summaryrefslogtreecommitdiff
path: root/deps/v8/src/torque/implementation-visitor.h
blob: e1ebfeeb17654a1a3ecd280cee3f78f3981a00cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_TORQUE_IMPLEMENTATION_VISITOR_H_
#define V8_TORQUE_IMPLEMENTATION_VISITOR_H_

#include <memory>
#include <string>

#include "src/base/macros.h"
#include "src/torque/ast.h"
#include "src/torque/cfg.h"
#include "src/torque/declarations.h"
#include "src/torque/global-context.h"
#include "src/torque/type-oracle.h"
#include "src/torque/types.h"
#include "src/torque/utils.h"

namespace v8 {
namespace internal {
namespace torque {

template <typename T>
class Binding;
struct LocalValue;

// LocationReference is the representation of an l-value, so a value that might
// allow for assignment. For uniformity, this class can also represent
// unassignable temporaries. Assignable values fall in two categories:
//   - stack ranges that represent mutable variables, including structs.
//   - field or element access expressions that generate operator calls.
class LocationReference {
 public:
  // An assignable stack range.
  static LocationReference VariableAccess(
      VisitResult variable,
      base::Optional<Binding<LocalValue>*> binding = base::nullopt) {
    DCHECK(variable.IsOnStack());
    LocationReference result;
    result.variable_ = std::move(variable);
    result.binding_ = binding;
    return result;
  }
  // An unassignable value. {description} is only used for error messages.
  static LocationReference Temporary(VisitResult temporary,
                                     std::string description) {
    LocationReference result;
    result.temporary_ = std::move(temporary);
    result.temporary_description_ = std::move(description);
    return result;
  }
  // A heap reference, that is, a tagged value and an offset to encode an inner
  // pointer.
  static LocationReference HeapReference(VisitResult heap_reference) {
    LocationReference result;
    DCHECK(StructType::MatchUnaryGeneric(heap_reference.type(),
                                         TypeOracle::GetReferenceGeneric()));
    result.heap_reference_ = std::move(heap_reference);
    return result;
  }
  // A reference to an array on the heap. That is, a tagged value, an offset to
  // encode an inner pointer, and the number of elements.
  static LocationReference HeapSlice(VisitResult heap_slice) {
    LocationReference result;
    DCHECK(StructType::MatchUnaryGeneric(heap_slice.type(),
                                         TypeOracle::GetSliceGeneric()));
    result.heap_slice_ = std::move(heap_slice);
    return result;
  }
  static LocationReference ArrayAccess(VisitResult base, VisitResult offset) {
    LocationReference result;
    result.eval_function_ = std::string{"[]"};
    result.assign_function_ = std::string{"[]="};
    result.call_arguments_ = {base, offset};
    return result;
  }
  static LocationReference FieldAccess(VisitResult object,
                                       std::string fieldname) {
    LocationReference result;
    result.eval_function_ = "." + fieldname;
    result.assign_function_ = "." + fieldname + "=";
    result.call_arguments_ = {object};
    return result;
  }

  bool IsConst() const { return temporary_.has_value(); }

  bool IsVariableAccess() const { return variable_.has_value(); }
  const VisitResult& variable() const {
    DCHECK(IsVariableAccess());
    return *variable_;
  }
  bool IsTemporary() const { return temporary_.has_value(); }
  const VisitResult& temporary() const {
    DCHECK(IsTemporary());
    return *temporary_;
  }
  bool IsHeapReference() const { return heap_reference_.has_value(); }
  const VisitResult& heap_reference() const {
    DCHECK(IsHeapReference());
    return *heap_reference_;
  }
  bool IsHeapSlice() const { return heap_slice_.has_value(); }
  const VisitResult& heap_slice() const {
    DCHECK(IsHeapSlice());
    return *heap_slice_;
  }

  const Type* ReferencedType() const {
    if (IsHeapReference()) {
      return *StructType::MatchUnaryGeneric(heap_reference().type(),
                                            TypeOracle::GetReferenceGeneric());
    } else if (IsHeapSlice()) {
      return *StructType::MatchUnaryGeneric(heap_slice().type(),
                                            TypeOracle::GetSliceGeneric());
    }
    return GetVisitResult().type();
  }

  const VisitResult& GetVisitResult() const {
    if (IsVariableAccess()) return variable();
    if (IsHeapSlice()) return heap_slice();
    DCHECK(IsTemporary());
    return temporary();
  }

