summaryrefslogtreecommitdiff
path: root/deps/v8/src/top.cc
blob: 42a2b7edfb8c02defa09b254664ab4b60c092dc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "api.h"
#include "bootstrapper.h"
#include "debug.h"
#include "execution.h"
#include "string-stream.h"
#include "platform.h"

namespace v8 {
namespace internal {

ThreadLocalTop Top::thread_local_;
Mutex* Top::break_access_ = OS::CreateMutex();

NoAllocationStringAllocator* preallocated_message_space = NULL;

Address top_addresses[] = {
#define C(name) reinterpret_cast<Address>(Top::name()),
    TOP_ADDRESS_LIST(C)
    TOP_ADDRESS_LIST_PROF(C)
#undef C
    NULL
};

Address Top::get_address_from_id(Top::AddressId id) {
  return top_addresses[id];
}

char* Top::Iterate(ObjectVisitor* v, char* thread_storage) {
  ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
  Iterate(v, thread);
  return thread_storage + sizeof(ThreadLocalTop);
}


void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
  v->VisitPointer(&(thread->pending_exception_));
  v->VisitPointer(&(thread->pending_message_obj_));
  v->VisitPointer(
      bit_cast<Object**, Script**>(&(thread->pending_message_script_)));
  v->VisitPointer(bit_cast<Object**, Context**>(&(thread->context_)));
  v->VisitPointer(&(thread->scheduled_exception_));

  for (v8::TryCatch* block = thread->try_catch_handler_;
       block != NULL;
       block = block->next_) {
    v->VisitPointer(bit_cast<Object**, void**>(&(block->exception_)));
    v->VisitPointer(bit_cast<Object**, void**>(&(block->message_)));
  }

  // Iterate over pointers on native execution stack.
  for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
    it.frame()->Iterate(v);
  }
}


void Top::Iterate(ObjectVisitor* v) {
  ThreadLocalTop* current_t = &thread_local_;
  Iterate(v, current_t);
}


void Top::InitializeThreadLocal() {
  thread_local_.c_entry_fp_ = 0;
  thread_local_.handler_ = 0;
#ifdef ENABLE_LOGGING_AND_PROFILING
  thread_local_.js_entry_sp_ = 0;
#endif
  thread_local_.stack_is_cooked_ = false;
  thread_local_.try_catch_handler_ = NULL;
  thread_local_.context_ = NULL;
  thread_local_.external_caught_exception_ = false;
  thread_local_.failed_access_check_callback_ = NULL;
  clear_pending_exception();
  clear_pending_message();
  clear_scheduled_exception();
  thread_local_.save_context_ = NULL;
  thread_local_.catcher_ = NULL;
}


// Create a dummy thread that will wait forever on a semaphore. The only
// purpose for this thread is to have some stack area to save essential data
// into for use by a stacks only core dump (aka minidump).
class PreallocatedMemoryThread: public Thread {
 public:
  PreallocatedMemoryThread() : keep_running_(true) {
    wait_for_ever_semaphore_ = OS::CreateSemaphore(0);
    data_ready_semaphore_ = OS::CreateSemaphore(0);
  }

  // When the thread starts running it will allocate a fixed number of bytes
  // on the stack and publish the location of this memory for others to use.
  void Run() {
    EmbeddedVector<char, 15 * 1024> local_buffer;

    // Initialize the buffer with a known good value.
    OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
                local_buffer.length());

    // Publish the local buffer and signal its availability.
    data_ = local_buffer.start();
    length_ = local_buffer.length();
    data_ready_semaphore_->Signal();

    while (keep_running_) {
      // This thread will wait here until the end of time.
      wait_for_ever_semaphore_->Wait();
    }

