aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/torque/cfg.cc
blob: 8ff3aec5d7956671c4ba7b1d487137ba2f01f4d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/torque/cfg.h"

#include "src/torque/type-oracle.h"

namespace v8 {
namespace internal {
namespace torque {

void Block::SetInputTypes(const Stack<const Type*>& input_types) {
  if (!input_types_) {
    input_types_ = input_types;
    return;
  } else if (*input_types_ == input_types) {
    return;
  }

  DCHECK_EQ(input_types.Size(), input_types_->Size());
  Stack<const Type*> merged_types;
  bool widened = false;
  auto c2_iterator = input_types.begin();
  for (const Type* c1 : *input_types_) {
    const Type* merged_type = TypeOracle::GetUnionType(c1, *c2_iterator++);
    if (!merged_type->IsSubtypeOf(c1)) {
      widened = true;
    }
    merged_types.Push(merged_type);
  }
  if (merged_types.Size() == input_types_->Size()) {
    if (widened) {
      input_types_ = merged_types;
      Retype();
    }
    return;
  }

  std::stringstream error;
  error << "incompatible types at branch:\n";
  for (intptr_t i = std::max(input_types_->Size(), input_types.Size()) - 1;
       i >= 0; --i) {
    base::Optional<const Type*> left;
    base::Optional<const Type*> right;
    if (static_cast<size_t>(i) < input_types.Size()) {
      left = input_types.Peek(BottomOffset{static_cast<size_t>(i)});
    }
    if (static_cast<size_t>(i) < input_types_->Size()) {
      right = input_types_->Peek(BottomOffset{static_cast<size_t>(i)});
    }
    if (left && right && *left == *right) {
      error << **left << "\n";
    } else {
      if (left) {
        error << **left;
      } else {
        error << "/*missing*/";
      }
      error << "   =>   ";
      if (right) {
        error << **right;
      } else {
        error << "/*missing*/";
      }
      error << "\n";
    }
  }
  ReportError(error.str());
}

void CfgAssembler::Bind(Block* block) {
  DCHECK(current_block_->IsComplete());
  DCHECK(block->instructions().empty());
  DCHECK(block->HasInputTypes());
  current_block_ = block;
  current_stack_ = block->InputTypes();
  cfg_.PlaceBlock(block);
}

void CfgAssembler::Goto(Block* block) {
  if (block->HasInputTypes()) {
    DropTo(block->InputTypes().AboveTop());
  }
  Emit(GotoInstruction{block});
}

StackRange CfgAssembler::Goto(Block* block, size_t preserved_slots) {
  DCHECK(block->HasInputTypes());
  DCHECK_GE(CurrentStack().Size(), block->InputTypes().Size());
  Emit(DeleteRangeInstruction{
      StackRange{block->InputTypes().AboveTop() - preserved_slots,
                 CurrentStack().AboveTop() - preserved_slots}});
  StackRange preserved_slot_range = TopRange(preserved_slots);
  Emit(GotoInstruction{block});
  return preserved_slot_range;
}

void CfgAssembler::Branch(Block* if_true, Block* if_false) {
  Emit(BranchInstruction{if_true, if_false});
}

// Delete the specified range of slots, moving upper slots to fill the gap.
void CfgAssembler::DeleteRange(StackRange range) {
  DCHECK_LE(range.end(), current_stack_.AboveTop());
  if (range.Size() == 0) return;
  Emit(DeleteRangeInstruction{range});
}

void CfgAssembler::DropTo(BottomOffset new_level) {
  DeleteRange(StackRange{new_level, CurrentStack().AboveTop()});
}

StackRange CfgAssembler::Peek(StackRange range,
                              base::Optional<const Type*> type) {
  std::vector<const Type*> lowered_types;
  if (type) {
    lowered_types = LowerType(*type);
    DCHECK_EQ(lowered_types.size(), range.Size());
  }
  for (size_t i = 0; i < range.Size(); ++i) {
    Emit(PeekInstruction{
        range.begin() + i,
        type ? lowered_types[i] : base::Optional<const Type*>{}});
  }
  return TopRange(range.Size());
}

void CfgAssembler::Poke(StackRange destination, StackRange origin,
                        base::Optional<const Type*> type) {
  DCHECK_EQ(destination.Size(), origin.Size());
  DCHECK_LE(destination.end(), origin.begin());
  DCHECK_EQ(origin.end(), CurrentStack().AboveTop());
  std::vector<const Type*> lowered_types;
  if (type) {
    lowered_types = LowerType(*type);
    DCHECK_EQ(lowered_types.size(), origin.Size());
  }
  for (intptr_t i = origin.Size() - 1; i >= 0; --i) {
    Emit(PokeInstruction{
        destination.begin() + i,
        type ? lowered_types[i] : base::Optional<const Type*>{}});
  }
}

void CfgAssembler::Print(std::string s) {
  Emit(PrintConstantStringInstruction{std::move(s)});
}

void CfgAssembler::AssertionFailure(std::string message) {
  Emit(AbortInstruction{AbortInstruction::Kind::kAssertionFailure,
                        std::move(message)});
}

void CfgAssembler::Unreachable() {
  Emit(AbortInstruction{AbortInstruction::Kind::kUnreachable});
}

void CfgAssembler::DebugBreak() {
  Emit(AbortInstruction{AbortInstruction::Kind::kDebugBreak});
}

}  // namespace torque
}  // namespace internal
}  // namespace v8