summaryrefslogtreecommitdiff
path: root/deps/v8/src/runtime/runtime-array.cc
blob: 31b03f6bb7504471a57a3d7199eb307c9588fcd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/arguments-inl.h"
#include "src/code-stubs.h"
#include "src/conversions-inl.h"
#include "src/debug/debug.h"
#include "src/elements.h"
#include "src/heap/factory.h"
#include "src/isolate-inl.h"
#include "src/keys.h"
#include "src/messages.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/prototype.h"
#include "src/runtime/runtime-utils.h"

namespace v8 {
namespace internal {

RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
  CONVERT_ARG_HANDLE_CHECKED(Map, to_map, 1);
  ElementsKind to_kind = to_map->elements_kind();
  ElementsAccessor::ForKind(to_kind)->TransitionElementsKind(object, to_map);
  return *object;
}

namespace {
// Find the next free position. undefined and holes are both considered
// free spots. Returns "Nothing" if an exception occurred.
V8_WARN_UNUSED_RESULT
Maybe<uint32_t> FindNextFreePosition(Isolate* isolate,
                                     Handle<JSReceiver> receiver,
                                     uint32_t current_pos) {
  for (uint32_t position = current_pos;; ++position) {
    Maybe<bool> has_element = JSReceiver::HasElement(receiver, position);
    MAYBE_RETURN(has_element, Nothing<uint32_t>());
    if (!has_element.FromJust()) return Just(position);

    Handle<Object> element;
    ASSIGN_RETURN_ON_EXCEPTION_VALUE(
        isolate, element, JSReceiver::GetElement(isolate, receiver, position),
        Nothing<uint32_t>());
    if (element->IsUndefined(isolate)) return Just(position);
  }
}

// As RemoveArrayHoles, but also handles Dictionary elements that stay
// Dictionary (requires_slow_elements() is true), proxies and objects that
// might have accessors.
V8_WARN_UNUSED_RESULT
Object* RemoveArrayHolesGeneric(Isolate* isolate, Handle<JSReceiver> receiver,
                                uint32_t limit) {
  HandleScope scope(isolate);

  // For proxies, we do not collect the keys, instead we use all indices in
  // the full range of [0, limit).
  Handle<FixedArray> keys;
  if (!receiver->IsJSProxy()) {
    keys = JSReceiver::GetOwnElementIndices(isolate, receiver,
                                            Handle<JSObject>::cast(receiver));
  }

  uint32_t num_undefined = 0;
  uint32_t current_pos = 0;
  int num_indices = keys.is_null() ? limit : keys->length();

  // Compact keys with undefined values and moves non-undefined
  // values to the front.
  // The loop does two things simultaneously:
  //   (1) Count the number of 'undefined', i.e.
  //       i.e.: HasProperty(receiver, key) && Get(receiver, key) == undefined
  //   (2) Move all non-undefined values to the front. The variable current_pos
  //       is used to track free spots in the array starting at the beginning.
  //       Holes and 'undefined' are considered free spots.
  //       A hole is when HasElement(receiver, key) is false.
  for (int i = 0; i < num_indices; ++i) {
    uint32_t key = keys.is_null() ? i : NumberToUint32(keys->get(i));

    // We only care about array indices that are smaller than the limit.
    // The keys are sorted, so we can break as soon as we encounter the first.
    if (key >= limit) break;

    Maybe<bool> has_element = JSReceiver::HasElement(receiver, key);
    MAYBE_RETURN(has_element, ReadOnlyRoots(isolate).exception());
    if (!has_element.FromJust()) {
      continue;
    }

    Handle<Object> element;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, element, JSReceiver::GetElement(isolate, receiver, key));

    if (element->IsUndefined(isolate)) {
      ++num_undefined;
    } else {
      // Find next free position to move elements to.
      Maybe<uint32_t> free_position =
          FindNextFreePosition(isolate, receiver, current_pos);
      MAYBE_RETURN(free_position, ReadOnlyRoots(isolate).exception());
      current_pos = free_position.FromJust();

      // Do not move elements that are already in the "packed" area.
      if (key <= current_pos) continue;

