summaryrefslogtreecommitdiff
path: root/deps/v8/src/scanner.h
blob: 356c8e4a549b0e41b753ab95db4891f164e0bc3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Features shared by parsing and pre-parsing scanners.

#ifndef V8_SCANNER_H_
#define V8_SCANNER_H_

#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/char-predicates.h"
#include "src/globals.h"
#include "src/hashmap.h"
#include "src/list.h"
#include "src/token.h"
#include "src/unicode-inl.h"
#include "src/utils.h"

namespace v8 {
namespace internal {


class AstRawString;
class AstValueFactory;
class ParserRecorder;


// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
inline int HexValue(uc32 c) {
  c -= '0';
  if (static_cast<unsigned>(c) <= 9) return c;
  c = (c | 0x20) - ('a' - '0');  // detect 0x11..0x16 and 0x31..0x36.
  if (static_cast<unsigned>(c) <= 5) return c + 10;
  return -1;
}


// ---------------------------------------------------------------------
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
// A code unit is a 16 bit value representing either a 16 bit code point
// or one part of a surrogate pair that make a single 21 bit code point.

class Utf16CharacterStream {
 public:
  Utf16CharacterStream() : pos_(0) { }
  virtual ~Utf16CharacterStream() { }

  // Returns and advances past the next UTF-16 code unit in the input
  // stream. If there are no more code units, it returns a negative
  // value.
  inline uc32 Advance() {
    if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
      pos_++;
      return static_cast<uc32>(*(buffer_cursor_++));
    }
    // Note: currently the following increment is necessary to avoid a
    // parser problem! The scanner treats the final kEndOfInput as
    // a code unit with a position, and does math relative to that
    // position.
    pos_++;

    return kEndOfInput;
  }

  // Return the current position in the code unit stream.
  // Starts at zero.
  inline unsigned pos() const { return pos_; }

  // Skips forward past the next code_unit_count UTF-16 code units
  // in the input, or until the end of input if that comes sooner.
  // Returns the number of code units actually skipped. If less
  // than code_unit_count,
  inline unsigned SeekForward(unsigned code_unit_count) {
    unsigned buffered_chars =
        static_cast<unsigned>(buffer_end_ - buffer_cursor_);
    if (code_unit_count <= buffered_chars) {
      buffer_cursor_ += code_unit_count;
      pos_ += code_unit_count;
      return code_unit_count;
    }
    return SlowSeekForward(code_unit_count);
  }

  // Pushes back the most recently read UTF-16 code unit (or negative
  // value if at end of input), i.e., the value returned by the most recent
  // call to Advance.
  // Must not be used right after calling SeekForward.
  virtual void PushBack(int32_t code_unit) = 0;

 protected:
  static const uc32 kEndOfInput = -1;

  // Ensures that the buffer_cursor_ points to the code_unit at
  // position pos_ of the input, if possible. If the position
  // is at or after the end of the input, return false. If there
  // are more code_units available, return true.
  virtual bool ReadBlock() = 0;
  virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0;

  const uint16_t* buffer_cursor_;
  const uint16_t* buffer_end_;
  unsigned pos_;
};


// ---------------------------------------------------------------------
// Caching predicates used by scanners.

class UnicodeCache {
 public:
  UnicodeCache() {}
  typedef unibrow::Utf8Decoder<512> Utf8Decoder;

  StaticResource<Utf8Decoder>* utf8_decoder() {
    return &utf8_decoder_;
  }

  bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
  bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
  bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
  bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
  bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) {
    return kIsWhiteSpaceOrLineTerminator.get(c);
  }

 private:
  unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
  unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
  unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
  unibrow::Predicate<WhiteSpace, 128> kIsWhiteSpace;
  unibrow::Predicate<WhiteSpaceOrLineTerminator, 128>
      kIsWhiteSpaceOrLineTerminator;
  StaticResource<Utf8Decoder> utf8_decoder_;

  DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
};


// ---------------------------------------------------------------------
// DuplicateFinder discovers duplicate symbols.

class DuplicateFinder {
 public:
  explicit DuplicateFinder(UnicodeCache* constants)
      : unicode_constants_(constants),
        backing_store_(16),
        map_(&Match) { }

  int AddOneByteSymbol(Vector<const uint8_t> key, int value);
  int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
  // Add a a number literal by converting it (if necessary)
  // to the string that ToString(ToNumber(literal)) would generate.
  // and then adding that string with AddOneByteSymbol.
  // This string is the actual value used as key in an object literal,
  // and the one that must be different from the other keys.
  int AddNumber(Vector<const uint8_t> key, int value);

 private:
  int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
  // Backs up the key and its length in the backing store.
  // The backup is stored with a base 127 encoding of the
  // length (plus a bit saying whether the string is one byte),
  // followed by the bytes of the key.
  uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);

  // Compare two encoded keys (both pointing into the backing store)
  // for having the same base-127 encoded lengths and representation.
  // and then having the same 'length' bytes following.
  static bool Match(void* first, void* second);
  // Creates a hash from a sequence of bytes.
  static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
  // Checks whether a string containing a JS number is its canonical
  // form.
  static bool IsNumberCanonical(Vector<const uint8_t> key);

  // Size of buffer. Sufficient for using it to call DoubleToCString in
  // from conversions.h.
  static const int kBufferSize = 100;

  UnicodeCache* unicode_constants_;
  // Backing store used to store strings used as hashmap keys.
  SequenceCollector<unsigned char> backing_store_;
  HashMap map_;
  // Buffer used for string->number->canonical string conversions.
  char number_buffer_[kBufferSize];
};


// ----------------------------------------------------------------------------
// LiteralBuffer -  Collector of chars of literals.

class LiteralBuffer {
 public:
  LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }

  ~LiteralBuffer() {
    if (backing_store_.length() > 0) {
      backing_store_.Dispose();
    }
  }

  INLINE(void AddChar(uint32_t code_unit)) {
    if (position_ >= backing_store_.length()) ExpandBuffer();
    if (is_one_byte_) {
      if (code_unit <= unibrow::Latin1::kMaxChar) {
        backing_store_[position_] = static_cast<byte>(code_unit);
        position_ += kOneByteSize;
        return;
      }
      ConvertToTwoByte();
    }
    DCHECK(code_unit < 0x10000u);
    *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
    position_ += kUC16Size;
  }

  bool is_one_byte() const { return is_one_byte_; }

  bool is_contextual_keyword(Vector<const char> keyword) const {
    return is_one_byte() && keyword.length() == position_ &&
        (memcmp(keyword.start(), backing_store_.start(), position_) == 0);
  }

  Vector<const uint16_t> two_byte_literal() const {
    DCHECK(!is_one_byte_);
    DCHECK((position_ & 0x1) == 0);
    return Vector<const uint16_t>(
        reinterpret_cast<const uint16_t*>(backing_store_.start()),
        position_ >> 1);
  }

  Vector<const uint8_t> one_byte_literal() const {
    DCHECK(is_one_byte_);
    return Vector<const uint8_t>(
        reinterpret_cast<const uint8_t*>(backing_store_.start()),
        position_);
  }

  int length() const {
    return is_one_byte_ ? position_ : (position_ >> 1);
  }

  void Reset() {
    position_ = 0;
    is_one_byte_ = true;
  }

  Handle<String> Internalize(Isolate* isolate) const;

 private:
  static const int kInitialCapacity = 16;
  static const int kGrowthFactory = 4;
  static const int kMinConversionSlack = 256;
  static const int kMaxGrowth = 1 * MB;
  inline int NewCapacity(int min_capacity) {
    int capacity = Max(min_capacity, backing_store_.length());
    int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
    return new_capacity;
  }

