aboutsummaryrefslogtreecommitdiff
path: root/deps/v8/src/preparser.h
blob: 9358d6bd18957e21fbf6334b70ce09186dd9e0a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_PREPARSER_H
#define V8_PREPARSER_H

#include "hashmap.h"
#include "token.h"
#include "scanner.h"

namespace v8 {

namespace internal {
class UnicodeCache;
}

namespace preparser {

typedef uint8_t byte;

// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparse-data-format.h for the data format.

// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.

namespace i = v8::internal;

class DuplicateFinder {
 public:
  explicit DuplicateFinder(i::UnicodeCache* constants)
      : unicode_constants_(constants),
        backing_store_(16),
        map_(&Match) { }

  int AddAsciiSymbol(i::Vector<const char> key, int value);
  int AddUtf16Symbol(i::Vector<const uint16_t> key, int value);
  // Add a a number literal by converting it (if necessary)
  // to the string that ToString(ToNumber(literal)) would generate.
  // and then adding that string with AddAsciiSymbol.
  // This string is the actual value used as key in an object literal,
  // and the one that must be different from the other keys.
  int AddNumber(i::Vector<const char> key, int value);

 private:
  int AddSymbol(i::Vector<const byte> key, bool is_ascii, int value);
  // Backs up the key and its length in the backing store.
  // The backup is stored with a base 127 encoding of the
  // length (plus a bit saying whether the string is ASCII),
  // followed by the bytes of the key.
  byte* BackupKey(i::Vector<const byte> key, bool is_ascii);

  // Compare two encoded keys (both pointing into the backing store)
  // for having the same base-127 encoded lengths and ASCII-ness,
  // and then having the same 'length' bytes following.
  static bool Match(void* first, void* second);
  // Creates a hash from a sequence of bytes.
  static uint32_t Hash(i::Vector<const byte> key, bool is_ascii);
  // Checks whether a string containing a JS number is its canonical
  // form.
  static bool IsNumberCanonical(i::Vector<const char> key);

  // Size of buffer. Sufficient for using it to call DoubleToCString in
  // from conversions.h.
  static const int kBufferSize = 100;

  i::UnicodeCache* unicode_constants_;
  // Backing store used to store strings used as hashmap keys.
  i::SequenceCollector<unsigned char> backing_store_;
  i::HashMap map_;
  // Buffer used for string->number->canonical string conversions.
  char number_buffer_[kBufferSize];
};


class PreParser {
 public:
  enum PreParseResult {
    kPreParseStackOverflow,
    kPreParseSuccess
  };


  PreParser(i::Scanner* scanner,
            i::ParserRecorder* log,
            uintptr_t stack_limit)
      : scanner_(scanner),
        log_(log),
        scope_(NULL),
        stack_limit_(stack_limit),
        strict_mode_violation_location_(i::Scanner::Location::invalid()),
        strict_mode_violation_type_(NULL),
        stack_overflow_(false),
        allow_lazy_(false),
        allow_natives_syntax_(false),
        allow_generators_(false),
        allow_for_of_(false),
        parenthesized_function_(false) { }

  ~PreParser() {}

  bool allow_natives_syntax() const { return allow_natives_syntax_; }
  bool allow_lazy() const { return allow_lazy_; }
  bool allow_modules() const { return scanner_->HarmonyModules(); }
  bool allow_harmony_scoping() const { return scanner_->HarmonyScoping(); }
  bool allow_generators() const { return allow_generators_; }
  bool allow_for_of() const { return allow_for_of_; }
  bool allow_harmony_numeric_literals() const {
    return scanner_->HarmonyNumericLiterals();
  }

  void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; }
  void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
  void set_allow_modules(bool allow) { scanner_->SetHarmonyModules(allow); }
  void set_allow_harmony_scoping(bool allow) {
    scanner_->SetHarmonyScoping(allow);
  }
  void set_allow_generators(bool allow) { allow_generators_ = allow; }
  void set_allow_for_of(bool allow) { allow_for_of_ = allow; }
  void set_allow_harmony_numeric_literals(bool allow) {
    scanner_->SetHarmonyNumericLiterals(allow);
  }

  // Pre-parse the program from the character stream; returns true on
  // success (even if parsing failed, the pre-parse data successfully
  // captured the syntax error), and false if a stack-overflow happened
  // during parsing.
  PreParseResult PreParseProgram() {
    Scope top_scope(&scope_, kTopLevelScope);
    bool ok = true;
    int start_position = scanner_->peek_location().beg_pos;
    ParseSourceElements(i::Token::EOS, &ok);
    if (stack_overflow_) return kPreParseStackOverflow;
    if (!ok) {
      ReportUnexpectedToken(scanner_->current_token());
    } else if (!scope_->is_classic_mode()) {
      CheckOctalLiteral(start_position, scanner_->location().end_pos, &ok);
    }
    return kPreParseSuccess;
  }