    // Make sure we access the buffer after the wait to remove all possibility
    // of it being optimized away.
    OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
                local_buffer.length());
  }

  static char* data() {
    if (data_ready_semaphore_ != NULL) {
      // Initial access is guarded until the data has been published.
      data_ready_semaphore_->Wait();
      delete data_ready_semaphore_;
      data_ready_semaphore_ = NULL;
    }
    return data_;
  }

  static unsigned length() {
    if (data_ready_semaphore_ != NULL) {
      // Initial access is guarded until the data has been published.
      data_ready_semaphore_->Wait();
      delete data_ready_semaphore_;
      data_ready_semaphore_ = NULL;
    }
    return length_;
  }

  static void StartThread() {
    if (the_thread_ != NULL) return;

    the_thread_ = new PreallocatedMemoryThread();
    the_thread_->Start();
  }

  // Stop the PreallocatedMemoryThread and release its resources.
  static void StopThread() {
    if (the_thread_ == NULL) return;

    the_thread_->keep_running_ = false;
    wait_for_ever_semaphore_->Signal();

    // Wait for the thread to terminate.
    the_thread_->Join();

    if (data_ready_semaphore_ != NULL) {
      delete data_ready_semaphore_;
      data_ready_semaphore_ = NULL;
    }

    delete wait_for_ever_semaphore_;
    wait_for_ever_semaphore_ = NULL;

    // Done with the thread entirely.
    delete the_thread_;
    the_thread_ = NULL;
  }

 private:
  // Used to make sure that the thread keeps looping even for spurious wakeups.
  bool keep_running_;

  // The preallocated memory thread singleton.
  static PreallocatedMemoryThread* the_thread_;
  // This semaphore is used by the PreallocatedMemoryThread to wait for ever.
  static Semaphore* wait_for_ever_semaphore_;
  // Semaphore to signal that the data has been initialized.
  static Semaphore* data_ready_semaphore_;

  // Location and size of the preallocated memory block.
  static char* data_;
  static unsigned length_;

  DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
};

PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL;
Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL;
Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL;
char* PreallocatedMemoryThread::data_ = NULL;
unsigned PreallocatedMemoryThread::length_ = 0;

static bool initialized = false;

void Top::Initialize() {
  CHECK(!initialized);

  InitializeThreadLocal();

  // Only preallocate on the first initialization.
  if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) {
    // Start the thread which will set aside some memory.
    PreallocatedMemoryThread::StartThread();
    preallocated_message_space =
        new NoAllocationStringAllocator(PreallocatedMemoryThread::data(),
                                        PreallocatedMemoryThread::length());
    PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4);
  }
  initialized = true;
}


void Top::TearDown() {
  if (initialized) {
    // Remove the external reference to the preallocated stack memory.
    if (preallocated_message_space != NULL) {
      delete preallocated_message_space;
      preallocated_message_space = NULL;
    }

    PreallocatedMemoryThread::StopThread();
    initialized = false;
  }
}


// There are cases where the C stack is separated from JS stack (ARM simulator).
// To figure out the order of top-most JS try-catch handler and the top-most C
// try-catch handler, the C try-catch handler keeps a reference to the top-most
// JS try_catch handler when it was created.
//
// Here is a picture to explain the idea:
//   Top::thread_local_.handler_       Top::thread_local_.try_catch_handler_
//
//             |                                         |
//             v                                         v
//
//      | JS handler  |                        | C try_catch handler |
//      |    next     |--+           +-------- |    js_handler_      |
//                       |           |         |      next_          |--+
//                       |           |                                  |
//      | JS handler  |--+ <---------+                                  |
//      |    next     |
//
// If the top-most JS try-catch handler is not equal to
// Top::thread_local_.try_catch_handler_.js_handler_, it means the JS handler
// is on the top. Otherwise, it means the C try-catch handler is on the top.
//
void Top::RegisterTryCatchHandler(v8::TryCatch* that) {
  StackHandler* handler =
    reinterpret_cast<StackHandler*>(thread_local_.handler_);

