summaryrefslogtreecommitdiff
path: root/deps/v8/src/string-builder-inl.h
blob: 0c3f83b2d455a5316044e90592a4cdacac70c01b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_STRING_BUILDER_INL_H_
#define V8_STRING_BUILDER_INL_H_

#include "src/assert-scope.h"
#include "src/handles-inl.h"
#include "src/heap/factory.h"
#include "src/isolate.h"
#include "src/objects.h"
#include "src/objects/fixed-array.h"
#include "src/objects/string-inl.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

const int kStringBuilderConcatHelperLengthBits = 11;
const int kStringBuilderConcatHelperPositionBits = 19;

typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
    StringBuilderSubstringLength;
typedef BitField<int, kStringBuilderConcatHelperLengthBits,
                 kStringBuilderConcatHelperPositionBits>
    StringBuilderSubstringPosition;

template <typename sinkchar>
void StringBuilderConcatHelper(String special, sinkchar* sink,
                               FixedArray fixed_array, int array_length);

// Returns the result length of the concatenation.
// On illegal argument, -1 is returned.
int StringBuilderConcatLength(int special_length, FixedArray fixed_array,
                              int array_length, bool* one_byte);

class FixedArrayBuilder {
 public:
  explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity);
  explicit FixedArrayBuilder(Handle<FixedArray> backing_store);

  bool HasCapacity(int elements);
  void EnsureCapacity(Isolate* isolate, int elements);

  void Add(Object value);
  void Add(Smi value);

  Handle<FixedArray> array() { return array_; }

  int length() { return length_; }

  int capacity();

  Handle<JSArray> ToJSArray(Handle<JSArray> target_array);

 private:
  Handle<FixedArray> array_;
  int length_;
  bool has_non_smi_elements_;
};

class ReplacementStringBuilder {
 public:
  ReplacementStringBuilder(Heap* heap, Handle<String> subject,
                           int estimated_part_count);

  static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from,
                                     int to) {
    DCHECK_GE(from, 0);
    int length = to - from;
    DCHECK_GT(length, 0);
    if (StringBuilderSubstringLength::is_valid(length) &&
        StringBuilderSubstringPosition::is_valid(from)) {
      int encoded_slice = StringBuilderSubstringLength::encode(length) |
                          StringBuilderSubstringPosition::encode(from);
      builder->Add(Smi::FromInt(encoded_slice));
    } else {
      // Otherwise encode as two smis.
      builder->Add(Smi::FromInt(-length));
      builder->Add(Smi::FromInt(from));
    }
  }

  void EnsureCapacity(int elements);

  void AddSubjectSlice(int from, int to) {
    AddSubjectSlice(&array_builder_, from, to);
    IncrementCharacterCount(to - from);
  }

  void AddString(Handle<String> string);

  MaybeHandle<String> ToString();

  void IncrementCharacterCount(int by) {
    if (character_count_ > String::kMaxLength - by) {
      STATIC_ASSERT(String::kMaxLength < kMaxInt);
      character_count_ = kMaxInt;
    } else {
      character_count_ += by;
    }
  }

 private:
  void AddElement(Object element);

  Heap* heap_;
  FixedArrayBuilder array_builder_;
  Handle<String> subject_;
  int character_count_;
  bool is_one_byte_;
};

class IncrementalStringBuilder {
 public:
  explicit IncrementalStringBuilder(Isolate* isolate);

  V8_INLINE String::Encoding CurrentEncoding() { return encoding_; }

  template <typename SrcChar, typename DestChar>
  V8_INLINE void Append(SrcChar c);

  V8_INLINE void AppendCharacter(uint8_t c) {
    if (encoding_ == String::ONE_BYTE_ENCODING) {
      Append<uint8_t, uint8_t>(c);
    } else {
      Append<uint8_t, uc16>(c);
    }
  }

  V8_INLINE void AppendCString(const char* s) {
    const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
    if (encoding_ == String::ONE_BYTE_ENCODING) {
      while (*u != '\0') Append<uint8_t, uint8_t>(*(u++));
    } else {
      while (*u != '\0') Append<uint8_t, uc16>(*(u++));
    }
  }

  V8_INLINE void AppendCString(const uc16* s) {
    if (encoding_ == String::ONE_BYTE_ENCODING) {
      while (*s != '\0') Append<uc16, uint8_t>(*(s++));
    } else {
      while (*s != '\0') Append<uc16, uc16>(*(s++));
    }
  }

  V8_INLINE bool CurrentPartCanFit(int length) {
    return part_length_ - current_index_ > length;
  }

  // We make a rough estimate to find out if the current string can be
  // serialized without allocating a new string part. The worst case length of
  // an escaped character is 6. Shifting the remaining string length right by 3
  // is a more pessimistic estimate, but faster to calculate.
  V8_INLINE int EscapedLengthIfCurrentPartFits(int length) {
    if (length > kMaxPartLength) return 0;
    STATIC_ASSERT((kMaxPartLength << 3) <= String::kMaxLength);
    // This shift will not overflow because length is already less than the
    // maximum part length.
    int worst_case_length = length << 3;
    return CurrentPartCanFit(worst_case_length) ? worst_case_length : 0;
  }

  void AppendString(Handle<String> string);