  // Parses a single function literal, from the opening parentheses before
  // parameters to the closing brace after the body.
  // Returns a FunctionEntry describing the body of the function in enough
  // detail that it can be lazily compiled.
  // The scanner is expected to have matched the "function" or "function*"
  // keyword and parameters, and have consumed the initial '{'.
  // At return, unless an error occurred, the scanner is positioned before the
  // the final '}'.
  PreParseResult PreParseLazyFunction(i::LanguageMode mode,
                                      bool is_generator,
                                      i::ParserRecorder* log);

 private:
  // Used to detect duplicates in object literals. Each of the values
  // kGetterProperty, kSetterProperty and kValueProperty represents
  // a type of object literal property. When parsing a property, its
  // type value is stored in the DuplicateFinder for the property name.
  // Values are chosen so that having intersection bits means the there is
  // an incompatibility.
  // I.e., you can add a getter to a property that already has a setter, since
  // kGetterProperty and kSetterProperty doesn't intersect, but not if it
  // already has a getter or a value. Adding the getter to an existing
  // setter will store the value (kGetterProperty | kSetterProperty), which
  // is incompatible with adding any further properties.
  enum PropertyType {
    kNone = 0,
    // Bit patterns representing different object literal property types.
    kGetterProperty = 1,
    kSetterProperty = 2,
    kValueProperty = 7,
    // Helper constants.
    kValueFlag = 4
  };

  // Checks the type of conflict based on values coming from PropertyType.
  bool HasConflict(int type1, int type2) { return (type1 & type2) != 0; }
  bool IsDataDataConflict(int type1, int type2) {
    return ((type1 & type2) & kValueFlag) != 0;
  }
  bool IsDataAccessorConflict(int type1, int type2) {
    return ((type1 ^ type2) & kValueFlag) != 0;
  }
  bool IsAccessorAccessorConflict(int type1, int type2) {
    return ((type1 | type2) & kValueFlag) == 0;
  }


  void CheckDuplicate(DuplicateFinder* finder,
                      i::Token::Value property,
                      int type,
                      bool* ok);

  // These types form an algebra over syntactic categories that is just
  // rich enough to let us recognize and propagate the constructs that
  // are either being counted in the preparser data, or is important
  // to throw the correct syntax error exceptions.

  enum ScopeType {
    kTopLevelScope,
    kFunctionScope
  };

  enum VariableDeclarationContext {
    kSourceElement,
    kStatement,
    kForStatement
  };

  // If a list of variable declarations includes any initializers.
  enum VariableDeclarationProperties {
    kHasInitializers,
    kHasNoInitializers
  };

  class Expression;

  class Identifier {
   public:
    static Identifier Default() {
      return Identifier(kUnknownIdentifier);
    }
    static Identifier Eval()  {
      return Identifier(kEvalIdentifier);
    }
    static Identifier Arguments()  {
      return Identifier(kArgumentsIdentifier);
    }
    static Identifier FutureReserved()  {
      return Identifier(kFutureReservedIdentifier);
    }
    static Identifier FutureStrictReserved()  {
      return Identifier(kFutureStrictReservedIdentifier);
    }
    static Identifier Yield()  {
      return Identifier(kYieldIdentifier);
    }
    bool IsEval() { return type_ == kEvalIdentifier; }
    bool IsArguments() { return type_ == kArgumentsIdentifier; }
    bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; }
    bool IsYield() { return type_ == kYieldIdentifier; }
    bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; }
    bool IsFutureStrictReserved() {
      return type_ == kFutureStrictReservedIdentifier;
    }
    bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; }

   private:
    enum Type {
      kUnknownIdentifier,
      kFutureReservedIdentifier,
      kFutureStrictReservedIdentifier,
      kYieldIdentifier,
      kEvalIdentifier,
      kArgumentsIdentifier
    };
    explicit Identifier(Type type) : type_(type) { }
    Type type_;

    friend class Expression;
  };

  // Bits 0 and 1 are used to identify the type of expression:
  // If bit 0 is set, it's an identifier.
  // if bit 1 is set, it's a string literal.
  // If neither is set, it's no particular type, and both set isn't
  // use yet.
  // Bit 2 is used to mark the expression as being parenthesized,
  // so "(foo)" isn't recognized as a pure identifier (and possible label).
  class Expression {
   public:
    static Expression Default() {
      return Expression(kUnknownExpression);
    }

    static Expression FromIdentifier(Identifier id) {
      return Expression(kIdentifierFlag | (id.type_ << kIdentifierShift));
    }

    static Expression StringLiteral() {
      return Expression(kUnknownStringLiteral);
    }

    static Expression UseStrictStringLiteral() {
      return Expression(kUseStrictString);
    }

    static Expression This() {
      return Expression(kThisExpression);
    }

    static Expression ThisProperty() {
      return Expression(kThisPropertyExpression);
    }

    static Expression StrictFunction() {
      return Expression(kStrictFunctionExpression);
    }