      // array[current_pos] = array[key].
      // Deleting array[key] is done later. This is to preserve the same
      // semantics as the old JS implementation when working with non-extensible
      // objects:
      // If the array contains undefineds, the position at 'key' might later
      // bet set to 'undefined'. If we delete the element now and later set it
      // to undefined, the set operation would throw an exception.
      RETURN_FAILURE_ON_EXCEPTION(
          isolate, JSReceiver::SetElement(isolate, receiver, current_pos,
                                          element, LanguageMode::kStrict));
      ++current_pos;
    }
  }

  // Set [current_pos, current_pos + num_undefined) to undefined.
  uint32_t result = current_pos;
  for (uint32_t i = 0; i < num_undefined; ++i) {
    RETURN_FAILURE_ON_EXCEPTION(
        isolate, JSReceiver::SetElement(isolate, receiver, current_pos++,
                                        isolate->factory()->undefined_value(),
                                        LanguageMode::kStrict));
  }
  // TODO(szuend): Re-enable when we also copy from the prototype chain for
  //               JSArrays. Then we can use HasOwnProperty instead of
  //               HasElement and this condition will hold.
  // DCHECK_LE(current_pos, num_indices);

  // Deleting everything after the undefineds up unto the limit.
  for (int i = num_indices - 1; i >= 0; --i) {
    uint32_t key = keys.is_null() ? i : NumberToUint32(keys->get(i));
    if (key < current_pos) break;
    if (key >= limit) continue;

    Maybe<bool> delete_result = JSReceiver::DeleteElement(receiver, key);
    MAYBE_RETURN(delete_result, ReadOnlyRoots(isolate).exception());
  }

  return *isolate->factory()->NewNumberFromUint(result);
}

// Collects all defined (non-hole) and non-undefined (array) elements at the
// start of the elements array.  If the object is in dictionary mode, it is
// converted to fast elements mode.  Undefined values are placed after
// non-undefined values.  Returns the number of non-undefined values.
V8_WARN_UNUSED_RESULT
Object* RemoveArrayHoles(Isolate* isolate, Handle<JSReceiver> receiver,
                         uint32_t limit) {
  if (receiver->IsJSProxy()) {
    return RemoveArrayHolesGeneric(isolate, receiver, limit);
  }

  Handle<JSObject> object = Handle<JSObject>::cast(receiver);
  if (object->HasStringWrapperElements()) {
    int len = String::cast(Handle<JSValue>::cast(object)->value())->length();
    return Smi::FromInt(len);
  }

  if (object->HasSloppyArgumentsElements() || !object->map()->is_extensible()) {
    return RemoveArrayHolesGeneric(isolate, receiver, limit);
  }

  JSObject::ValidateElements(*object);
  if (object->HasDictionaryElements()) {
    // Convert to fast elements containing only the existing properties.
    // Ordering is irrelevant, since we are going to sort anyway.
    Handle<NumberDictionary> dict(object->element_dictionary(), isolate);
    if (object->IsJSArray() || dict->requires_slow_elements() ||
        dict->max_number_key() >= limit) {
      return RemoveArrayHolesGeneric(isolate, receiver, limit);
    }
    // Convert to fast elements.
    Handle<Map> new_map =
        JSObject::GetElementsTransitionMap(object, HOLEY_ELEMENTS);

    PretenureFlag tenure = Heap::InNewSpace(*object) ? NOT_TENURED : TENURED;
    Handle<FixedArray> fast_elements =
        isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
    dict->CopyValuesTo(*fast_elements);

    JSObject::SetMapAndElements(object, new_map, fast_elements);
    JSObject::ValidateElements(*object);
  } else if (object->HasFixedTypedArrayElements()) {
    // Typed arrays cannot have holes or undefined elements.
    int array_length = FixedArrayBase::cast(object->elements())->length();
    return Smi::FromInt(Min(limit, static_cast<uint32_t>(array_length)));
  } else if (!object->HasDoubleElements()) {
    JSObject::EnsureWritableFastElements(object);
  }
  DCHECK(object->HasSmiOrObjectElements() || object->HasDoubleElements());

  // Collect holes at the end, undefined before that and the rest at the
  // start, and return the number of non-hole, non-undefined values.

