summaryrefslogtreecommitdiff
path: root/deps/v8/src/regexp/regexp-interpreter.cc
blob: cf2fb55e4a861ce4916f9c27ac0fde1c3085f84f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// A simple interpreter for the Irregexp byte code.

#include "src/regexp/regexp-interpreter.h"

#include "src/ast/ast.h"
#include "src/base/small-vector.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/objects-inl.h"
#include "src/regexp/regexp-bytecodes.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp.h"
#include "src/strings/unicode.h"
#include "src/utils/utils.h"

#ifdef V8_INTL_SUPPORT
#include "unicode/uchar.h"
#endif  // V8_INTL_SUPPORT

// Use token threaded dispatch iff the compiler supports computed gotos and the
// build argument v8_enable_regexp_interpreter_threaded_dispatch was set.
#if V8_HAS_COMPUTED_GOTO && \
    defined(V8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH)
#define V8_USE_COMPUTED_GOTO 1
#endif  // V8_HAS_COMPUTED_GOTO

namespace v8 {
namespace internal {

namespace {

bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len,
                          Vector<const uc16> subject, bool unicode) {
  Address offset_a =
      reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(from)));
  Address offset_b =
      reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(current)));
  size_t length = len * kUC16Size;
  return RegExpMacroAssembler::CaseInsensitiveCompareUC16(
             offset_a, offset_b, length, unicode ? nullptr : isolate) == 1;
}

bool BackRefMatchesNoCase(Isolate* isolate, int from, int current, int len,
                          Vector<const uint8_t> subject, bool unicode) {
  // For Latin1 characters the unicode flag makes no difference.
  for (int i = 0; i < len; i++) {
    unsigned int old_char = subject[from++];
    unsigned int new_char = subject[current++];
    if (old_char == new_char) continue;
    // Convert both characters to lower case.
    old_char |= 0x20;
    new_char |= 0x20;
    if (old_char != new_char) return false;
    // Not letters in the ASCII range and Latin-1 range.
    if (!(old_char - 'a' <= 'z' - 'a') &&
        !(old_char - 224 <= 254 - 224 && old_char != 247)) {
      return false;
    }
  }
  return true;
}

void DisassembleSingleBytecode(const byte* code_base, const byte* pc) {
  PrintF("%s", RegExpBytecodeName(*pc));

  // Args and the bytecode as hex.
  for (int i = 0; i < RegExpBytecodeLength(*pc); i++) {
    PrintF(", %02x", pc[i]);
  }
  PrintF(" ");

  // Args as ascii.
  for (int i = 1; i < RegExpBytecodeLength(*pc); i++) {
    unsigned char b = pc[i];
    PrintF("%c", std::isprint(b) ? b : '.');
  }
  PrintF("\n");
}

#ifdef DEBUG
void MaybeTraceInterpreter(const byte* code_base, const byte* pc,
                           int stack_depth, int current_position,
                           uint32_t current_char, int bytecode_length,
                           const char* bytecode_name) {
  if (FLAG_trace_regexp_bytecodes) {
    const bool printable = std::isprint(current_char);
    const char* format =
        printable
            ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = "
            : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = ";
    PrintF(format, pc - code_base, stack_depth, current_position, current_char,
           printable ? current_char : '.');

    DisassembleSingleBytecode(code_base, pc);
  }
}
#endif  // DEBUG

int32_t Load32Aligned(const byte* pc) {
  DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 3);
  return *reinterpret_cast<const int32_t*>(pc);
}

int32_t Load16Aligned(const byte* pc) {
  DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 1);
  return *reinterpret_cast<const uint16_t*>(pc);
}

// A simple abstraction over the backtracking stack used by the interpreter.
//
// Despite the name 'backtracking' stack, it's actually used as a generic stack
// that stores both program counters (= offsets into the bytecode) and generic
// integer values.
class BacktrackStack {
 public:
  BacktrackStack() = default;

  void push(int v) { data_.emplace_back(v); }
  int peek() const {
    DCHECK(!data_.empty());
    return data_.back();
  }
  int pop() {
    int v = peek();
    data_.pop_back();
    return v;
  }