  void ExpandBuffer() {
    Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
    MemCopy(new_store.start(), backing_store_.start(), position_);
    backing_store_.Dispose();
    backing_store_ = new_store;
  }

  void ConvertToTwoByte() {
    DCHECK(is_one_byte_);
    Vector<byte> new_store;
    int new_content_size = position_ * kUC16Size;
    if (new_content_size >= backing_store_.length()) {
      // Ensure room for all currently read code units as UC16 as well
      // as the code unit about to be stored.
      new_store = Vector<byte>::New(NewCapacity(new_content_size));
    } else {
      new_store = backing_store_;
    }
    uint8_t* src = backing_store_.start();
    uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
    for (int i = position_ - 1; i >= 0; i--) {
      dst[i] = src[i];
    }
    if (new_store.start() != backing_store_.start()) {
      backing_store_.Dispose();
      backing_store_ = new_store;
    }
    position_ = new_content_size;
    is_one_byte_ = false;
  }

  bool is_one_byte_;
  int position_;
  Vector<byte> backing_store_;

  DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
};


// ----------------------------------------------------------------------------
// JavaScript Scanner.

class Scanner {
 public:
  // Scoped helper for literal recording. Automatically drops the literal
  // if aborting the scanning before it's complete.
  class LiteralScope {
   public:
    explicit LiteralScope(Scanner* self)
        : scanner_(self), complete_(false) {
      scanner_->StartLiteral();
    }
     ~LiteralScope() {
       if (!complete_) scanner_->DropLiteral();
     }
    void Complete() {
      scanner_->TerminateLiteral();
      complete_ = true;
    }

   private:
    Scanner* scanner_;
    bool complete_;
  };

  // Representation of an interval of source positions.
  struct Location {
    Location(int b, int e) : beg_pos(b), end_pos(e) { }
    Location() : beg_pos(0), end_pos(0) { }

    bool IsValid() const {
      return beg_pos >= 0 && end_pos >= beg_pos;
    }

    static Location invalid() { return Location(-1, -1); }

    int beg_pos;
    int end_pos;
  };

  // -1 is outside of the range of any real source code.
  static const int kNoOctalLocation = -1;

  explicit Scanner(UnicodeCache* scanner_contants);

  void Initialize(Utf16CharacterStream* source);

  // Returns the next token and advances input.
  Token::Value Next();
  // Returns the current token again.
  Token::Value current_token() { return current_.token; }
  // Returns the location information for the current token
  // (the token last returned by Next()).
  Location location() const { return current_.location; }

  // Similar functions for the upcoming token.

  // One token look-ahead (past the token returned by Next()).
  Token::Value peek() const { return next_.token; }

  Location peek_location() const { return next_.location; }

  bool literal_contains_escapes() const {
    Location location = current_.location;
    int source_length = (location.end_pos - location.beg_pos);
    if (current_.token == Token::STRING) {
      // Subtract delimiters.
      source_length -= 2;
    }
    return current_.literal_chars->length() != source_length;
  }
  bool is_literal_contextual_keyword(Vector<const char> keyword) {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->is_contextual_keyword(keyword);
  }
  bool is_next_contextual_keyword(Vector<const char> keyword) {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->is_contextual_keyword(keyword);
  }

  const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
  const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);

  double DoubleValue();
  bool UnescapedLiteralMatches(const char* data, int length) {
    if (is_literal_one_byte() &&
        literal_length() == length &&
        !literal_contains_escapes()) {
      const char* token =
          reinterpret_cast<const char*>(literal_one_byte_string().start());
      return !strncmp(token, data, length);
    }
    return false;
  }
  void IsGetOrSet(bool* is_get, bool* is_set) {
    if (is_literal_one_byte() &&
        literal_length() == 3 &&
        !literal_contains_escapes()) {
      const char* token =
          reinterpret_cast<const char*>(literal_one_byte_string().start());
      *is_get = strncmp(token, "get", 3) == 0;
      *is_set = !*is_get && strncmp(token, "set", 3) == 0;
    }
  }

  int FindNumber(DuplicateFinder* finder, int value);
  int FindSymbol(DuplicateFinder* finder, int value);