  Handle<FixedArrayBase> elements_base(object->elements(), isolate);
  uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
  if (limit > elements_length) {
    limit = elements_length;
  }
  if (limit == 0) {
    return Smi::kZero;
  }

  uint32_t result = 0;
  if (elements_base->map() == ReadOnlyRoots(isolate).fixed_double_array_map()) {
    FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
    // Split elements into defined and the_hole, in that order.
    unsigned int holes = limit;
    // Assume most arrays contain no holes and undefined values, so minimize the
    // number of stores of non-undefined, non-the-hole values.
    for (unsigned int i = 0; i < holes; i++) {
      if (elements->is_the_hole(i)) {
        holes--;
      } else {
        continue;
      }
      // Position i needs to be filled.
      while (holes > i) {
        if (elements->is_the_hole(holes)) {
          holes--;
        } else {
          elements->set(i, elements->get_scalar(holes));
          break;
        }
      }
    }
    result = holes;
    while (holes < limit) {
      elements->set_the_hole(holes);
      holes++;
    }
  } else {
    FixedArray* elements = FixedArray::cast(*elements_base);
    DisallowHeapAllocation no_gc;

    // Split elements into defined, undefined and the_hole, in that order.  Only
    // count locations for undefined and the hole, and fill them afterwards.
    WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
    unsigned int undefs = limit;
    unsigned int holes = limit;
    // Assume most arrays contain no holes and undefined values, so minimize the
    // number of stores of non-undefined, non-the-hole values.
    for (unsigned int i = 0; i < undefs; i++) {
      Object* current = elements->get(i);
      if (current->IsTheHole(isolate)) {
        holes--;
        undefs--;
      } else if (current->IsUndefined(isolate)) {
        undefs--;
      } else {
        continue;
      }
      // Position i needs to be filled.
      while (undefs > i) {
        current = elements->get(undefs);
        if (current->IsTheHole(isolate)) {
          holes--;
          undefs--;
        } else if (current->IsUndefined(isolate)) {
          undefs--;
        } else {
          elements->set(i, current, write_barrier);
          break;
        }
      }
    }
    result = undefs;
    while (undefs < holes) {
      elements->set_undefined(isolate, undefs);
      undefs++;
    }
    while (holes < limit) {
      elements->set_the_hole(isolate, holes);
      holes++;
    }
  }

  return *isolate->factory()->NewNumberFromUint(result);
}

// Copy element at index from source to target only if target does not have the
// element on its own. Returns true if a copy occurred, false if not
// and Nothing if an exception occurred.
V8_WARN_UNUSED_RESULT
Maybe<bool> ConditionalCopy(Isolate* isolate, Handle<JSReceiver> source,
                            Handle<JSReceiver> target, uint32_t index) {
  Maybe<bool> source_has_prop = JSReceiver::HasOwnProperty(source, index);
  MAYBE_RETURN(source_has_prop, Nothing<bool>());
  if (!source_has_prop.FromJust()) return Just(false);

  Maybe<bool> target_has_prop = JSReceiver::HasOwnProperty(target, index);
  MAYBE_RETURN(target_has_prop, Nothing<bool>());
  if (target_has_prop.FromJust()) return Just(false);

  Handle<Object> source_element;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate, source_element, JSReceiver::GetElement(isolate, source, index),
      Nothing<bool>());

  Handle<Object> set_result;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate, set_result,
      JSReceiver::SetElement(isolate, target, index, source_element,
                             LanguageMode::kStrict),
      Nothing<bool>());

  return Just(true);
}

// Copy elements in the range 0..length from objects prototype chain
// to object itself, if object has holes. Returns null on error and undefined on
// success.
V8_WARN_UNUSED_RESULT
MaybeHandle<Object> CopyFromPrototype(Isolate* isolate,
                                      Handle<JSReceiver> object,
                                      uint32_t length) {
  for (PrototypeIterator iter(isolate, object, kStartAtPrototype);
       !iter.IsAtEnd(); iter.Advance()) {
    Handle<JSReceiver> current(PrototypeIterator::GetCurrent<JSReceiver>(iter));

    if (current->IsJSProxy()) {
      for (uint32_t i = 0; i < length; ++i) {
        MAYBE_RETURN_NULL(ConditionalCopy(isolate, current, object, i));
      }
    } else {
      Handle<FixedArray> keys = JSReceiver::GetOwnElementIndices(
          isolate, object, Handle<JSObject>::cast(current));

      uint32_t num_indices = keys->length();
      for (uint32_t i = 0; i < num_indices; ++i) {
        uint32_t idx = NumberToUint32(keys->get(i));

