summaryrefslogtreecommitdiff
path: root/deps/v8/src/regexp-macro-assembler.cc
blob: 13c2a6a32fb96bedc4b0ebf8f83d186d2e68bcb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#include "src/assembler.h"
#include "src/ast.h"
#include "src/regexp-macro-assembler.h"
#include "src/regexp-stack.h"
#include "src/simulator.h"

namespace v8 {
namespace internal {

RegExpMacroAssembler::RegExpMacroAssembler(Zone* zone)
  : slow_safe_compiler_(false),
    global_mode_(NOT_GLOBAL),
    zone_(zone) {
}


RegExpMacroAssembler::~RegExpMacroAssembler() {
}


bool RegExpMacroAssembler::CanReadUnaligned() {
#ifdef V8_HOST_CAN_READ_UNALIGNED
  return true;
#else
  return false;
#endif
}


#ifndef V8_INTERPRETED_REGEXP  // Avoid unused code, e.g., on ARM.

NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Zone* zone)
    : RegExpMacroAssembler(zone) {
}


NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() {
}


bool NativeRegExpMacroAssembler::CanReadUnaligned() {
  return FLAG_enable_unaligned_accesses && !slow_safe();
}

const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
    String* subject,
    int start_index) {
  // Not just flat, but ultra flat.
  DCHECK(subject->IsExternalString() || subject->IsSeqString());
  DCHECK(start_index >= 0);
  DCHECK(start_index <= subject->length());
  if (subject->IsOneByteRepresentation()) {
    const byte* address;
    if (StringShape(subject).IsExternal()) {
      const uint8_t* data = ExternalAsciiString::cast(subject)->GetChars();
      address = reinterpret_cast<const byte*>(data);
    } else {
      DCHECK(subject->IsSeqOneByteString());
      const uint8_t* data = SeqOneByteString::cast(subject)->GetChars();
      address = reinterpret_cast<const byte*>(data);
    }
    return address + start_index;
  }
  const uc16* data;
  if (StringShape(subject).IsExternal()) {
    data = ExternalTwoByteString::cast(subject)->GetChars();
  } else {
    DCHECK(subject->IsSeqTwoByteString());
    data = SeqTwoByteString::cast(subject)->GetChars();
  }
  return reinterpret_cast<const byte*>(data + start_index);
}


NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match(
    Handle<Code> regexp_code,
    Handle<String> subject,
    int* offsets_vector,
    int offsets_vector_length,
    int previous_index,
    Isolate* isolate) {

  DCHECK(subject->IsFlat());
  DCHECK(previous_index >= 0);
  DCHECK(previous_index <= subject->length());

  // No allocations before calling the regexp, but we can't use
  // DisallowHeapAllocation, since regexps might be preempted, and another
  // thread might do allocation anyway.

  String* subject_ptr = *subject;
  // Character offsets into string.
  int start_offset = previous_index;
  int char_length = subject_ptr->length() - start_offset;
  int slice_offset = 0;

  // The string has been flattened, so if it is a cons string it contains the
  // full string in the first part.
  if (StringShape(subject_ptr).IsCons()) {
    DCHECK_EQ(0, ConsString::cast(subject_ptr)->second()->length());
    subject_ptr = ConsString::cast(subject_ptr)->first();
  } else if (StringShape(subject_ptr).IsSliced()) {
    SlicedString* slice = SlicedString::cast(subject_ptr);
    subject_ptr = slice->parent();
    slice_offset = slice->offset();
  }
  // Ensure that an underlying string has the same ASCII-ness.
  bool is_ascii = subject_ptr->IsOneByteRepresentation();
  DCHECK(subject_ptr->IsExternalString() || subject_ptr->IsSeqString());
  // String is now either Sequential or External
  int char_size_shift = is_ascii ? 0 : 1;

  const byte* input_start =
      StringCharacterPosition(subject_ptr, start_offset + slice_offset);
  int byte_length = char_length << char_size_shift;
  const byte* input_end = input_start + byte_length;
  Result res = Execute(*regexp_code,
                       *subject,
                       start_offset,
                       input_start,
                       input_end,
                       offsets_vector,
                       offsets_vector_length,
                       isolate);
  return res;
}


NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute(
    Code* code,
    String* input,  // This needs to be the unpacked (sliced, cons) string.
    int start_offset,
    const byte* input_start,
    const byte* input_end,
    int* output,
    int output_size,
    Isolate* isolate) {
  // Ensure that the minimum stack has been allocated.
  RegExpStackScope stack_scope(isolate);
  Address stack_base = stack_scope.stack()->stack_base();

  int direct_call = 0;
  int result = CALL_GENERATED_REGEXP_CODE(code->entry(),
                                          input,
                                          start_offset,
                                          input_start,
                                          input_end,
                                          output,
                                          output_size,
                                          stack_base,
                                          direct_call,
                                          isolate);
  DCHECK(result >= RETRY);

  if (result == EXCEPTION && !isolate->has_pending_exception()) {
    // We detected a stack overflow (on the backtrack stack) in RegExp code,
    // but haven't created the exception yet.
    isolate->StackOverflow();
  }
  return static_cast<Result>(result);
}


const byte NativeRegExpMacroAssembler::word_character_map[] = {
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // '0' - '7'
    0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // '8' - '9'

    0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'A' - 'G'
    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'H' - 'O'
    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'P' - 'W'
    0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu,  // 'X' - 'Z', '_'

    0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'a' - 'g'
    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'h' - 'o'
    0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu,  // 'p' - 'w'
    0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // 'x' - 'z'
    // Latin-1 range
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
};


int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16(
    Address byte_offset1,
    Address byte_offset2,
    size_t byte_length,
    Isolate* isolate) {
  unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
      isolate->regexp_macro_assembler_canonicalize();
  // This function is not allowed to cause a garbage collection.
  // A GC might move the calling generated code and invalidate the
  // return address on the stack.
  DCHECK(byte_length % 2 == 0);
  uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1);
  uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2);
  size_t length = byte_length >> 1;

  for (size_t i = 0; i < length; i++) {
    unibrow::uchar c1 = substring1[i];
    unibrow::uchar c2 = substring2[i];
    if (c1 != c2) {
      unibrow::uchar s1[1] = { c1 };
      canonicalize->get(c1, '\0', s1);
      if (s1[0] != c2) {
        unibrow::uchar s2[1] = { c2 };
        canonicalize->get(c2, '\0', s2);
        if (s1[0] != s2[0]) {
          return 0;
        }
      }
    }
  }
  return 1;
}


Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer,
                                              Address* stack_base,
                                              Isolate* isolate) {
  RegExpStack* regexp_stack = isolate->regexp_stack();
  size_t size = regexp_stack->stack_capacity();
  Address old_stack_base = regexp_stack->stack_base();
  DCHECK(old_stack_base == *stack_base);
  DCHECK(stack_pointer <= old_stack_base);
  DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size);
  Address new_stack_base = regexp_stack->EnsureCapacity(size * 2);
  if (new_stack_base == NULL) {
    return NULL;
  }
  *stack_base = new_stack_base;
  intptr_t stack_content_size = old_stack_base - stack_pointer;
  return new_stack_base - stack_content_size;
}

#endif  // V8_INTERPRETED_REGEXP

} }  // namespace v8::internal