  MaybeHandle<String> Finish();

  V8_INLINE bool HasOverflowed() const { return overflowed_; }

  int Length() const;

  // Change encoding to two-byte.
  void ChangeEncoding() {
    DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
    ShrinkCurrentPart();
    encoding_ = String::TWO_BYTE_ENCODING;
    Extend();
  }

  template <typename DestChar>
  class NoExtend {
   public:
    NoExtend(Handle<String> string, int offset,
             const DisallowHeapAllocation& no_gc) {
      DCHECK(string->IsSeqOneByteString() || string->IsSeqTwoByteString());
      if (sizeof(DestChar) == 1) {
        start_ = reinterpret_cast<DestChar*>(
            Handle<SeqOneByteString>::cast(string)->GetChars(no_gc) + offset);
      } else {
        start_ = reinterpret_cast<DestChar*>(
            Handle<SeqTwoByteString>::cast(string)->GetChars(no_gc) + offset);
      }
      cursor_ = start_;
    }

    V8_INLINE void Append(DestChar c) { *(cursor_++) = c; }
    V8_INLINE void AppendCString(const char* s) {
      const uint8_t* u = reinterpret_cast<const uint8_t*>(s);
      while (*u != '\0') Append(*(u++));
    }

    int written() { return static_cast<int>(cursor_ - start_); }

   private:
    DestChar* start_;
    DestChar* cursor_;
    DISALLOW_HEAP_ALLOCATION(no_gc_);
  };

  template <typename DestChar>
  class NoExtendString : public NoExtend<DestChar> {
   public:
    NoExtendString(Handle<String> string, int required_length)
        : NoExtend<DestChar>(string, 0), string_(string) {
      DCHECK(string->length() >= required_length);
    }

    Handle<String> Finalize() {
      Handle<SeqString> string = Handle<SeqString>::cast(string_);
      int length = NoExtend<DestChar>::written();
      Handle<String> result = SeqString::Truncate(string, length);
      string_ = Handle<String>();
      return result;
    }

   private:
    Handle<String> string_;
  };

  template <typename DestChar>
  class NoExtendBuilder : public NoExtend<DestChar> {
   public:
    NoExtendBuilder(IncrementalStringBuilder* builder, int required_length,
                    const DisallowHeapAllocation& no_gc)
        : NoExtend<DestChar>(builder->current_part(), builder->current_index_,
                             no_gc),
          builder_(builder) {
      DCHECK(builder->CurrentPartCanFit(required_length));
    }

    ~NoExtendBuilder() {
      builder_->current_index_ += NoExtend<DestChar>::written();
    }

   private:
    IncrementalStringBuilder* builder_;
  };

 private:
  Factory* factory() { return isolate_->factory(); }

  V8_INLINE Handle<String> accumulator() { return accumulator_; }

  V8_INLINE void set_accumulator(Handle<String> string) {
    *accumulator_.location() = string->ptr();
  }

  V8_INLINE Handle<String> current_part() { return current_part_; }

  V8_INLINE void set_current_part(Handle<String> string) {
    *current_part_.location() = string->ptr();
  }

  // Add the current part to the accumulator.
  void Accumulate(Handle<String> new_part);

  // Finish the current part and allocate a new part.
  void Extend();

  // Shrink current part to the right size.
  void ShrinkCurrentPart() {
    DCHECK(current_index_ < part_length_);
    set_current_part(SeqString::Truncate(
        Handle<SeqString>::cast(current_part()), current_index_));
  }

  static const int kInitialPartLength = 32;
  static const int kMaxPartLength = 16 * 1024;
  static const int kPartLengthGrowthFactor = 2;

  Isolate* isolate_;
  String::Encoding encoding_;
  bool overflowed_;
  int part_length_;
  int current_index_;
  Handle<String> accumulator_;
  Handle<String> current_part_;
};

template <typename SrcChar, typename DestChar>
void IncrementalStringBuilder::Append(SrcChar c) {
  DCHECK_EQ(encoding_ == String::ONE_BYTE_ENCODING, sizeof(DestChar) == 1);
  if (sizeof(DestChar) == 1) {
    DCHECK_EQ(String::ONE_BYTE_ENCODING, encoding_);
    SeqOneByteString::cast(*current_part_)
        ->SeqOneByteStringSet(current_index_++, c);
  } else {
    DCHECK_EQ(String::TWO_BYTE_ENCODING, encoding_);
    SeqTwoByteString::cast(*current_part_)
        ->SeqTwoByteStringSet(current_index_++, c);
  }
  if (current_index_ == part_length_) Extend();
}
}  // namespace internal
}  // namespace v8

#endif  // V8_STRING_BUILDER_INL_H_