        // Prototype might have indices that go past length, but we are only
        // interested in the range [0, length).
        if (idx >= length) break;

        MAYBE_RETURN_NULL(ConditionalCopy(isolate, current, object, idx));
      }
    }
  }
  return isolate->factory()->undefined_value();
}

}  // namespace

RUNTIME_FUNCTION(Runtime_PrepareElementsForSort) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);

  if (isolate->debug_execution_mode() == DebugInfo::kSideEffects) {
    if (!isolate->debug()->PerformSideEffectCheckForObject(object)) {
      return ReadOnlyRoots(isolate).exception();
    }
  }

  // Counter for sorting arrays that have non-packed elements and where either
  // the ElementsProtector is invalid or the prototype does not match
  // Array.prototype.
  if (object->IsJSArray() &&
      !Handle<JSArray>::cast(object)->HasFastPackedElements()) {
    JSObject* initial_array_proto = JSObject::cast(
        isolate->native_context()->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
    if (!isolate->IsNoElementsProtectorIntact() ||
        object->map()->prototype() != initial_array_proto) {
      isolate->CountUsage(
          v8::Isolate::kArrayPrototypeSortJSArrayModifiedPrototype);
    }
  }

  if (!object->IsJSArray()) {
    RETURN_FAILURE_ON_EXCEPTION(isolate,
                                CopyFromPrototype(isolate, object, length));
  }
  return RemoveArrayHoles(isolate, object, length);
}

// Move contents of argument 0 (an array) to argument 1 (an array)
RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
  CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
  JSObject::ValidateElements(*from);
  JSObject::ValidateElements(*to);

  Handle<FixedArrayBase> new_elements(from->elements(), isolate);
  ElementsKind from_kind = from->GetElementsKind();
  Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
  JSObject::SetMapAndElements(to, new_map, new_elements);
  to->set_length(from->length());

  from->initialize_elements();
  from->set_length(Smi::kZero);

  JSObject::ValidateElements(*to);
  return *to;
}


// How many elements does this object/array have?
RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
  DisallowHeapAllocation no_gc;
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_CHECKED(JSArray, array, 0);
  FixedArrayBase* elements = array->elements();
  SealHandleScope shs(isolate);
  if (elements->IsNumberDictionary()) {
    int result = NumberDictionary::cast(elements)->NumberOfElements();
    return Smi::FromInt(result);
  } else {
    DCHECK(array->length()->IsSmi());
    // For packed elements, we know the exact number of elements
    int length = elements->length();
    ElementsKind kind = array->GetElementsKind();
    if (IsFastPackedElementsKind(kind)) {
      return Smi::FromInt(length);
    }
    // For holey elements, take samples from the buffer checking for holes
    // to generate the estimate.
    const int kNumberOfHoleCheckSamples = 97;
    int increment = (length < kNumberOfHoleCheckSamples)
                        ? 1
                        : static_cast<int>(length / kNumberOfHoleCheckSamples);
    ElementsAccessor* accessor = array->GetElementsAccessor();
    int holes = 0;
    for (int i = 0; i < length; i += increment) {
      if (!accessor->HasElement(array, i, elements)) {
        ++holes;
      }
    }
    int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
                                    kNumberOfHoleCheckSamples * length);
    return Smi::FromInt(estimate);
  }
}