  // The 'sp' is the index of the first empty element in the stack.
  int sp() const { return static_cast<int>(data_.size()); }
  void set_sp(int new_sp) {
    DCHECK_LE(new_sp, sp());
    data_.resize_no_init(new_sp);
  }

 private:
  // Semi-arbitrary. Should be large enough for common cases to remain in the
  // static stack-allocated backing store, but small enough not to waste space.
  static constexpr int kStaticCapacity = 64;

  base::SmallVector<int, kStaticCapacity> data_;

  DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
};

IrregexpInterpreter::Result StackOverflow(Isolate* isolate,
                                          RegExp::CallOrigin call_origin) {
  CHECK(call_origin == RegExp::CallOrigin::kFromRuntime);
  // We abort interpreter execution after the stack overflow is thrown, and thus
  // allow allocation here despite the outer DisallowHeapAllocationScope.
  AllowHeapAllocation yes_gc;
  isolate->StackOverflow();
  return IrregexpInterpreter::EXCEPTION;
}

template <typename Char>
void UpdateCodeAndSubjectReferences(
    Isolate* isolate, Handle<ByteArray> code_array,
    Handle<String> subject_string, ByteArray* code_array_out,
    const byte** code_base_out, const byte** pc_out, String* subject_string_out,
    Vector<const Char>* subject_string_vector_out) {
  DisallowHeapAllocation no_gc;

  if (*code_base_out != code_array->GetDataStartAddress()) {
    *code_array_out = *code_array;
    const intptr_t pc_offset = *pc_out - *code_base_out;
    DCHECK_GT(pc_offset, 0);
    *code_base_out = code_array->GetDataStartAddress();
    *pc_out = *code_base_out + pc_offset;
  }

  DCHECK(subject_string->IsFlat());
  *subject_string_out = *subject_string;
  *subject_string_vector_out = subject_string->GetCharVector<Char>(no_gc);
}

// Runs all pending interrupts and updates unhandlified object references if
// necessary.
template <typename Char>
IrregexpInterpreter::Result HandleInterrupts(
    Isolate* isolate, RegExp::CallOrigin call_origin, ByteArray* code_array_out,
    String* subject_string_out, const byte** code_base_out,
    Vector<const Char>* subject_string_vector_out, const byte** pc_out) {
  DisallowHeapAllocation no_gc;

  StackLimitCheck check(isolate);
  bool js_has_overflowed = check.JsHasOverflowed();

  if (call_origin == RegExp::CallOrigin::kFromJs) {
    // Direct calls from JavaScript can be interrupted in two ways:
    // 1. A real stack overflow, in which case we let the caller throw the
    //    exception.
    // 2. The stack guard was used to interrupt execution for another purpose,
    //    forcing the call through the runtime system.
    if (js_has_overflowed) {
      return IrregexpInterpreter::EXCEPTION;
    } else if (check.InterruptRequested()) {
      return IrregexpInterpreter::RETRY;
    }
  } else {
    DCHECK(call_origin == RegExp::CallOrigin::kFromRuntime);
    // Prepare for possible GC.
    HandleScope handles(isolate);
    Handle<ByteArray> code_handle(*code_array_out, isolate);
    Handle<String> subject_handle(*subject_string_out, isolate);

    if (js_has_overflowed) {
      return StackOverflow(isolate, call_origin);
    } else if (check.InterruptRequested()) {
      const bool was_one_byte =
          String::IsOneByteRepresentationUnderneath(*subject_string_out);
      Object result;
      {
        AllowHeapAllocation yes_gc;
        result = isolate->stack_guard()->HandleInterrupts();
      }
      if (result.IsException(isolate)) {
        return IrregexpInterpreter::EXCEPTION;
      }

