summaryrefslogtreecommitdiff
path: root/deps/v8/src/profiler/tick-sample.cc
blob: 69a6bbf77851b8a8e0e8f516ee1bf3ada625b32e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/profiler/tick-sample.h"

#include "include/v8-profiler.h"
#include "src/counters.h"
#include "src/frames-inl.h"
#include "src/msan.h"
#include "src/simulator.h"
#include "src/vm-state-inl.h"

namespace v8 {
namespace {

bool IsSamePage(i::Address ptr1, i::Address ptr2) {
  const uint32_t kPageSize = 4096;
  i::Address mask = ~static_cast<i::Address>(kPageSize - 1);
  return (ptr1 & mask) == (ptr2 & mask);
}

// Check if the code at specified address could potentially be a
// frame setup code.
bool IsNoFrameRegion(i::Address address) {
  struct Pattern {
    int bytes_count;
    i::byte bytes[8];
    int offsets[4];
  };
  static Pattern patterns[] = {
#if V8_HOST_ARCH_IA32
    // push %ebp
    // mov %esp,%ebp
    {3, {0x55, 0x89, 0xE5}, {0, 1, -1}},
    // pop %ebp
    // ret N
    {2, {0x5D, 0xC2}, {0, 1, -1}},
    // pop %ebp
    // ret
    {2, {0x5D, 0xC3}, {0, 1, -1}},
#elif V8_HOST_ARCH_X64
    // pushq %rbp
    // movq %rsp,%rbp
    {4, {0x55, 0x48, 0x89, 0xE5}, {0, 1, -1}},
    // popq %rbp
    // ret N
    {2, {0x5D, 0xC2}, {0, 1, -1}},
    // popq %rbp
    // ret
    {2, {0x5D, 0xC3}, {0, 1, -1}},
#endif
    {0, {}, {}}
  };
  i::byte* pc = reinterpret_cast<i::byte*>(address);
  for (Pattern* pattern = patterns; pattern->bytes_count; ++pattern) {
    for (int* offset_ptr = pattern->offsets; *offset_ptr != -1; ++offset_ptr) {
      int offset = *offset_ptr;
      if (!offset || IsSamePage(address, address - offset)) {
        MSAN_MEMORY_IS_INITIALIZED(pc - offset, pattern->bytes_count);
        if (!memcmp(pc - offset, pattern->bytes, pattern->bytes_count))
          return true;
      } else {
        // It is not safe to examine bytes on another page as it might not be
        // allocated thus causing a SEGFAULT.
        // Check the pattern part that's on the same page and
        // pessimistically assume it could be the entire pattern match.
        MSAN_MEMORY_IS_INITIALIZED(pc, pattern->bytes_count - offset);
        if (!memcmp(pc, pattern->bytes + offset, pattern->bytes_count - offset))
          return true;
      }
    }
  }
  return false;
}

}  // namespace

namespace internal {
namespace {

#if defined(USE_SIMULATOR)
class SimulatorHelper {
 public:
  // Returns true if register values were successfully retrieved
  // from the simulator, otherwise returns false.
  static bool FillRegisters(Isolate* isolate, v8::RegisterState* state);
};

bool SimulatorHelper::FillRegisters(Isolate* isolate,
                                    v8::RegisterState* state) {
  Simulator* simulator = isolate->thread_local_top()->simulator_;
  // Check if there is active simulator.
  if (simulator == nullptr) return false;
#if V8_TARGET_ARCH_ARM
  if (!simulator->has_bad_pc()) {
    state->pc = reinterpret_cast<void*>(simulator->get_pc());
  }
  state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp));
  state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::r11));
#elif V8_TARGET_ARCH_ARM64
  state->pc = reinterpret_cast<void*>(simulator->pc());
  state->sp = reinterpret_cast<void*>(simulator->sp());
  state->fp = reinterpret_cast<void*>(simulator->fp());
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
  if (!simulator->has_bad_pc()) {
    state->pc = reinterpret_cast<void*>(simulator->get_pc());
  }
  state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp));
  state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp));
#elif V8_TARGET_ARCH_PPC
  if (!simulator->has_bad_pc()) {
    state->pc = reinterpret_cast<void*>(simulator->get_pc());
  }
  state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp));
  state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp));
#elif V8_TARGET_ARCH_S390
  if (!simulator->has_bad_pc()) {
    state->pc = reinterpret_cast<void*>(simulator->get_pc());
  }
  state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp));
  state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp));
#endif
  if (state->sp == 0 || state->fp == 0) {
    // It possible that the simulator is interrupted while it is updating
    // the sp or fp register. ARM64 simulator does this in two steps:
    // first setting it to zero and then setting it to the new value.
    // Bailout if sp/fp doesn't contain the new value.
    //
    // FIXME: The above doesn't really solve the issue.
    // If a 64-bit target is executed on a 32-bit host even the final
    // write is non-atomic, so it might obtain a half of the result.
    // Moreover as long as the register set code uses memcpy (as of now),
    // it is not guaranteed to be atomic even when both host and target
    // are of same bitness.
    return false;
  }
  return true;
}
#endif  // USE_SIMULATOR