// Returns an array that tells you where in the [0, length) interval an array
// might have elements.  Can either return an array of keys (positive integers
// or undefined) or a number representing the positive length of an interval
// starting at index 0.
// Intervals can span over some keys that are not in the object.
RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
  ElementsKind kind = array->GetElementsKind();

  if (IsFastElementsKind(kind) || IsFixedTypedArrayElementsKind(kind)) {
    uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
    return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
  }

  if (kind == FAST_STRING_WRAPPER_ELEMENTS) {
    int string_length =
        String::cast(Handle<JSValue>::cast(array)->value())->length();
    int backing_store_length = array->elements()->length();
    return *isolate->factory()->NewNumberFromUint(
        Min(length,
            static_cast<uint32_t>(Max(string_length, backing_store_length))));
  }

  KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly,
                             ALL_PROPERTIES);
  for (PrototypeIterator iter(isolate, array, kStartAtReceiver);
       !iter.IsAtEnd(); iter.Advance()) {
    Handle<JSReceiver> current(PrototypeIterator::GetCurrent<JSReceiver>(iter));
    if (current->HasComplexElements()) {
      return *isolate->factory()->NewNumberFromUint(length);
    }
    accumulator.CollectOwnElementIndices(array,
                                         Handle<JSObject>::cast(current));
  }
  // Erase any keys >= length.
  Handle<FixedArray> keys =
      accumulator.GetKeys(GetKeysConversion::kKeepNumbers);
  int j = 0;
  for (int i = 0; i < keys->length(); i++) {
    if (NumberToUint32(keys->get(i)) >= length) continue;
    if (i != j) keys->set(j, keys->get(i));
    j++;
  }

  keys = FixedArray::ShrinkOrEmpty(isolate, keys, j);
  return *isolate->factory()->NewJSArrayWithElements(keys);
}

RUNTIME_FUNCTION(Runtime_TrySliceSimpleNonFastElements) {
  HandleScope scope(isolate);
  DCHECK_EQ(3, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
  CONVERT_SMI_ARG_CHECKED(first, 1);
  CONVERT_SMI_ARG_CHECKED(count, 2);
  uint32_t length = first + count;

  // Only handle elements kinds that have a ElementsAccessor Slice
  // implementation.
  if (receiver->IsJSArray()) {
    // This "fastish" path must make sure the destination array is a JSArray.
    if (!isolate->IsArraySpeciesLookupChainIntact() ||
        !JSArray::cast(*receiver)->HasArrayPrototype(isolate)) {
      return Smi::FromInt(0);
    }
  } else {
    int len;
    if (!receiver->IsJSObject() ||
        !JSSloppyArgumentsObject::GetSloppyArgumentsLength(
            isolate, Handle<JSObject>::cast(receiver), &len) ||
        (length > static_cast<uint32_t>(len))) {
      return Smi::FromInt(0);
    }
  }

  // This "fastish" path must also ensure that elements are simple (no
  // geters/setters), no elements on prototype chain.
  Handle<JSObject> object(Handle<JSObject>::cast(receiver));
  if (!JSObject::PrototypeHasNoElements(isolate, *object) ||
      object->HasComplexElements()) {
    return Smi::FromInt(0);
  }

  ElementsAccessor* accessor = object->GetElementsAccessor();
  return *accessor->Slice(object, first, length);
}

RUNTIME_FUNCTION(Runtime_NewArray) {
  HandleScope scope(isolate);
  DCHECK_LE(3, args.length());
  int const argc = args.length() - 3;
  // TODO(bmeurer): Remove this Arguments nonsense.
  Arguments argv(argc, args.arguments() - 1);
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, new_target, argc + 1);
  CONVERT_ARG_HANDLE_CHECKED(HeapObject, type_info, argc + 2);
  // TODO(bmeurer): Use MaybeHandle to pass around the AllocationSite.
  Handle<AllocationSite> site = type_info->IsAllocationSite()
                                    ? Handle<AllocationSite>::cast(type_info)
                                    : Handle<AllocationSite>::null();

  Factory* factory = isolate->factory();