  // For error reporting.
  const std::string& temporary_description() const {
    DCHECK(IsTemporary());
    return *temporary_description_;
  }

  bool IsCallAccess() const {
    bool is_call_access = eval_function_.has_value();
    DCHECK_EQ(is_call_access, assign_function_.has_value());
    return is_call_access;
  }
  const VisitResultVector& call_arguments() const {
    DCHECK(IsCallAccess());
    return call_arguments_;
  }
  const std::string& eval_function() const {
    DCHECK(IsCallAccess());
    return *eval_function_;
  }
  const std::string& assign_function() const {
    DCHECK(IsCallAccess());
    return *assign_function_;
  }
  base::Optional<Binding<LocalValue>*> binding() const {
    DCHECK(IsVariableAccess());
    return binding_;
  }

 private:
  base::Optional<VisitResult> variable_;
  base::Optional<VisitResult> temporary_;
  base::Optional<std::string> temporary_description_;
  base::Optional<VisitResult> heap_reference_;
  base::Optional<VisitResult> heap_slice_;
  base::Optional<std::string> eval_function_;
  base::Optional<std::string> assign_function_;
  VisitResultVector call_arguments_;
  base::Optional<Binding<LocalValue>*> binding_;

  LocationReference() = default;
};

struct InitializerResults {
  std::vector<Identifier*> names;
  std::map<std::string, VisitResult> field_value_map;
};

template <class T>
class Binding;

template <class T>
class BindingsManager {
 public:
  base::Optional<Binding<T>*> TryLookup(const std::string& name) {
    if (name.length() >= 2 && name[0] == '_' && name[1] != '_') {
      Error("Trying to reference '", name, "' which is marked as unused.")
          .Throw();
    }
    auto binding = current_bindings_[name];
    if (binding) {
      (*binding)->SetUsed();
    }
    return binding;
  }

 private:
  friend class Binding<T>;
  std::unordered_map<std::string, base::Optional<Binding<T>*>>
      current_bindings_;
};

template <class T>
class Binding : public T {
 public:
  template <class... Args>
  Binding(BindingsManager<T>* manager, const std::string& name, Args&&... args)
      : T(std::forward<Args>(args)...),
        manager_(manager),
        name_(name),
        previous_binding_(this),
        used_(false),
        written_(false) {
    std::swap(previous_binding_, manager_->current_bindings_[name]);
  }
  template <class... Args>
  Binding(BindingsManager<T>* manager, const Identifier* name, Args&&... args)
      : Binding(manager, name->value, std::forward<Args>(args)...) {
    declaration_position_ = name->pos;
  }
  ~Binding() {
    if (!used_ && !SkipLintCheck()) {
      Lint(BindingTypeString(), "'", name_,
           "' is never used. Prefix with '_' if this is intentional.")
          .Position(declaration_position_);
    }

    if (CheckWritten() && !written_ && !SkipLintCheck()) {
      Lint(BindingTypeString(), "'", name_,
           "' is never assigned to. Use 'const' instead of 'let'.")
          .Position(declaration_position_);
    }

    manager_->current_bindings_[name_] = previous_binding_;
  }

  std::string BindingTypeString() const;
  bool CheckWritten() const;

  const std::string& name() const { return name_; }
  SourcePosition declaration_position() const { return declaration_position_; }

  bool Used() const { return used_; }
  void SetUsed() { used_ = true; }

  bool Written() const { return written_; }
  void SetWritten() { written_ = true; }

 private:
  bool SkipLintCheck() const { return name_.length() > 0 && name_[0] == '_'; }