      // If we changed between a LATIN1 and a UC16 string, we need to restart
      // regexp matching with the appropriate template instantiation of
      // RawMatch.
      if (String::IsOneByteRepresentationUnderneath(*subject_handle) !=
          was_one_byte) {
        return IrregexpInterpreter::RETRY;
      }

      UpdateCodeAndSubjectReferences(
          isolate, code_handle, subject_handle, code_array_out, code_base_out,
          pc_out, subject_string_out, subject_string_vector_out);
    }
  }

  return IrregexpInterpreter::SUCCESS;
}

// If computed gotos are supported by the compiler, we can get addresses to
// labels directly in C/C++. Every bytecode handler has its own label and we
// store the addresses in a dispatch table indexed by bytecode. To execute the
// next handler we simply jump (goto) directly to its address.
#if V8_USE_COMPUTED_GOTO
#define BC_LABEL(name) BC_##name:
#define DECODE()                                                   \
  do {                                                             \
    next_insn = Load32Aligned(next_pc);                            \
    next_handler_addr = dispatch_table[next_insn & BYTECODE_MASK]; \
  } while (false)
#define DISPATCH()  \
  pc = next_pc;     \
  insn = next_insn; \
  goto* next_handler_addr
// Without computed goto support, we fall back to a simple switch-based
// dispatch (A large switch statement inside a loop with a case for every
// bytecode).
#else  // V8_USE_COMPUTED_GOTO
#define BC_LABEL(name) case BC_##name:
#define DECODE() next_insn = Load32Aligned(next_pc)
#define DISPATCH()  \
  pc = next_pc;     \
  insn = next_insn; \
  break
#endif  // V8_USE_COMPUTED_GOTO

// ADVANCE/SET_PC_FROM_OFFSET are separated from DISPATCH, because ideally some
// instructions can be executed between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH.
// We want those two macros as far apart as possible, because the goto in
// DISPATCH is dependent on a memory load in ADVANCE/SET_PC_FROM_OFFSET. If we
// don't hit the cache and have to fetch the next handler address from physical
// memory, instructions between ADVANCE/SET_PC_FROM_OFFSET and DISPATCH can
// potentially be executed unconditionally, reducing memory stall.
#define ADVANCE(name)                             \
  next_pc = pc + RegExpBytecodeLength(BC_##name); \
  DECODE()
#define SET_PC_FROM_OFFSET(offset) \
  next_pc = code_base + offset;    \
  DECODE()

#ifdef DEBUG
#define BYTECODE(name)                                                \
  BC_LABEL(name)                                                      \
  MaybeTraceInterpreter(code_base, pc, backtrack_stack.sp(), current, \
                        current_char, RegExpBytecodeLength(BC_##name), #name);
#else
#define BYTECODE(name) BC_LABEL(name)
#endif  // DEBUG

template <typename Char>
IrregexpInterpreter::Result RawMatch(Isolate* isolate, ByteArray code_array,
                                     String subject_string,
                                     Vector<const Char> subject, int* registers,
                                     int current, uint32_t current_char,
                                     RegExp::CallOrigin call_origin) {
  DisallowHeapAllocation no_gc;

#if V8_USE_COMPUTED_GOTO
#define DECLARE_DISPATCH_TABLE_ENTRY(name, code, length) &&BC_##name,
  static const void* const dispatch_table[] = {
      BYTECODE_ITERATOR(DECLARE_DISPATCH_TABLE_ENTRY)};
#undef DECLARE_DISPATCH_TABLE_ENTRY
#endif

  const byte* pc = code_array.GetDataStartAddress();
  const byte* code_base = pc;

  BacktrackStack backtrack_stack;