  // If called through new, new.target can be:
  // - a subclass of constructor,
  // - a proxy wrapper around constructor, or
  // - the constructor itself.
  // If called through Reflect.construct, it's guaranteed to be a constructor by
  // REFLECT_CONSTRUCT_PREPARE.
  DCHECK(new_target->IsConstructor());

  bool holey = false;
  bool can_use_type_feedback = !site.is_null();
  bool can_inline_array_constructor = true;
  if (argv.length() == 1) {
    Handle<Object> argument_one = argv.at<Object>(0);
    if (argument_one->IsSmi()) {
      int value = Handle<Smi>::cast(argument_one)->value();
      if (value < 0 ||
          JSArray::SetLengthWouldNormalize(isolate->heap(), value)) {
        // the array is a dictionary in this case.
        can_use_type_feedback = false;
      } else if (value != 0) {
        holey = true;
        if (value >= JSArray::kInitialMaxFastElementArray) {
          can_inline_array_constructor = false;
        }
      }
    } else {
      // Non-smi length argument produces a dictionary
      can_use_type_feedback = false;
    }
  }

  Handle<Map> initial_map;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, initial_map,
      JSFunction::GetDerivedMap(isolate, constructor, new_target));

  ElementsKind to_kind = can_use_type_feedback ? site->GetElementsKind()
                                               : initial_map->elements_kind();
  if (holey && !IsHoleyElementsKind(to_kind)) {
    to_kind = GetHoleyElementsKind(to_kind);
    // Update the allocation site info to reflect the advice alteration.
    if (!site.is_null()) site->SetElementsKind(to_kind);
  }

  // We should allocate with an initial map that reflects the allocation site
  // advice. Therefore we use AllocateJSObjectFromMap instead of passing
  // the constructor.
  initial_map = Map::AsElementsKind(isolate, initial_map, to_kind);

  // If we don't care to track arrays of to_kind ElementsKind, then
  // don't emit a memento for them.
  Handle<AllocationSite> allocation_site;
  if (AllocationSite::ShouldTrack(to_kind)) {
    allocation_site = site;
  }

  Handle<JSArray> array = Handle<JSArray>::cast(
      factory->NewJSObjectFromMap(initial_map, NOT_TENURED, allocation_site));

  factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);

  ElementsKind old_kind = array->GetElementsKind();
  RETURN_FAILURE_ON_EXCEPTION(isolate,
                              ArrayConstructInitializeElements(array, &argv));
  if (!site.is_null()) {
    if ((old_kind != array->GetElementsKind() || !can_use_type_feedback ||
         !can_inline_array_constructor)) {
      // The arguments passed in caused a transition. This kind of complexity
      // can't be dealt with in the inlined optimized array constructor case.
      // We must mark the allocationsite as un-inlinable.
      site->SetDoNotInlineCall();
    }
  } else {
    if (old_kind != array->GetElementsKind() || !can_inline_array_constructor) {
      // We don't have an AllocationSite for this Array constructor invocation,
      // i.e. it might a call from Array#map or from an Array subclass, so we
      // just flip the bit on the global protector cell instead.
      // TODO(bmeurer): Find a better way to mark this. Global protectors
      // tend to back-fire over time...
      if (isolate->IsArrayConstructorIntact()) {
        isolate->InvalidateArrayConstructorProtector();
      }
    }
  }

  return *array;
}

RUNTIME_FUNCTION(Runtime_NormalizeElements) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
  CHECK(!array->HasFixedTypedArrayElements());
  CHECK(!array->IsJSGlobalProxy());
  JSObject::NormalizeElements(array);
  return *array;
}

// GrowArrayElements returns a sentinel Smi if the object was normalized or if
// the key is negative.
RUNTIME_FUNCTION(Runtime_GrowArrayElements) {
  HandleScope scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
  CONVERT_NUMBER_CHECKED(int, key, Int32, args[1]);

  if (key < 0) return Smi::kZero;

  uint32_t capacity = static_cast<uint32_t>(object->elements()->length());
  uint32_t index = static_cast<uint32_t>(key);

  if (index >= capacity) {
    if (!object->GetElementsAccessor()->GrowCapacity(object, index)) {
      return Smi::kZero;
    }
  }

  return object->elements();
}


RUNTIME_FUNCTION(Runtime_HasComplexElements) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
  for (PrototypeIterator iter(isolate, array, kStartAtReceiver);
       !iter.IsAtEnd(); iter.Advance()) {
    if (PrototypeIterator::GetCurrent<JSReceiver>(iter)->HasComplexElements()) {
      return ReadOnlyRoots(isolate).true_value();
    }
  }
  return ReadOnlyRoots(isolate).false_value();
}