  // Find the top-most try-catch handler.
  while (handler != NULL && !handler->is_try_catch()) {
    handler = handler->next();
  }

  that->js_handler_ = handler;  // casted to void*
  thread_local_.try_catch_handler_ = that;
}


void Top::UnregisterTryCatchHandler(v8::TryCatch* that) {
  ASSERT(thread_local_.try_catch_handler_ == that);
  thread_local_.try_catch_handler_ = that->next_;
  thread_local_.catcher_ = NULL;
}


void Top::MarkCompactPrologue(bool is_compacting) {
  MarkCompactPrologue(is_compacting, &thread_local_);
}


void Top::MarkCompactPrologue(bool is_compacting, char* data) {
  MarkCompactPrologue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data));
}


void Top::MarkCompactPrologue(bool is_compacting, ThreadLocalTop* thread) {
  if (is_compacting) {
    StackFrame::CookFramesForThread(thread);
  }
}


void Top::MarkCompactEpilogue(bool is_compacting, char* data) {
  MarkCompactEpilogue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data));
}


void Top::MarkCompactEpilogue(bool is_compacting) {
  MarkCompactEpilogue(is_compacting, &thread_local_);
}


void Top::MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* thread) {
  if (is_compacting) {
    StackFrame::UncookFramesForThread(thread);
  }
}


static int stack_trace_nesting_level = 0;
static StringStream* incomplete_message = NULL;


Handle<String> Top::StackTrace() {
  if (stack_trace_nesting_level == 0) {
    stack_trace_nesting_level++;
    HeapStringAllocator allocator;
    StringStream::ClearMentionedObjectCache();
    StringStream accumulator(&allocator);
    incomplete_message = &accumulator;
    PrintStack(&accumulator);
    Handle<String> stack_trace = accumulator.ToString();
    incomplete_message = NULL;
    stack_trace_nesting_level = 0;
    return stack_trace;
  } else if (stack_trace_nesting_level == 1) {
    stack_trace_nesting_level++;
    OS::PrintError(
      "\n\nAttempt to print stack while printing stack (double fault)\n");
    OS::PrintError(
      "If you are lucky you may find a partial stack dump on stdout.\n\n");
    incomplete_message->OutputToStdOut();
    return Factory::empty_symbol();
  } else {
    OS::Abort();
    // Unreachable
    return Factory::empty_symbol();
  }
}


void Top::PrintStack() {
  if (stack_trace_nesting_level == 0) {
    stack_trace_nesting_level++;

    StringAllocator* allocator;
    if (preallocated_message_space == NULL) {
      allocator = new HeapStringAllocator();
    } else {
      allocator = preallocated_message_space;
    }

    NativeAllocationChecker allocation_checker(
      !FLAG_preallocate_message_memory ?
      NativeAllocationChecker::ALLOW :
      NativeAllocationChecker::DISALLOW);

    StringStream::ClearMentionedObjectCache();
    StringStream accumulator(allocator);
    incomplete_message = &accumulator;
    PrintStack(&accumulator);
    accumulator.OutputToStdOut();
    accumulator.Log();
    incomplete_message = NULL;
    stack_trace_nesting_level = 0;
    if (preallocated_message_space == NULL) {
      // Remove the HeapStringAllocator created above.
      delete allocator;
    }
  } else if (stack_trace_nesting_level == 1) {
    stack_trace_nesting_level++;
    OS::PrintError(
      "\n\nAttempt to print stack while printing stack (double fault)\n");
    OS::PrintError(
      "If you are lucky you may find a partial stack dump on stdout.\n\n");
    incomplete_message->OutputToStdOut();
  }
}


static void PrintFrames(StringStream* accumulator,
                        StackFrame::PrintMode mode) {
  StackFrameIterator it;
  for (int i = 0; !it.done(); it.Advance()) {
    it.frame()->Print(accumulator, mode, i++);
  }
}


void Top::PrintStack(StringStream* accumulator) {
  // The MentionedObjectCache is not GC-proof at the moment.
  AssertNoAllocation nogc;
  ASSERT(StringStream::IsMentionedObjectCacheClear());