#ifdef DEBUG
  if (FLAG_trace_regexp_bytecodes) {
    PrintF("\n\nStart bytecode interpreter\n\n");
  }
#endif

  while (true) {
    const byte* next_pc = pc;
    int32_t insn;
    int32_t next_insn;
#if V8_USE_COMPUTED_GOTO
    const void* next_handler_addr;
    DECODE();
    DISPATCH();
#else
    insn = Load32Aligned(pc);
    switch (insn & BYTECODE_MASK) {
#endif  // V8_USE_COMPUTED_GOTO
    BYTECODE(BREAK) { UNREACHABLE(); }
    BYTECODE(PUSH_CP) {
      ADVANCE(PUSH_CP);
      backtrack_stack.push(current);
      DISPATCH();
    }
    BYTECODE(PUSH_BT) {
      ADVANCE(PUSH_BT);
      backtrack_stack.push(Load32Aligned(pc + 4));
      DISPATCH();
    }
    BYTECODE(PUSH_REGISTER) {
      ADVANCE(PUSH_REGISTER);
      backtrack_stack.push(registers[insn >> BYTECODE_SHIFT]);
      DISPATCH();
    }
    BYTECODE(SET_REGISTER) {
      ADVANCE(SET_REGISTER);
      registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
      DISPATCH();
    }
    BYTECODE(ADVANCE_REGISTER) {
      ADVANCE(ADVANCE_REGISTER);
      registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
      DISPATCH();
    }
    BYTECODE(SET_REGISTER_TO_CP) {
      ADVANCE(SET_REGISTER_TO_CP);
      registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
      DISPATCH();
    }
    BYTECODE(SET_CP_TO_REGISTER) {
      ADVANCE(SET_CP_TO_REGISTER);
      current = registers[insn >> BYTECODE_SHIFT];
      DISPATCH();
    }
    BYTECODE(SET_REGISTER_TO_SP) {
      ADVANCE(SET_REGISTER_TO_SP);
      registers[insn >> BYTECODE_SHIFT] = backtrack_stack.sp();
      DISPATCH();
    }
    BYTECODE(SET_SP_TO_REGISTER) {
      ADVANCE(SET_SP_TO_REGISTER);
      backtrack_stack.set_sp(registers[insn >> BYTECODE_SHIFT]);
      DISPATCH();
    }
    BYTECODE(POP_CP) {
      ADVANCE(POP_CP);
      current = backtrack_stack.pop();
      DISPATCH();
    }
    BYTECODE(POP_BT) {
      IrregexpInterpreter::Result return_code =
          HandleInterrupts(isolate, call_origin, &code_array, &subject_string,
                           &code_base, &subject, &pc);
      if (return_code != IrregexpInterpreter::SUCCESS) return return_code;