// ES6 22.1.2.2 Array.isArray
RUNTIME_FUNCTION(Runtime_ArrayIsArray) {
  HandleScope shs(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
  Maybe<bool> result = Object::IsArray(object);
  MAYBE_RETURN(result, ReadOnlyRoots(isolate).exception());
  return isolate->heap()->ToBoolean(result.FromJust());
}

RUNTIME_FUNCTION(Runtime_IsArray) {
  SealHandleScope shs(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_CHECKED(Object, obj, 0);
  return isolate->heap()->ToBoolean(obj->IsJSArray());
}

RUNTIME_FUNCTION(Runtime_ArraySpeciesConstructor) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, original_array, 0);
  RETURN_RESULT_OR_FAILURE(
      isolate, Object::ArraySpeciesConstructor(isolate, original_array));
}

// ES7 22.1.3.11 Array.prototype.includes
RUNTIME_FUNCTION(Runtime_ArrayIncludes_Slow) {
  HandleScope shs(isolate);
  DCHECK_EQ(3, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, search_element, 1);
  CONVERT_ARG_HANDLE_CHECKED(Object, from_index, 2);

  // Let O be ? ToObject(this value).
  Handle<JSReceiver> object;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, object, Object::ToObject(isolate, handle(args[0], isolate)));

  // Let len be ? ToLength(? Get(O, "length")).
  int64_t len;
  {
    if (object->map()->instance_type() == JS_ARRAY_TYPE) {
      uint32_t len32 = 0;
      bool success = JSArray::cast(*object)->length()->ToArrayLength(&len32);
      DCHECK(success);
      USE(success);
      len = len32;
    } else {
      Handle<Object> len_;
      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
          isolate, len_,
          Object::GetProperty(isolate, object,
                              isolate->factory()->length_string()));

      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, len_,
                                         Object::ToLength(isolate, len_));
      len = static_cast<int64_t>(len_->Number());
      DCHECK_EQ(len, len_->Number());
    }
  }

  if (len == 0) return ReadOnlyRoots(isolate).false_value();

  // Let n be ? ToInteger(fromIndex). (If fromIndex is undefined, this step
  // produces the value 0.)
  int64_t index = 0;
  if (!from_index->IsUndefined(isolate)) {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, from_index,
                                       Object::ToInteger(isolate, from_index));

    if (V8_LIKELY(from_index->IsSmi())) {
      int start_from = Smi::ToInt(*from_index);
      if (start_from < 0) {
        index = std::max<int64_t>(len + start_from, 0);
      } else {
        index = start_from;
      }
    } else {
      DCHECK(from_index->IsHeapNumber());
      double start_from = from_index->Number();
      if (start_from >= len) return ReadOnlyRoots(isolate).false_value();
      if (V8_LIKELY(std::isfinite(start_from))) {
        if (start_from < 0) {
          index = static_cast<int64_t>(std::max<double>(start_from + len, 0));
        } else {
          index = start_from;
        }
      }
    }

    DCHECK_GE(index, 0);
  }

  // If the receiver is not a special receiver type, and the length is a valid
  // element index, perform fast operation tailored to specific ElementsKinds.
  if (!object->map()->IsSpecialReceiverMap() && len < kMaxUInt32 &&
      JSObject::PrototypeHasNoElements(isolate, JSObject::cast(*object))) {
    Handle<JSObject> obj = Handle<JSObject>::cast(object);
    ElementsAccessor* elements = obj->GetElementsAccessor();
    Maybe<bool> result = elements->IncludesValue(isolate, obj, search_element,
                                                 static_cast<uint32_t>(index),
                                                 static_cast<uint32_t>(len));
    MAYBE_RETURN(result, ReadOnlyRoots(isolate).exception());
    return *isolate->factory()->ToBoolean(result.FromJust());
  }