  BindingsManager<T>* manager_;
  const std::string name_;
  base::Optional<Binding*> previous_binding_;
  SourcePosition declaration_position_ = CurrentSourcePosition::Get();
  bool used_;
  bool written_;
  DISALLOW_COPY_AND_ASSIGN(Binding);
};

template <class T>
class BlockBindings {
 public:
  explicit BlockBindings(BindingsManager<T>* manager) : manager_(manager) {}
  void Add(std::string name, T value, bool mark_as_used = false) {
    ReportErrorIfAlreadyBound(name);
    auto binding =
        std::make_unique<Binding<T>>(manager_, name, std::move(value));
    if (mark_as_used) binding->SetUsed();
    bindings_.push_back(std::move(binding));
  }

  void Add(const Identifier* name, T value, bool mark_as_used = false) {
    ReportErrorIfAlreadyBound(name->value);
    auto binding =
        std::make_unique<Binding<T>>(manager_, name, std::move(value));
    if (mark_as_used) binding->SetUsed();
    bindings_.push_back(std::move(binding));
  }

  std::vector<Binding<T>*> bindings() const {
    std::vector<Binding<T>*> result;
    result.reserve(bindings_.size());
    for (auto& b : bindings_) {
      result.push_back(b.get());
    }
    return result;
  }

 private:
  void ReportErrorIfAlreadyBound(const std::string& name) {
    for (const auto& binding : bindings_) {
      if (binding->name() == name) {
        ReportError(
            "redeclaration of name \"", name,
            "\" in the same block is illegal, previous declaration at: ",
            binding->declaration_position());
      }
    }
  }

  BindingsManager<T>* manager_;
  std::vector<std::unique_ptr<Binding<T>>> bindings_;
};

struct LocalValue {
  bool is_const;
  VisitResult value;
};

struct LocalLabel {
  Block* block;
  std::vector<const Type*> parameter_types;

  explicit LocalLabel(Block* block,
                      std::vector<const Type*> parameter_types = {})
      : block(block), parameter_types(std::move(parameter_types)) {}
};

template <>
inline std::string Binding<LocalValue>::BindingTypeString() const {
  return "Variable ";
}
template <>
inline bool Binding<LocalValue>::CheckWritten() const {
  // Do the check only for non-const variables and non struct types.
  auto binding = *manager_->current_bindings_[name_];
  return !binding->is_const && !binding->value.type()->IsStructType();
}
template <>
inline std::string Binding<LocalLabel>::BindingTypeString() const {
  return "Label ";
}
template <>
inline bool Binding<LocalLabel>::CheckWritten() const {
  return false;
}

struct Arguments {
  VisitResultVector parameters;
  std::vector<Binding<LocalLabel>*> labels;
};

// Determine if a callable should be considered as an overload.
bool IsCompatibleSignature(const Signature& sig, const TypeVector& types,
                           size_t label_count);

class ImplementationVisitor {
 public:
  void GenerateBuiltinDefinitionsAndInterfaceDescriptors(
      const std::string& output_directory);
  void GenerateClassFieldOffsets(const std::string& output_directory);
  void GeneratePrintDefinitions(const std::string& output_directory);
  void GenerateClassDefinitions(const std::string& output_directory);
  void GenerateInstanceTypes(const std::string& output_directory);
  void GenerateClassVerifiers(const std::string& output_directory);
  void GenerateClassDebugReaders(const std::string& output_directory);
  void GenerateExportedMacrosAssembler(const std::string& output_directory);
  void GenerateCSATypes(const std::string& output_directory);
  void GenerateCppForInternalClasses(const std::string& output_directory);

  VisitResult Visit(Expression* expr);
  const Type* Visit(Statement* stmt);

  void CheckInitializersWellformed(
      const std::string& aggregate_name,
      const std::vector<Field>& aggregate_fields,
      const std::vector<NameAndExpression>& initializers,
      bool ignore_first_field = false);

  InitializerResults VisitInitializerResults(
      const ClassType* class_type,
      const std::vector<NameAndExpression>& expressions);

  void InitializeFieldFromSpread(VisitResult object, const Field& field,
                                 const InitializerResults& initializer_results);