}  // namespace
}  // namespace internal

//
// StackTracer implementation
//
DISABLE_ASAN void TickSample::Init(Isolate* v8_isolate,
                                   const RegisterState& reg_state,
                                   RecordCEntryFrame record_c_entry_frame,
                                   bool update_stats,
                                   bool use_simulator_reg_state) {
  this->update_stats = update_stats;
  SampleInfo info;
  RegisterState regs = reg_state;
  if (!GetStackSample(v8_isolate, &regs, record_c_entry_frame, stack,
                      kMaxFramesCount, &info, use_simulator_reg_state)) {
    // It is executing JS but failed to collect a stack trace.
    // Mark the sample as spoiled.
    pc = nullptr;
    return;
  }

  state = info.vm_state;
  pc = regs.pc;
  frames_count = static_cast<unsigned>(info.frames_count);
  has_external_callback = info.external_callback_entry != nullptr;
  if (has_external_callback) {
    external_callback_entry = info.external_callback_entry;
  } else if (frames_count) {
    // sp register may point at an arbitrary place in memory, make
    // sure MSAN doesn't complain about it.
    MSAN_MEMORY_IS_INITIALIZED(regs.sp, sizeof(void*));
    // Sample potential return address value for frameless invocation of
    // stubs (we'll figure out later, if this value makes sense).
    tos = reinterpret_cast<void*>(
        i::Memory<i::Address>(reinterpret_cast<i::Address>(regs.sp)));
  } else {
    tos = nullptr;
  }
}

bool TickSample::GetStackSample(Isolate* v8_isolate, RegisterState* regs,
                                RecordCEntryFrame record_c_entry_frame,
                                void** frames, size_t frames_limit,
                                v8::SampleInfo* sample_info,
                                bool use_simulator_reg_state) {
  i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
  sample_info->frames_count = 0;
  sample_info->vm_state = isolate->current_vm_state();
  sample_info->external_callback_entry = nullptr;
  if (sample_info->vm_state == GC) return true;

  i::Address js_entry_sp = isolate->js_entry_sp();
  if (js_entry_sp == 0) return true;  // Not executing JS now.

#if defined(USE_SIMULATOR)
  if (use_simulator_reg_state) {
    if (!i::SimulatorHelper::FillRegisters(isolate, regs)) return false;
  }
#else
  USE(use_simulator_reg_state);
#endif
  DCHECK(regs->sp);

  // Check whether we interrupted setup/teardown of a stack frame in JS code.
  // Avoid this check for C++ code, as that would trigger false positives.
  if (regs->pc &&
      isolate->heap()->memory_allocator()->code_range().contains(
          reinterpret_cast<i::Address>(regs->pc)) &&
      IsNoFrameRegion(reinterpret_cast<i::Address>(regs->pc))) {
    // The frame is not setup, so it'd be hard to iterate the stack. Bailout.
    return false;
  }

  i::ExternalCallbackScope* scope = isolate->external_callback_scope();
  i::Address handler = i::Isolate::handler(isolate->thread_local_top());
  // If there is a handler on top of the external callback scope then
  // we have already entrered JavaScript again and the external callback
  // is not the top function.
  if (scope && scope->scope_address() < handler) {
    i::Address* external_callback_entry_ptr =
        scope->callback_entrypoint_address();
    sample_info->external_callback_entry =
        external_callback_entry_ptr == nullptr
            ? nullptr
            : reinterpret_cast<void*>(*external_callback_entry_ptr);
  }

  i::SafeStackFrameIterator it(isolate, reinterpret_cast<i::Address>(regs->fp),
                               reinterpret_cast<i::Address>(regs->sp),
                               js_entry_sp);
  if (it.done()) return true;

  size_t i = 0;
  if (record_c_entry_frame == kIncludeCEntryFrame &&
      (it.top_frame_type() == internal::StackFrame::EXIT ||
       it.top_frame_type() == internal::StackFrame::BUILTIN_EXIT)) {
    frames[i++] = reinterpret_cast<void*>(isolate->c_function());
  }
  i::RuntimeCallTimer* timer =
      isolate->counters()->runtime_call_stats()->current_timer();
  for (; !it.done() && i < frames_limit; it.Advance()) {
    while (timer && reinterpret_cast<i::Address>(timer) < it.frame()->fp() &&
           i < frames_limit) {
      frames[i++] = reinterpret_cast<void*>(timer->counter());
      timer = timer->parent();
    }
    if (i == frames_limit) break;
    if (it.frame()->is_interpreted()) {
      // For interpreted frames use the bytecode array pointer as the pc.
      i::InterpretedFrame* frame =
          static_cast<i::InterpretedFrame*>(it.frame());
      // Since the sampler can interrupt execution at any point the
      // bytecode_array might be garbage, so don't actually dereference it. We
      // avoid the frame->GetXXX functions since they call BytecodeArray::cast,
      // which has a heap access in its DCHECK.
      i::Object* bytecode_array = i::Memory<i::Object*>(
          frame->fp() + i::InterpreterFrameConstants::kBytecodeArrayFromFp);
      i::Object* bytecode_offset = i::Memory<i::Object*>(
          frame->fp() + i::InterpreterFrameConstants::kBytecodeOffsetFromFp);

      // If the bytecode array is a heap object and the bytecode offset is a
      // Smi, use those, otherwise fall back to using the frame's pc.
      if (HAS_HEAP_OBJECT_TAG(bytecode_array) && HAS_SMI_TAG(bytecode_offset)) {
        frames[i++] = reinterpret_cast<void*>(
            reinterpret_cast<i::Address>(bytecode_array) +
            i::Internals::SmiValue(bytecode_offset));
        continue;
      }
    }
    frames[i++] = reinterpret_cast<void*>(it.frame()->pc());
  }
  sample_info->frames_count = i;
  return true;
}

namespace internal {

void TickSample::Init(Isolate* isolate, const v8::RegisterState& state,
                      RecordCEntryFrame record_c_entry_frame, bool update_stats,
                      bool use_simulator_reg_state) {
  v8::TickSample::Init(reinterpret_cast<v8::Isolate*>(isolate), state,
                       record_c_entry_frame, update_stats,
                       use_simulator_reg_state);
  if (pc == nullptr) return;
  timestamp = base::TimeTicks::HighResolutionNow();
}

}  // namespace internal
}  // namespace v8