  UnicodeCache* unicode_cache() { return unicode_cache_; }

  // Returns the location of the last seen octal literal.
  Location octal_position() const { return octal_pos_; }
  void clear_octal_position() { octal_pos_ = Location::invalid(); }

  // Seek forward to the given position.  This operation does not
  // work in general, for instance when there are pushed back
  // characters, but works for seeking forward until simple delimiter
  // tokens, which is what it is used for.
  void SeekForward(int pos);

  bool HarmonyScoping() const {
    return harmony_scoping_;
  }
  void SetHarmonyScoping(bool scoping) {
    harmony_scoping_ = scoping;
  }
  bool HarmonyModules() const {
    return harmony_modules_;
  }
  void SetHarmonyModules(bool modules) {
    harmony_modules_ = modules;
  }
  bool HarmonyNumericLiterals() const {
    return harmony_numeric_literals_;
  }
  void SetHarmonyNumericLiterals(bool numeric_literals) {
    harmony_numeric_literals_ = numeric_literals;
  }
  bool HarmonyClasses() const {
    return harmony_classes_;
  }
  void SetHarmonyClasses(bool classes) {
    harmony_classes_ = classes;
  }

  // Returns true if there was a line terminator before the peek'ed token,
  // possibly inside a multi-line comment.
  bool HasAnyLineTerminatorBeforeNext() const {
    return has_line_terminator_before_next_ ||
           has_multiline_comment_before_next_;
  }

  // Scans the input as a regular expression pattern, previous
  // character(s) must be /(=). Returns true if a pattern is scanned.
  bool ScanRegExpPattern(bool seen_equal);
  // Returns true if regexp flags are scanned (always since flags can
  // be empty).
  bool ScanRegExpFlags();

  const LiteralBuffer* source_url() const { return &source_url_; }
  const LiteralBuffer* source_mapping_url() const {
    return &source_mapping_url_;
  }

  bool IdentifierIsFutureStrictReserved(const AstRawString* string) const;

 private:
  // The current and look-ahead token.
  struct TokenDesc {
    Token::Value token;
    Location location;
    LiteralBuffer* literal_chars;
  };

  static const int kCharacterLookaheadBufferSize = 1;

  // Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
  uc32 ScanOctalEscape(uc32 c, int length);

  // Call this after setting source_ to the input.
  void Init() {
    // Set c0_ (one character ahead)
    STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
    Advance();
    // Initialize current_ to not refer to a literal.
    current_.literal_chars = NULL;
  }

  // Literal buffer support
  inline void StartLiteral() {
    LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
            &literal_buffer2_ : &literal_buffer1_;
    free_buffer->Reset();
    next_.literal_chars = free_buffer;
  }

  INLINE(void AddLiteralChar(uc32 c)) {
    DCHECK_NOT_NULL(next_.literal_chars);
    next_.literal_chars->AddChar(c);
  }

  // Complete scanning of a literal.
  inline void TerminateLiteral() {
    // Does nothing in the current implementation.
  }

  // Stops scanning of a literal and drop the collected characters,
  // e.g., due to an encountered error.
  inline void DropLiteral() {
    next_.literal_chars = NULL;
  }

  inline void AddLiteralCharAdvance() {
    AddLiteralChar(c0_);
    Advance();
  }

  // Low-level scanning support.
  void Advance() { c0_ = source_->Advance(); }
  void PushBack(uc32 ch) {
    source_->PushBack(c0_);
    c0_ = ch;
  }

  inline Token::Value Select(Token::Value tok) {
    Advance();
    return tok;
  }

  inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
    Advance();
    if (c0_ == next) {
      Advance();
      return then;
    } else {
      return else_;
    }
  }