  VisitResult AddVariableObjectSize(
      VisitResult object_size, const ClassType* current_class,
      const InitializerResults& initializer_results);

  void InitializeClass(const ClassType* class_type, VisitResult allocate_result,
                       const InitializerResults& initializer_results);

  VisitResult Visit(StructExpression* decl);

  LocationReference GetLocationReference(Expression* location);
  LocationReference GetLocationReference(IdentifierExpression* expr);
  LocationReference GetLocationReference(DereferenceExpression* expr);
  LocationReference GetLocationReference(FieldAccessExpression* expr);
  LocationReference GetLocationReference(ElementAccessExpression* expr);

  VisitResult GenerateFetchFromLocation(const LocationReference& reference);

  VisitResult GetBuiltinCode(Builtin* builtin);

  VisitResult Visit(LocationExpression* expr);

  void VisitAllDeclarables();
  void Visit(Declarable* delarable);
  void Visit(TypeAlias* decl);
  VisitResult InlineMacro(Macro* macro,
                          base::Optional<LocationReference> this_reference,
                          const std::vector<VisitResult>& arguments,
                          const std::vector<Block*> label_blocks);
  void VisitMacroCommon(Macro* macro);
  void Visit(ExternMacro* macro) {}
  void Visit(TorqueMacro* macro);
  void Visit(Method* macro);
  void Visit(Builtin* builtin);
  void Visit(NamespaceConstant* decl);

  VisitResult Visit(CallExpression* expr, bool is_tail = false);
  VisitResult Visit(CallMethodExpression* expr);
  VisitResult Visit(IntrinsicCallExpression* intrinsic);
  const Type* Visit(TailCallStatement* stmt);

  VisitResult Visit(ConditionalExpression* expr);

  VisitResult Visit(LogicalOrExpression* expr);
  VisitResult Visit(LogicalAndExpression* expr);

  VisitResult Visit(IncrementDecrementExpression* expr);
  VisitResult Visit(AssignmentExpression* expr);
  VisitResult Visit(StringLiteralExpression* expr);
  VisitResult Visit(NumberLiteralExpression* expr);
  VisitResult Visit(AssumeTypeImpossibleExpression* expr);
  VisitResult Visit(TryLabelExpression* expr);
  VisitResult Visit(StatementExpression* expr);
  VisitResult Visit(NewExpression* expr);
  VisitResult Visit(SpreadExpression* expr);

  const Type* Visit(ReturnStatement* stmt);
  const Type* Visit(GotoStatement* stmt);
  const Type* Visit(IfStatement* stmt);
  const Type* Visit(WhileStatement* stmt);
  const Type* Visit(BreakStatement* stmt);
  const Type* Visit(ContinueStatement* stmt);
  const Type* Visit(ForLoopStatement* stmt);
  const Type* Visit(VarDeclarationStatement* stmt);
  const Type* Visit(VarDeclarationStatement* stmt,
                    BlockBindings<LocalValue>* block_bindings);
  const Type* Visit(BlockStatement* block);
  const Type* Visit(ExpressionStatement* stmt);
  const Type* Visit(DebugStatement* stmt);
  const Type* Visit(AssertStatement* stmt);

  void BeginCSAFiles();
  void EndCSAFiles();

  void GenerateImplementation(const std::string& dir);

  DECLARE_CONTEXTUAL_VARIABLE(ValueBindingsManager,
                              BindingsManager<LocalValue>);
  DECLARE_CONTEXTUAL_VARIABLE(LabelBindingsManager,
                              BindingsManager<LocalLabel>);
  DECLARE_CONTEXTUAL_VARIABLE(CurrentCallable, Callable*);
  DECLARE_CONTEXTUAL_VARIABLE(CurrentFileStreams,
                              GlobalContext::PerFileStreams*);
  DECLARE_CONTEXTUAL_VARIABLE(CurrentReturnValue, base::Optional<VisitResult>);