  // Avoid printing anything if there are no frames.
  if (c_entry_fp(GetCurrentThread()) == 0) return;

  accumulator->Add(
      "\n==== Stack trace ============================================\n\n");
  PrintFrames(accumulator, StackFrame::OVERVIEW);

  accumulator->Add(
      "\n==== Details ================================================\n\n");
  PrintFrames(accumulator, StackFrame::DETAILS);

  accumulator->PrintMentionedObjectCache();
  accumulator->Add("=====================\n\n");
}


void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) {
  ASSERT(thread_local_.failed_access_check_callback_ == NULL);
  thread_local_.failed_access_check_callback_ = callback;
}


void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
  if (!thread_local_.failed_access_check_callback_) return;

  ASSERT(receiver->IsAccessCheckNeeded());
  ASSERT(Top::context());
  // The callers of this method are not expecting a GC.
  AssertNoAllocation no_gc;

  // Get the data object from access check info.
  JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
  Object* info = constructor->shared()->function_data();
  if (info == Heap::undefined_value()) return;

  Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
  if (data_obj == Heap::undefined_value()) return;

  HandleScope scope;
  Handle<JSObject> receiver_handle(receiver);
  Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
  thread_local_.failed_access_check_callback_(
    v8::Utils::ToLocal(receiver_handle),
    type,
    v8::Utils::ToLocal(data));
}


enum MayAccessDecision {
  YES, NO, UNKNOWN
};


static MayAccessDecision MayAccessPreCheck(JSObject* receiver,
                                           v8::AccessType type) {
  // During bootstrapping, callback functions are not enabled yet.
  if (Bootstrapper::IsActive()) return YES;

  if (receiver->IsJSGlobalProxy()) {
    Object* receiver_context = JSGlobalProxy::cast(receiver)->context();
    if (!receiver_context->IsContext()) return NO;

    // Get the global context of current top context.
    // avoid using Top::global_context() because it uses Handle.
    Context* global_context = Top::context()->global()->global_context();
    if (receiver_context == global_context) return YES;

    if (Context::cast(receiver_context)->security_token() ==
        global_context->security_token())
      return YES;
  }

  return UNKNOWN;
}


bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) {
  ASSERT(receiver->IsAccessCheckNeeded());
  // Check for compatibility between the security tokens in the
  // current lexical context and the accessed object.
  ASSERT(Top::context());
  // The callers of this method are not expecting a GC.
  AssertNoAllocation no_gc;

  MayAccessDecision decision = MayAccessPreCheck(receiver, type);
  if (decision != UNKNOWN) return decision == YES;

  // Get named access check callback
  JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
  Object* info = constructor->shared()->function_data();
  if (info == Heap::undefined_value()) return false;

  Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
  if (data_obj == Heap::undefined_value()) return false;

  Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
  v8::NamedSecurityCallback callback =
      v8::ToCData<v8::NamedSecurityCallback>(fun_obj);

  if (!callback) return false;

  HandleScope scope;
  Handle<JSObject> receiver_handle(receiver);
  Handle<Object> key_handle(key);
  Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
  LOG(ApiNamedSecurityCheck(key));
  bool result = false;
  {
    // Leaving JavaScript.
    VMState state(EXTERNAL);
    result = callback(v8::Utils::ToLocal(receiver_handle),
                      v8::Utils::ToLocal(key_handle),
                      type,
                      v8::Utils::ToLocal(data));
  }
  return result;
}


bool Top::MayIndexedAccess(JSObject* receiver,
                           uint32_t index,
                           v8::AccessType type) {
  ASSERT(receiver->IsAccessCheckNeeded());
  // Check for compatibility between the security tokens in the
  // current lexical context and the accessed object.
  ASSERT(Top::context());
  // The callers of this method are not expecting a GC.
  AssertNoAllocation no_gc;

  MayAccessDecision decision = MayAccessPreCheck(receiver, type);
  if (decision != UNKNOWN) return decision == YES;

  // Get indexed access check callback
  JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
  Object* info = constructor->shared()->function_data();
  if (info == Heap::undefined_value()) return false;

  Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
  if (data_obj == Heap::undefined_value()) return false;

  Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
  v8::IndexedSecurityCallback callback =
      v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);

  if (!callback) return false;

  HandleScope scope;
  Handle<JSObject> receiver_handle(receiver);
  Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
  LOG(ApiIndexedSecurityCheck(index));
  bool result = false;
  {
    // Leaving JavaScript.
    VMState state(EXTERNAL);
    result = callback(v8::Utils::ToLocal(receiver_handle),
                      index,
                      type,
                      v8::Utils::ToLocal(data));
  }
  return result;
}


const char* Top::kStackOverflowMessage =
  "Uncaught RangeError: Maximum call stack size exceeded";


Failure* Top::StackOverflow() {
  HandleScope scope;
  Handle<String> key = Factory::stack_overflow_symbol();
  Handle<JSObject> boilerplate =
      Handle<JSObject>::cast(GetProperty(Top::builtins(), key));
  Handle<Object> exception = Copy(boilerplate);
  // TODO(1240995): To avoid having to call JavaScript code to compute
  // the message for stack overflow exceptions which is very likely to
  // double fault with another stack overflow exception, we use a
  // precomputed message. This is somewhat problematic in that it
  // doesn't use ReportUncaughtException to determine the location
  // from where the exception occurred. It should probably be
  // reworked.
  DoThrow(*exception, NULL, kStackOverflowMessage);
  return Failure::Exception();
}


Failure* Top::Throw(Object* exception, MessageLocation* location) {
  DoThrow(exception, location, NULL);
  return Failure::Exception();
}


Failure* Top::ReThrow(Object* exception, MessageLocation* location) {
  // Set the exception being re-thrown.
  set_pending_exception(exception);
  return Failure::Exception();
}


void Top::ScheduleThrow(Object* exception) {
  // When scheduling a throw we first throw the exception to get the
  // error reporting if it is uncaught before rescheduling it.
  Throw(exception);
  thread_local_.scheduled_exception_ = pending_exception();
  thread_local_.external_caught_exception_ = false;
  clear_pending_exception();
}


Object* Top::PromoteScheduledException() {
  Object* thrown = scheduled_exception();
  clear_scheduled_exception();
  // Re-throw the exception to avoid getting repeated error reporting.
  return ReThrow(thrown);
}


void Top::PrintCurrentStackTrace(FILE* out) {
  StackTraceFrameIterator it;
  while (!it.done()) {
    HandleScope scope;
    // Find code position if recorded in relocation info.
    JavaScriptFrame* frame = it.frame();
    int pos = frame->code()->SourcePosition(frame->pc());
    Handle<Object> pos_obj(Smi::FromInt(pos));
    // Fetch function and receiver.
    Handle<JSFunction> fun(JSFunction::cast(frame->function()));
    Handle<Object> recv(frame->receiver());
    // Advance to the next JavaScript frame and determine if the
    // current frame is the top-level frame.
    it.Advance();
    Handle<Object> is_top_level = it.done()
        ? Factory::true_value()
        : Factory::false_value();
    // Generate and print stack trace line.
    Handle<String> line =
        Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
    if (line->length() > 0) {
      line->PrintOn(out);
      fprintf(out, "\n");
    }
  }
}


void Top::ComputeLocation(MessageLocation* target) {
  *target = MessageLocation(empty_script(), -1, -1);
  StackTraceFrameIterator it;
  if (!it.done()) {
    JavaScriptFrame* frame = it.frame();
    JSFunction* fun = JSFunction::cast(frame->function());
    Object* script = fun->shared()->script();
    if (script->IsScript() &&
        !(Script::cast(script)->source()->IsUndefined())) {
      int pos = frame->code()->SourcePosition(frame->pc());
      // Compute the location from the function and the reloc info.
      Handle<Script> casted_script(Script::cast(script));
      *target = MessageLocation(casted_script, pos, pos + 1);
    }
  }
}


void Top::ReportUncaughtException(Handle<Object> exception,
                                  MessageLocation* location,
                                  Handle<String> stack_trace) {
  Handle<Object> message =
    MessageHandler::MakeMessageObject("uncaught_exception",
                                      location,
                                      HandleVector<Object>(&exception, 1),
                                      stack_trace);