  // Returns the literal string, if any, for the current token (the
  // token last returned by Next()). The string is 0-terminated.
  // Literal strings are collected for identifiers, strings, and
  // numbers.
  // These functions only give the correct result if the literal
  // was scanned between calls to StartLiteral() and TerminateLiteral().
  Vector<const uint8_t> literal_one_byte_string() {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->one_byte_literal();
  }
  Vector<const uint16_t> literal_two_byte_string() {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->two_byte_literal();
  }
  bool is_literal_one_byte() {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->is_one_byte();
  }
  int literal_length() const {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->length();
  }
  // Returns the literal string for the next token (the token that
  // would be returned if Next() were called).
  Vector<const uint8_t> next_literal_one_byte_string() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->one_byte_literal();
  }
  Vector<const uint16_t> next_literal_two_byte_string() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->two_byte_literal();
  }
  bool is_next_literal_one_byte() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->is_one_byte();
  }
  int next_literal_length() const {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->length();
  }

  uc32 ScanHexNumber(int expected_length);

  // Scans a single JavaScript token.
  void Scan();

  bool SkipWhiteSpace();
  Token::Value SkipSingleLineComment();
  Token::Value SkipSourceURLComment();
  void TryToParseSourceURLComment();
  Token::Value SkipMultiLineComment();
  // Scans a possible HTML comment -- begins with '<!'.
  Token::Value ScanHtmlComment();

  void ScanDecimalDigits();
  Token::Value ScanNumber(bool seen_period);
  Token::Value ScanIdentifierOrKeyword();
  Token::Value ScanIdentifierSuffix(LiteralScope* literal);

  Token::Value ScanString();

  // Scans an escape-sequence which is part of a string and adds the
  // decoded character to the current literal. Returns true if a pattern
  // is scanned.
  bool ScanEscape();
  // Decodes a Unicode escape-sequence which is part of an identifier.
  // If the escape sequence cannot be decoded the result is kBadChar.
  uc32 ScanIdentifierUnicodeEscape();
  // Scans a Unicode escape-sequence and adds its characters,
  // uninterpreted, to the current literal. Used for parsing RegExp
  // flags.
  bool ScanLiteralUnicodeEscape();

  // Return the current source position.
  int source_pos() {
    return source_->pos() - kCharacterLookaheadBufferSize;
  }

  UnicodeCache* unicode_cache_;

  // Buffers collecting literal strings, numbers, etc.
  LiteralBuffer literal_buffer1_;
  LiteralBuffer literal_buffer2_;

  // Values parsed from magic comments.
  LiteralBuffer source_url_;
  LiteralBuffer source_mapping_url_;

  TokenDesc current_;  // desc for current token (as returned by Next())
  TokenDesc next_;     // desc for next token (one token look-ahead)

  // Input stream. Must be initialized to an Utf16CharacterStream.
  Utf16CharacterStream* source_;


  // Start position of the octal literal last scanned.
  Location octal_pos_;

  // One Unicode character look-ahead; c0_ < 0 at the end of the input.
  uc32 c0_;

  // Whether there is a line terminator whitespace character after
  // the current token, and  before the next. Does not count newlines
  // inside multiline comments.
  bool has_line_terminator_before_next_;
  // Whether there is a multi-line comment that contains a
  // line-terminator after the current token, and before the next.
  bool has_multiline_comment_before_next_;
  // Whether we scan 'let' as a keyword for harmony block-scoped let bindings.
  bool harmony_scoping_;
  // Whether we scan 'module', 'import', 'export' as keywords.
  bool harmony_modules_;
  // Whether we scan 0o777 and 0b111 as numbers.
  bool harmony_numeric_literals_;
  // Whether we scan 'class', 'extends', 'static' and 'super' as keywords.
  bool harmony_classes_;
};

} }  // namespace v8::internal

#endif  // V8_SCANNER_H_