      SET_PC_FROM_OFFSET(backtrack_stack.pop());
      DISPATCH();
    }
    BYTECODE(POP_REGISTER) {
      ADVANCE(POP_REGISTER);
      registers[insn >> BYTECODE_SHIFT] = backtrack_stack.pop();
      DISPATCH();
    }
    BYTECODE(FAIL) { return IrregexpInterpreter::FAILURE; }
    BYTECODE(SUCCEED) { return IrregexpInterpreter::SUCCESS; }
    BYTECODE(ADVANCE_CP) {
      ADVANCE(ADVANCE_CP);
      current += insn >> BYTECODE_SHIFT;
      DISPATCH();
    }
    BYTECODE(GOTO) {
      SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      DISPATCH();
    }
    BYTECODE(ADVANCE_CP_AND_GOTO) {
      SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      current += insn >> BYTECODE_SHIFT;
      DISPATCH();
    }
    BYTECODE(CHECK_GREEDY) {
      if (current == backtrack_stack.peek()) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
        backtrack_stack.pop();
      } else {
        ADVANCE(CHECK_GREEDY);
      }
      DISPATCH();
    }
    BYTECODE(LOAD_CURRENT_CHAR) {
      int pos = current + (insn >> BYTECODE_SHIFT);
      if (pos >= subject.length() || pos < 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(LOAD_CURRENT_CHAR);
        current_char = subject[pos];
      }
      DISPATCH();
    }
    BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
      ADVANCE(LOAD_CURRENT_CHAR_UNCHECKED);
      int pos = current + (insn >> BYTECODE_SHIFT);
      current_char = subject[pos];
      DISPATCH();
    }
    BYTECODE(LOAD_2_CURRENT_CHARS) {
      int pos = current + (insn >> BYTECODE_SHIFT);
      if (pos + 2 > subject.length() || pos < 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(LOAD_2_CURRENT_CHARS);
        Char next = subject[pos + 1];
        current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
      }
      DISPATCH();
    }
    BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
      ADVANCE(LOAD_2_CURRENT_CHARS_UNCHECKED);
      int pos = current + (insn >> BYTECODE_SHIFT);
      Char next = subject[pos + 1];
      current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
      DISPATCH();
    }
    BYTECODE(LOAD_4_CURRENT_CHARS) {
      DCHECK_EQ(1, sizeof(Char));
      int pos = current + (insn >> BYTECODE_SHIFT);
      if (pos + 4 > subject.length() || pos < 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(LOAD_4_CURRENT_CHARS);
        Char next1 = subject[pos + 1];
        Char next2 = subject[pos + 2];
        Char next3 = subject[pos + 3];
        current_char =
            (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
      }
      DISPATCH();
    }
    BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
      ADVANCE(LOAD_4_CURRENT_CHARS_UNCHECKED);
      DCHECK_EQ(1, sizeof(Char));
      int pos = current + (insn >> BYTECODE_SHIFT);
      Char next1 = subject[pos + 1];
      Char next2 = subject[pos + 2];
      Char next3 = subject[pos + 3];
      current_char =
          (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
      DISPATCH();
    }
    BYTECODE(CHECK_4_CHARS) {
      uint32_t c = Load32Aligned(pc + 4);
      if (c == current_char) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_4_CHARS);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_CHAR) {
      uint32_t c = (insn >> BYTECODE_SHIFT);
      if (c == current_char) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_CHAR);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_4_CHARS) {
      uint32_t c = Load32Aligned(pc + 4);
      if (c != current_char) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_NOT_4_CHARS);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_CHAR) {
      uint32_t c = (insn >> BYTECODE_SHIFT);
      if (c != current_char) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_NOT_CHAR);
      }
      DISPATCH();
    }
    BYTECODE(AND_CHECK_4_CHARS) {
      uint32_t c = Load32Aligned(pc + 4);
      if (c == (current_char & Load32Aligned(pc + 8))) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 12));
      } else {
        ADVANCE(AND_CHECK_4_CHARS);
      }
      DISPATCH();
    }
    BYTECODE(AND_CHECK_CHAR) {
      uint32_t c = (insn >> BYTECODE_SHIFT);
      if (c == (current_char & Load32Aligned(pc + 4))) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(AND_CHECK_CHAR);
      }
      DISPATCH();
    }
    BYTECODE(AND_CHECK_NOT_4_CHARS) {
      uint32_t c = Load32Aligned(pc + 4);
      if (c != (current_char & Load32Aligned(pc + 8))) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 12));
      } else {
        ADVANCE(AND_CHECK_NOT_4_CHARS);
      }
      DISPATCH();
    }
    BYTECODE(AND_CHECK_NOT_CHAR) {
      uint32_t c = (insn >> BYTECODE_SHIFT);
      if (c != (current_char & Load32Aligned(pc + 4))) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(AND_CHECK_NOT_CHAR);
      }
      DISPATCH();
    }
    BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
      uint32_t c = (insn >> BYTECODE_SHIFT);
      uint32_t minus = Load16Aligned(pc + 4);
      uint32_t mask = Load16Aligned(pc + 6);
      if (c != ((current_char - minus) & mask)) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(MINUS_AND_CHECK_NOT_CHAR);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_CHAR_IN_RANGE) {
      uint32_t from = Load16Aligned(pc + 4);