  // Report the uncaught exception.
  MessageHandler::ReportMessage(location, message);
}


bool Top::ShouldReportException(bool* is_caught_externally) {
  // Find the top-most try-catch handler.
  StackHandler* handler =
      StackHandler::FromAddress(Top::handler(Top::GetCurrentThread()));
  while (handler != NULL && !handler->is_try_catch()) {
    handler = handler->next();
  }

  // Get the address of the external handler so we can compare the address to
  // determine which one is closer to the top of the stack.
  v8::TryCatch* try_catch = thread_local_.try_catch_handler_;

  // The exception has been externally caught if and only if there is
  // an external handler which is on top of the top-most try-catch
  // handler.
  //
  // See comments in RegisterTryCatchHandler for details.
  *is_caught_externally = try_catch != NULL &&
      (handler == NULL || handler == try_catch->js_handler_);

  if (*is_caught_externally) {
    // Only report the exception if the external handler is verbose.
    return thread_local_.try_catch_handler_->is_verbose_;
  } else {
    // Report the exception if it isn't caught by JavaScript code.
    return handler == NULL;
  }
}


void Top::DoThrow(Object* exception,
                  MessageLocation* location,
                  const char* message) {
  ASSERT(!has_pending_exception());

  HandleScope scope;
  Handle<Object> exception_handle(exception);

  // Determine reporting and whether the exception is caught externally.
  bool is_caught_externally = false;
  bool is_out_of_memory = exception == Failure::OutOfMemoryException();
  bool should_return_exception = ShouldReportException(&is_caught_externally);
  bool report_exception = !is_out_of_memory && should_return_exception;

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Notify debugger of exception.
  Debugger::OnException(exception_handle, report_exception);
#endif

  // Generate the message.
  Handle<Object> message_obj;
  MessageLocation potential_computed_location;
  bool try_catch_needs_message =
      is_caught_externally &&
      thread_local_.try_catch_handler_->capture_message_;
  if (report_exception || try_catch_needs_message) {
    if (location == NULL) {
      // If no location was specified we use a computed one instead
      ComputeLocation(&potential_computed_location);
      location = &potential_computed_location;
    }
    Handle<String> stack_trace;
    if (FLAG_trace_exception) stack_trace = StackTrace();
    message_obj = MessageHandler::MakeMessageObject("uncaught_exception",
        location, HandleVector<Object>(&exception_handle, 1), stack_trace);
  }

  // Save the message for reporting if the the exception remains uncaught.
  thread_local_.has_pending_message_ = report_exception;
  thread_local_.pending_message_ = message;
  if (!message_obj.is_null()) {
    thread_local_.pending_message_obj_ = *message_obj;
    if (location != NULL) {
      thread_local_.pending_message_script_ = *location->script();
      thread_local_.pending_message_start_pos_ = location->start_pos();
      thread_local_.pending_message_end_pos_ = location->end_pos();
    }
  }

  if (is_caught_externally) {
    thread_local_.catcher_ = thread_local_.try_catch_handler_;
  }

  // NOTE: Notifying the debugger or generating the message
  // may have caused new exceptions. For now, we just ignore
  // that and set the pending exception to the original one.
  set_pending_exception(*exception_handle);
}