  // Otherwise, perform slow lookups for special receiver types
  for (; index < len; ++index) {
    // Let elementK be the result of ? Get(O, ! ToString(k)).
    Handle<Object> element_k;
    {
      Handle<Object> index_obj = isolate->factory()->NewNumberFromInt64(index);
      bool success;
      LookupIterator it = LookupIterator::PropertyOrElement(
          isolate, object, index_obj, &success);
      DCHECK(success);
      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, element_k,
                                         Object::GetProperty(&it));
    }

    // If SameValueZero(searchElement, elementK) is true, return true.
    if (search_element->SameValueZero(*element_k)) {
      return ReadOnlyRoots(isolate).true_value();
    }
  }
  return ReadOnlyRoots(isolate).false_value();
}

RUNTIME_FUNCTION(Runtime_ArrayIndexOf) {
  HandleScope shs(isolate);
  DCHECK_EQ(3, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, search_element, 1);
  CONVERT_ARG_HANDLE_CHECKED(Object, from_index, 2);

  // Let O be ? ToObject(this value).
  Handle<JSReceiver> object;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, object,
      Object::ToObject(isolate, args.at(0), "Array.prototype.indexOf"));

  // Let len be ? ToLength(? Get(O, "length")).
  int64_t len;
  {
    if (object->IsJSArray()) {
      uint32_t len32 = 0;
      bool success = JSArray::cast(*object)->length()->ToArrayLength(&len32);
      DCHECK(success);
      USE(success);
      len = len32;
    } else {
      Handle<Object> len_;
      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
          isolate, len_,
          Object::GetProperty(isolate, object,
                              isolate->factory()->length_string()));

      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, len_,
                                         Object::ToLength(isolate, len_));
      len = static_cast<int64_t>(len_->Number());
      DCHECK_EQ(len, len_->Number());
    }
  }

  if (len == 0) return Smi::FromInt(-1);

  // Let n be ? ToInteger(fromIndex). (If fromIndex is undefined, this step
  // produces the value 0.)
  int64_t start_from;
  {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, from_index,
                                       Object::ToInteger(isolate, from_index));
    double fp = from_index->Number();
    if (fp > len) return Smi::FromInt(-1);
    if (V8_LIKELY(fp >=
                  static_cast<double>(std::numeric_limits<int64_t>::min()))) {
      DCHECK(fp < std::numeric_limits<int64_t>::max());
      start_from = static_cast<int64_t>(fp);
    } else {
      start_from = std::numeric_limits<int64_t>::min();
    }
  }

  int64_t index;
  if (start_from >= 0) {
    index = start_from;
  } else {
    index = len + start_from;
    if (index < 0) {
      index = 0;
    }
  }

  // If the receiver is not a special receiver type, and the length is a valid
  // element index, perform fast operation tailored to specific ElementsKinds.
  if (!object->map()->IsSpecialReceiverMap() && len < kMaxUInt32 &&
      JSObject::PrototypeHasNoElements(isolate, JSObject::cast(*object))) {
    Handle<JSObject> obj = Handle<JSObject>::cast(object);
    ElementsAccessor* elements = obj->GetElementsAccessor();
    Maybe<int64_t> result = elements->IndexOfValue(isolate, obj, search_element,
                                                   static_cast<uint32_t>(index),
                                                   static_cast<uint32_t>(len));
    MAYBE_RETURN(result, ReadOnlyRoots(isolate).exception());
    return *isolate->factory()->NewNumberFromInt64(result.FromJust());
  }

  // Otherwise, perform slow lookups for special receiver types
  for (; index < len; ++index) {
    // Let elementK be the result of ? Get(O, ! ToString(k)).
    Handle<Object> element_k;
    {
      Handle<Object> index_obj = isolate->factory()->NewNumberFromInt64(index);
      bool success;
      LookupIterator it = LookupIterator::PropertyOrElement(
          isolate, object, index_obj, &success);
      DCHECK(success);
      Maybe<bool> present = JSReceiver::HasProperty(&it);
      MAYBE_RETURN(present, ReadOnlyRoots(isolate).exception());
      if (!present.FromJust()) continue;
      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, element_k,
                                         Object::GetProperty(&it));
      if (search_element->StrictEquals(*element_k)) {
        return *index_obj;
      }
    }
  }
  return Smi::FromInt(-1);
}

}  // namespace internal
}  // namespace v8