      uint32_t to = Load16Aligned(pc + 6);
      if (from <= current_char && current_char <= to) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_CHAR_IN_RANGE);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
      uint32_t from = Load16Aligned(pc + 4);
      uint32_t to = Load16Aligned(pc + 6);
      if (from > current_char || current_char > to) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_CHAR_NOT_IN_RANGE);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_BIT_IN_TABLE) {
      int mask = RegExpMacroAssembler::kTableMask;
      byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
      int bit = (current_char & (kBitsPerByte - 1));
      if ((b & (1 << bit)) != 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_BIT_IN_TABLE);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_LT) {
      uint32_t limit = (insn >> BYTECODE_SHIFT);
      if (current_char < limit) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_LT);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_GT) {
      uint32_t limit = (insn >> BYTECODE_SHIFT);
      if (current_char > limit) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_GT);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_REGISTER_LT) {
      if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_REGISTER_LT);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_REGISTER_GE) {
      if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      } else {
        ADVANCE(CHECK_REGISTER_GE);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_REGISTER_EQ_POS) {
      if (registers[insn >> BYTECODE_SHIFT] == current) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_REGISTER_EQ_POS);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_REGS_EQUAL) {
      if (registers[insn >> BYTECODE_SHIFT] ==
          registers[Load32Aligned(pc + 4)]) {
        ADVANCE(CHECK_NOT_REGS_EQUAL);
      } else {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 8));
      }
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current + len > subject.length() ||
            CompareChars(&subject[from], &subject[current], len) != 0) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current += len;
      }
      ADVANCE(CHECK_NOT_BACK_REF);
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current - len < 0 ||
            CompareChars(&subject[from], &subject[current - len], len) != 0) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current -= len;
      }
      ADVANCE(CHECK_NOT_BACK_REF_BACKWARD);
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current + len > subject.length() ||
            !BackRefMatchesNoCase(isolate, from, current, len, subject, true)) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current += len;
      }
      ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE);
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current + len > subject.length() ||
            !BackRefMatchesNoCase(isolate, from, current, len, subject,
                                  false)) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current += len;
      }
      ADVANCE(CHECK_NOT_BACK_REF_NO_CASE);
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current - len < 0 ||
            !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
                                  true)) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current -= len;
      }
      ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD);
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
      int from = registers[insn >> BYTECODE_SHIFT];
      int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
      if (from >= 0 && len > 0) {
        if (current - len < 0 ||
            !BackRefMatchesNoCase(isolate, from, current - len, len, subject,
                                  false)) {
          SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
          DISPATCH();
        }
        current -= len;
      }
      ADVANCE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD);
      DISPATCH();
    }
    BYTECODE(CHECK_AT_START) {
      if (current + (insn >> BYTECODE_SHIFT) == 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_AT_START);
      }
      DISPATCH();
    }
    BYTECODE(CHECK_NOT_AT_START) {
      if (current + (insn >> BYTECODE_SHIFT) == 0) {
        ADVANCE(CHECK_NOT_AT_START);
      } else {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      }
      DISPATCH();
    }
    BYTECODE(SET_CURRENT_POSITION_FROM_END) {
      ADVANCE(SET_CURRENT_POSITION_FROM_END);
      int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
      if (subject.length() - current > by) {
        current = subject.length() - by;
        current_char = subject[current - 1];
      }
      DISPATCH();
    }
    BYTECODE(CHECK_CURRENT_POSITION) {
      int pos = current + (insn >> BYTECODE_SHIFT);
      if (pos > subject.length() || pos < 0) {
        SET_PC_FROM_OFFSET(Load32Aligned(pc + 4));
      } else {
        ADVANCE(CHECK_CURRENT_POSITION);
      }
      DISPATCH();
    }
#if V8_USE_COMPUTED_GOTO
// Lint gets confused a lot if we just use !V8_USE_COMPUTED_GOTO or ifndef
// V8_USE_COMPUTED_GOTO here.
#else
      default:
        UNREACHABLE();
    }
#endif  // V8_USE_COMPUTED_GOTO
  }
}

