::kClass); }
  bool IsConstant() { return IsKind(TypeBase::kConstant); }
  bool IsContext() { return IsKind(TypeBase::kContext); }
  bool IsArray() { return IsKind(TypeBase::kArray); }
  bool IsFunction() { return IsKind(TypeBase::kFunction); }
  bool IsTuple() { return IsKind(TypeBase::kTuple); }

  ClassType* AsClass() { return ClassType::cast(this); }
  ConstantType* AsConstant() { return ConstantType::cast(this); }
  RangeType* AsRange() { return RangeType::cast(this); }
  ContextType* AsContext() { return ContextType::cast(this); }
  ArrayType* AsArray() { return ArrayType::cast(this); }
  FunctionType* AsFunction() { return FunctionType::cast(this); }
  TupleType* AsTuple() { return TupleType::cast(this); }

  // Minimum and maximum of a numeric type.
  // These functions do not distinguish between -0 and +0.  If the type equals
  // kNaN, they return NaN; otherwise kNaN is ignored.  Only call these
  // functions on subtypes of Number.
  double Min();
  double Max();

  // Extracts a range from the type: if the type is a range or a union
  // containing a range, that range is returned; otherwise, NULL is returned.
  Type* GetRange();

  static bool IsInteger(i::Object* x);
  static bool IsInteger(double x) {
    return nearbyint(x) == x && !i::IsMinusZero(x);  // Allows for infinities.
  }

  int NumClasses();
  int NumConstants();

  template <class T>
  class Iterator {
   public:
    bool Done() const { return index_ < 0; }
    i::Handle<T> Current();
    void Advance();

   private:
    friend class Type;

    Iterator() : index_(-1) {}
    explicit Iterator(Type* type) : type_(type), index_(-1) { Advance(); }

    inline bool matches(Type* type);
    inline Type* get_type();

    Type* type_;
    int index_;
  };

  Iterator<i::Map> Classes() {
    if (this->IsBitset()) return Iterator<i::Map>();
    return Iterator<i::Map>(this);
  }
  Iterator<i::Object> Constants() {
    if (this->IsBitset()) return Iterator<i::Object>();
    return Iterator<i::Object>(this);
  }

  // Printing.

  enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };

  void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS);  // NOLINT

#ifdef DEBUG
  void Print();
#endif

  // Helpers for testing.
  bool IsBitsetForTesting() { return IsBitset(); }
  bool IsUnionForTesting() { return IsUnion(); }
  bitset AsBitsetForTesting() { return AsBitset(); }
  UnionType* AsUnionForTesting() { return AsUnion(); }

 private:
  // Friends.
  template <class>
  friend class Iterator;
  friend BitsetType;
  friend UnionType;

  // Internal inspection.
  bool IsKind(TypeBase::Kind kind) { return TypeBase::IsKind(this, kind); }

  bool IsNone() { return this == None(); }
  bool IsAny() { return this == Any(); }
  bool IsBitset() { return BitsetType::IsBitset(this); }
  bool IsUnion() { return IsKind(TypeBase::kUnion); }

  bitset AsBitset() {
    DCHECK(this->IsBitset());
    return reinterpret_cast<BitsetType*>(this)->Bitset();
  }
  UnionType* AsUnion() { return UnionType::cast(this); }

  bitset Representation();

  // Auxiliary functions.
  bool SemanticMaybe(Type* that);

  bitset BitsetGlb() { return BitsetType::Glb(this); }
  bitset BitsetLub() { return BitsetType::Lub(this); }

  bool SlowIs(Type* that);
  bool SemanticIs(Type* that);

  static bool Overlap(RangeType* lhs, RangeType* rhs);
  static bool Contains(RangeType* lhs, RangeType* rhs);
  static bool Contains(RangeType* range, ConstantType* constant);
  static bool Contains(RangeType* range, i::Object* val);

  static int UpdateRange(Type* type, UnionType* result, int size, Zone* zone);

  static RangeType::Limits IntersectRangeAndBitset(Type* range, Type* bits,
                                                   Zone* zone);
  static RangeType::Limits ToLimits(bitset bits, Zone* zone);

  bool SimplyEquals(Type* that);

  static int AddToUnion(Type* type, UnionType* result, int size, Zone* zone);
  static int IntersectAux(Type* type, Type* other, UnionType* result, int size,
                          RangeType::Limits* limits, Zone* zone);
  static Type* NormalizeUnion(Type* unioned, int size, Zone* zone);
  static Type* NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone);
};

// -----------------------------------------------------------------------------
// Type bounds. A simple struct to represent a pair of lower/upper types.

struct Bounds {
  Type* lower;
  Type* upper;

  Bounds()
      :  // Make sure accessing uninitialized bounds crashes big-time.
        lower(nullptr),
        upper(nullptr) {}
  explicit Bounds(Type* t) : lower(t), upper(t) {}
  Bounds(Type* l, Type* u) : lower(l), upper(u) { DCHECK(lower->Is(upper)); }

  // Unrestricted bounds.
  static Bounds Unbounded() { return Bounds(Type::None(), Type::Any()); }

  // Meet: both b1 and b2 are known to hold.
  static Bounds Both(Bounds b1, Bounds b2, Zone* zone) {
    Type* lower = Type::Union(b1.lower, b2.lower, zone);
    Type* upper = Type::Intersect(b1.upper, b2.upper, zone);
    // Lower bounds are considered approximate, correct as necessary.
    if (!lower->Is(upper)) lower = upper;
    return Bounds(lower, upper);
  }

  // Join: either b1 or b2 is known to hold.
  static Bounds Either(Bounds b1, Bounds b2, Zone* zone) {
    Type* lower = Type::Intersect(b1.lower, b2.lower, zone);
    Type* upper = Type::Union(b1.upper, b2.upper, zone);
    return Bounds(lower, upper);
  }

  static Bounds NarrowLower(Bounds b, Type* t, Zone* zone) {
    Type* lower = Type::Union(b.lower, t, zone);
    // Lower bounds are considered approximate, correct as necessary.
    if (!lower->Is(b.upper)) lower = b.upper;
    return Bounds(lower, b.upper);
  }
  static Bounds NarrowUpper(Bounds b, Type* t, Zone* zone) {
    Type* lower = b.lower;
    Type* upper = Type::Intersect(b.upper, t, zone);
    // Lower bounds are considered approximate, correct as necessary.
    if (!lower->Is(upper)) lower = upper;
    return Bounds(lower, upper);
  }

  bool Narrows(Bounds that) {
    return that.lower->Is(this->lower) && this->upper->Is(that.upper);
  }
};

}  // namespace internal
}  // namespace v8

#endif  // V8_TYPES_H_