  // A BindingsManagersScope has to be active for local bindings to be created.
  // Shadowing an existing BindingsManagersScope by creating a new one hides all
  // existing bindings while the additional BindingsManagersScope is active.
  struct BindingsManagersScope {
    ValueBindingsManager::Scope value_bindings_manager;
    LabelBindingsManager::Scope label_bindings_manager;
  };

  void SetDryRun(bool is_dry_run) { is_dry_run_ = is_dry_run; }

 private:
  base::Optional<Block*> GetCatchBlock();
  void GenerateCatchBlock(base::Optional<Block*> catch_block);

  // {StackScope} records the stack height at creation time and reconstructs it
  // when being destructed by emitting a {DeleteRangeInstruction}, except for
  // the slots protected by {StackScope::Yield}. Calling {Yield(v)} deletes all
  // slots above the initial stack height except for the slots of {v}, which are
  // moved to form the only slots above the initial height and marks them to
  // survive destruction of the {StackScope}. A typical pattern is the
  // following:
  //
  // VisitResult result;
  // {
  //   StackScope stack_scope(this);
  //   // ... create temporary slots ...
  //   result = stack_scope.Yield(surviving_slots);
  // }
  class StackScope {
   public:
    explicit StackScope(ImplementationVisitor* visitor) : visitor_(visitor) {
      base_ = visitor_->assembler().CurrentStack().AboveTop();
    }
    VisitResult Yield(VisitResult result) {
      DCHECK(!closed_);
      closed_ = true;
      if (!result.IsOnStack()) {
        if (!visitor_->assembler().CurrentBlockIsComplete()) {
          visitor_->assembler().DropTo(base_);
        }
        return result;
      }
      DCHECK_LE(base_, result.stack_range().begin());
      DCHECK_LE(result.stack_range().end(),
                visitor_->assembler().CurrentStack().AboveTop());
      visitor_->assembler().DropTo(result.stack_range().end());
      visitor_->assembler().DeleteRange(
          StackRange{base_, result.stack_range().begin()});
      base_ = visitor_->assembler().CurrentStack().AboveTop();
      return VisitResult(result.type(), visitor_->assembler().TopRange(
                                            result.stack_range().Size()));
    }

    void Close() {
      DCHECK(!closed_);
      closed_ = true;
      if (!visitor_->assembler().CurrentBlockIsComplete()) {
        visitor_->assembler().DropTo(base_);
      }
    }

    ~StackScope() {
      if (closed_) {
        DCHECK_IMPLIES(
            !visitor_->assembler().CurrentBlockIsComplete(),
            base_ == visitor_->assembler().CurrentStack().AboveTop());
      } else {
        Close();
      }
    }

   private:
    ImplementationVisitor* visitor_;
    BottomOffset base_;
    bool closed_ = false;
  };

  class BreakContinueActivator {
   public:
    BreakContinueActivator(Block* break_block, Block* continue_block)
        : break_binding_{&LabelBindingsManager::Get(), kBreakLabelName,
                         LocalLabel{break_block}},
          continue_binding_{&LabelBindingsManager::Get(), kContinueLabelName,
                            LocalLabel{continue_block}} {}

   private:
    Binding<LocalLabel> break_binding_;
    Binding<LocalLabel> continue_binding_;
  };

  base::Optional<Binding<LocalValue>*> TryLookupLocalValue(
      const std::string& name);
  base::Optional<Binding<LocalLabel>*> TryLookupLabel(const std::string& name);
  Binding<LocalLabel>* LookupLabel(const std::string& name);
  Block* LookupSimpleLabel(const std::string& name);
  template <class Container>
  Callable* LookupCallable(const QualifiedName& name,
                           const Container& declaration_container,
                           const TypeVector& types,
                           const std::vector<Binding<LocalLabel>*>& labels,
                           const TypeVector& specialization_types,
                           bool silence_errors = false);
  bool TestLookupCallable(const QualifiedName& name,
                          const TypeVector& parameter_types);

  template <class Container>
  Callable* LookupCallable(const QualifiedName& name,
                           const Container& declaration_container,
                           const Arguments& arguments,
                           const TypeVector& specialization_types);