#undef BYTECODE
#undef DISPATCH
#undef DECODE
#undef SET_PC_FROM_OFFSET
#undef ADVANCE
#undef BC_LABEL
#undef V8_USE_COMPUTED_GOTO

}  // namespace

// static
void IrregexpInterpreter::Disassemble(ByteArray byte_array,
                                      const std::string& pattern) {
  DisallowHeapAllocation no_gc;

  PrintF("[generated bytecode for regexp pattern: '%s']\n", pattern.c_str());

  const byte* const code_base = byte_array.GetDataStartAddress();
  const int byte_array_length = byte_array.length();
  ptrdiff_t offset = 0;

  while (offset < byte_array_length) {
    const byte* const pc = code_base + offset;
    PrintF("%p  %4" V8PRIxPTRDIFF "  ", pc, offset);
    DisassembleSingleBytecode(code_base, pc);
    offset += RegExpBytecodeLength(*pc);
  }
}

// static
IrregexpInterpreter::Result IrregexpInterpreter::Match(
    Isolate* isolate, JSRegExp regexp, String subject_string, int* registers,
    int registers_length, int start_position, RegExp::CallOrigin call_origin) {
  if (FLAG_regexp_tier_up) {
    regexp.MarkTierUpForNextExec();
  }

  bool is_one_byte = String::IsOneByteRepresentationUnderneath(subject_string);
  ByteArray code_array = ByteArray::cast(regexp.Bytecode(is_one_byte));

  return MatchInternal(isolate, code_array, subject_string, registers,
                       registers_length, start_position, call_origin);
}

IrregexpInterpreter::Result IrregexpInterpreter::MatchInternal(
    Isolate* isolate, ByteArray code_array, String subject_string,
    int* registers, int registers_length, int start_position,
    RegExp::CallOrigin call_origin) {
  DCHECK(subject_string.IsFlat());

  // Note: Heap allocation *is* allowed in two situations if calling from
  // Runtime:
  // 1. When creating & throwing a stack overflow exception. The interpreter
  //    aborts afterwards, and thus possible-moved objects are never used.
  // 2. When handling interrupts. We manually relocate unhandlified references
  //    after interrupts have run.
  DisallowHeapAllocation no_gc;

  // Reset registers to -1 (=undefined).
  // This is necessary because registers are only written when a
  // capture group matched.
  // Resetting them ensures that previous matches are cleared.
  memset(registers, -1, sizeof(registers[0]) * registers_length);

  uc16 previous_char = '\n';
  String::FlatContent subject_content = subject_string.GetFlatContent(no_gc);
  if (subject_content.IsOneByte()) {
    Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
    if (start_position != 0) previous_char = subject_vector[start_position - 1];
    return RawMatch(isolate, code_array, subject_string, subject_vector,
                    registers, start_position, previous_char, call_origin);
  } else {
    DCHECK(subject_content.IsTwoByte());
    Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
    if (start_position != 0) previous_char = subject_vector[start_position - 1];
    return RawMatch(isolate, code_array, subject_string, subject_vector,
                    registers, start_position, previous_char, call_origin);
  }
}

// This method is called through an external reference from RegExpExecInternal
// builtin.
IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromJs(
    Address subject, int32_t start_position, Address, Address, int* registers,
    int32_t registers_length, Address, RegExp::CallOrigin call_origin,
    Isolate* isolate, Address regexp) {
  DCHECK_NOT_NULL(isolate);
  DCHECK_NOT_NULL(registers);
  DCHECK(call_origin == RegExp::CallOrigin::kFromJs);

  DisallowHeapAllocation no_gc;
  DisallowJavascriptExecution no_js(isolate);

  String subject_string = String::cast(Object(subject));
  JSRegExp regexp_obj = JSRegExp::cast(Object(regexp));

  return Match(isolate, regexp_obj, subject_string, registers, registers_length,
               start_position, call_origin);
}

IrregexpInterpreter::Result IrregexpInterpreter::MatchForCallFromRuntime(
    Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject_string,
    int* registers, int registers_length, int start_position) {
  return Match(isolate, *regexp, *subject_string, registers, registers_length,
               start_position, RegExp::CallOrigin::kFromRuntime);
}

}  // namespace internal
}  // namespace v8