void Top::ReportPendingMessages() {
  ASSERT(has_pending_exception());
  setup_external_caught();
  // If the pending exception is OutOfMemoryException set out_of_memory in
  // the global context.  Note: We have to mark the global context here
  // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to
  // set it.
  HandleScope scope;
  if (thread_local_.pending_exception_ == Failure::OutOfMemoryException()) {
    context()->mark_out_of_memory();
  } else {
    Handle<Object> exception(pending_exception());
    bool external_caught = thread_local_.external_caught_exception_;
    thread_local_.external_caught_exception_ = false;
    if (external_caught) {
      thread_local_.try_catch_handler_->exception_ =
        thread_local_.pending_exception_;
      if (!thread_local_.pending_message_obj_->IsTheHole()) {
        try_catch_handler()->message_ = thread_local_.pending_message_obj_;
      }
    }
    if (thread_local_.has_pending_message_) {
      thread_local_.has_pending_message_ = false;
      if (thread_local_.pending_message_ != NULL) {
        MessageHandler::ReportMessage(thread_local_.pending_message_);
      } else if (!thread_local_.pending_message_obj_->IsTheHole()) {
        Handle<Object> message_obj(thread_local_.pending_message_obj_);
        if (thread_local_.pending_message_script_ != NULL) {
          Handle<Script> script(thread_local_.pending_message_script_);
          int start_pos = thread_local_.pending_message_start_pos_;
          int end_pos = thread_local_.pending_message_end_pos_;
          MessageLocation location(script, start_pos, end_pos);
          MessageHandler::ReportMessage(&location, message_obj);
        } else {
          MessageHandler::ReportMessage(NULL, message_obj);
        }
      }
    }
    thread_local_.external_caught_exception_ = external_caught;
    set_pending_exception(*exception);
  }
  clear_pending_message();
}


void Top::TraceException(bool flag) {
  FLAG_trace_exception = flag;
}


bool Top::optional_reschedule_exception(bool is_bottom_call) {
  // Allways reschedule out of memory exceptions.
  if (!is_out_of_memory()) {
    // Never reschedule the exception if this is the bottom call.
    bool clear_exception = is_bottom_call;

    // If the exception is externally caught, clear it if there are no
    // JavaScript frames on the way to the C++ frame that has the
    // external handler.
    if (thread_local_.external_caught_exception_) {
      ASSERT(thread_local_.try_catch_handler_ != NULL);
      Address external_handler_address =
          reinterpret_cast<Address>(thread_local_.try_catch_handler_);
      JavaScriptFrameIterator it;
      if (it.done() || (it.frame()->sp() > external_handler_address)) {
        clear_exception = true;
      }
    }

    // Clear the exception if needed.
    if (clear_exception) {
      thread_local_.external_caught_exception_ = false;
      clear_pending_exception();
      return false;
    }
  }

  // Reschedule the exception.
  thread_local_.scheduled_exception_ = pending_exception();
  clear_pending_exception();
  return true;
}


bool Top::is_out_of_memory() {
  if (has_pending_exception()) {
    Object* e = pending_exception();
    if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
      return true;
    }
  }
  if (has_scheduled_exception()) {
    Object* e = scheduled_exception();
    if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
      return true;
    }
  }
  return false;
}


Handle<Context> Top::global_context() {
  GlobalObject* global = thread_local_.context_->global();
  return Handle<Context>(global->global_context());
}


Handle<Context> Top::GetCallingGlobalContext() {
  JavaScriptFrameIterator it;
  if (it.done()) return Handle<Context>::null();
  JavaScriptFrame* frame = it.frame();
  Context* context = Context::cast(frame->context());
  return Handle<Context>(context->global_context());
}


Object* Top::LookupSpecialFunction(JSObject* receiver,
                                   JSObject* prototype,
                                   JSFunction* function) {
  if (receiver->IsJSArray()) {
    FixedArray* table = context()->global_context()->special_function_table();
    for (int index = 0; index < table->length(); index +=3) {
      if ((prototype == table->get(index)) &&
          (function == table->get(index+1))) {
        return table->get(index+2);
      }
    }
  }
  return Heap::undefined_value();
}


char* Top::ArchiveThread(char* to) {
  memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(thread_local_));
  InitializeThreadLocal();
  return to + sizeof(thread_local_);
}


char* Top::RestoreThread(char* from) {
  memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(thread_local_));
  return from + sizeof(thread_local_);
}


ExecutionAccess::ExecutionAccess() {
  Top::break_access_->Lock();
}


ExecutionAccess::~ExecutionAccess() {
  Top::break_access_->Unlock();
}


} }  // namespace v8::internal