  Method* LookupMethod(const std::string& name,
                       const AggregateType* receiver_type,
                       const Arguments& arguments,
                       const TypeVector& specialization_types);

  const Type* GetCommonType(const Type* left, const Type* right);

  VisitResult GenerateCopy(const VisitResult& to_copy);

  void GenerateAssignToLocation(const LocationReference& reference,
                                const VisitResult& assignment_value);

  void AddCallParameter(Callable* callable, VisitResult parameter,
                        const Type* parameter_type,
                        std::vector<VisitResult>* converted_arguments,
                        StackRange* argument_range,
                        std::vector<std::string>* constexpr_arguments);

  VisitResult GenerateCall(Callable* callable,
                           base::Optional<LocationReference> this_parameter,
                           Arguments parameters,
                           const TypeVector& specialization_types = {},
                           bool tail_call = false);
  VisitResult GenerateCall(const QualifiedName& callable_name,
                           Arguments parameters,
                           const TypeVector& specialization_types = {},
                           bool tail_call = false);
  VisitResult GenerateCall(std::string callable_name, Arguments parameters,
                           const TypeVector& specialization_types = {},
                           bool tail_call = false) {
    return GenerateCall(QualifiedName(std::move(callable_name)),
                        std::move(parameters), specialization_types, tail_call);
  }
  VisitResult GeneratePointerCall(Expression* callee,
                                  const Arguments& parameters, bool tail_call);

  void GenerateBranch(const VisitResult& condition, Block* true_block,
                      Block* false_block);

  VisitResult GenerateBoolConstant(bool constant);

  void GenerateExpressionBranch(Expression* expression, Block* true_block,
                                Block* false_block);

  void GenerateMacroFunctionDeclaration(std::ostream& o,
                                        const std::string& macro_prefix,
                                        Macro* macro);
  std::vector<std::string> GenerateFunctionDeclaration(
      std::ostream& o, const std::string& macro_prefix, const std::string& name,
      const Signature& signature, const NameVector& parameter_names,
      bool pass_code_assembler_state = true);

  VisitResult GenerateImplicitConvert(const Type* destination_type,
                                      VisitResult source);

  StackRange GenerateLabelGoto(LocalLabel* label,
                               base::Optional<StackRange> arguments = {});

  std::vector<Binding<LocalLabel>*> LabelsFromIdentifiers(
      const std::vector<Identifier*>& names);

  StackRange LowerParameter(const Type* type, const std::string& parameter_name,
                            Stack<std::string>* lowered_parameters);

  void LowerLabelParameter(const Type* type, const std::string& parameter_name,
                           std::vector<std::string>* lowered_parameters);

  std::string ExternalLabelName(const std::string& label_name);
  std::string ExternalLabelParameterName(const std::string& label_name,
                                         size_t i);
  std::string ExternalParameterName(const std::string& name);

  std::ostream& source_out() {
    if (auto* streams = CurrentFileStreams::Get()) {
      return streams->csa_ccfile;
    }
    return null_stream_;
  }
  std::ostream& header_out() {
    if (auto* streams = CurrentFileStreams::Get()) {
      return streams->csa_headerfile;
    }
    return null_stream_;
  }
  CfgAssembler& assembler() { return *assembler_; }

  void SetReturnValue(VisitResult return_value) {
    base::Optional<VisitResult>& current_return_value =
        CurrentReturnValue::Get();
    DCHECK_IMPLIES(current_return_value, *current_return_value == return_value);
    current_return_value = std::move(return_value);
  }

  VisitResult GetAndClearReturnValue() {
    VisitResult return_value = *CurrentReturnValue::Get();
    CurrentReturnValue::Get() = base::nullopt;
    return return_value;
  }

  void WriteFile(const std::string& file, const std::string& content) {
    if (is_dry_run_) return;
    ReplaceFileContentsIfDifferent(file, content);
  }

  base::Optional<CfgAssembler> assembler_;
  NullOStream null_stream_;
  bool is_dry_run_;
};

void ReportAllUnusedMacros();

}  // namespace torque
}  // namespace internal
}  // namespace v8

#endif  // V8_TORQUE_IMPLEMENTATION_VISITOR_H_