    bool IsIdentifier() {
      return (code_ & kIdentifierFlag) != 0;
    }

    // Only works corretly if it is actually an identifier expression.
    PreParser::Identifier AsIdentifier() {
      return PreParser::Identifier(
          static_cast<PreParser::Identifier::Type>(code_ >> kIdentifierShift));
    }

    bool IsParenthesized() {
      // If bit 0 or 1 is set, we interpret bit 2 as meaning parenthesized.
      return (code_ & 7) > 4;
    }

    bool IsRawIdentifier() {
      return !IsParenthesized() && IsIdentifier();
    }

    bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; }

    bool IsRawStringLiteral() {
      return !IsParenthesized() && IsStringLiteral();
    }

    bool IsUseStrictLiteral() {
      return (code_ & kStringLiteralMask) == kUseStrictString;
    }

    bool IsThis() {
      return code_ == kThisExpression;
    }

    bool IsThisProperty() {
      return code_ == kThisPropertyExpression;
    }

    bool IsStrictFunction() {
      return code_ == kStrictFunctionExpression;
    }

    Expression Parenthesize() {
      int type = code_ & 3;
      if (type != 0) {
        // Identifiers and string literals can be parenthesized.
        // They no longer work as labels or directive prologues,
        // but are still recognized in other contexts.
        return Expression(code_ | kParenthesizedExpressionFlag);
      }
      // For other types of expressions, it's not important to remember
      // the parentheses.
      return *this;
    }

   private:
    // First two/three bits are used as flags.
    // Bit 0 and 1 represent identifiers or strings literals, and are
    // mutually exclusive, but can both be absent.
    // If bit 0 or 1 are set, bit 2 marks that the expression has
    // been wrapped in parentheses (a string literal can no longer
    // be a directive prologue, and an identifier can no longer be
    // a label.
    enum  {
      kUnknownExpression = 0,
      // Identifiers
      kIdentifierFlag = 1,  // Used to detect labels.
      kIdentifierShift = 3,

      kStringLiteralFlag = 2,  // Used to detect directive prologue.
      kUnknownStringLiteral = kStringLiteralFlag,
      kUseStrictString = kStringLiteralFlag | 8,
      kStringLiteralMask = kUseStrictString,

      // Only if identifier or string literal.
      kParenthesizedExpressionFlag = 4,

      // Below here applies if neither identifier nor string literal.
      kThisExpression = 4,
      kThisPropertyExpression = 8,
      kStrictFunctionExpression = 12
    };

    explicit Expression(int expression_code) : code_(expression_code) { }

    int code_;
  };

  class Statement {
   public:
    static Statement Default() {
      return Statement(kUnknownStatement);
    }

    static Statement FunctionDeclaration() {
      return Statement(kFunctionDeclaration);
    }

    // Creates expression statement from expression.
    // Preserves being an unparenthesized string literal, possibly
    // "use strict".
    static Statement ExpressionStatement(Expression expression) {
      if (!expression.IsParenthesized()) {
        if (expression.IsUseStrictLiteral()) {
          return Statement(kUseStrictExpressionStatement);
        }
        if (expression.IsStringLiteral()) {
          return Statement(kStringLiteralExpressionStatement);
        }
      }
      return Default();
    }

    bool IsStringLiteral() {
      return code_ != kUnknownStatement;
    }

    bool IsUseStrictLiteral() {
      return code_ == kUseStrictExpressionStatement;
    }

    bool IsFunctionDeclaration() {
      return code_ == kFunctionDeclaration;
    }

   private:
    enum Type {
      kUnknownStatement,
      kStringLiteralExpressionStatement,
      kUseStrictExpressionStatement,
      kFunctionDeclaration
    };

    explicit Statement(Type code) : code_(code) {}
    Type code_;
  };

  enum SourceElements {
    kUnknownSourceElements
  };

  typedef int Arguments;

  class Scope {
   public:
    Scope(Scope** variable, ScopeType type)
        : variable_(variable),
          prev_(*variable),
          type_(type),
          materialized_literal_count_(0),
          expected_properties_(0),
          with_nesting_count_(0),
          language_mode_(
              (prev_ != NULL) ? prev_->language_mode() : i::CLASSIC_MODE),
          is_generator_(false) {
      *variable = this;
    }
    ~Scope() { *variable_ = prev_; }
    void NextMaterializedLiteralIndex() { materialized_literal_count_++; }
    void AddProperty() { expected_properties_++; }
    ScopeType type() { return type_; }
    int expected_properties() { return expected_properties_; }
    int materialized_literal_count() { return materialized_literal_count_; }
    bool IsInsideWith() { return with_nesting_count_ != 0; }
    bool is_generator() { return is_generator_; }
    void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
    bool is_classic_mode() {
      return language_mode_ == i::CLASSIC_MODE;
    }
    i::LanguageMode language_mode() {
      return language_mode_;
    }
    void set_language_mode(i::LanguageMode language_mode) {
      language_mode_ = language_mode;
    }

    class InsideWith {
     public:
      explicit InsideWith(Scope* scope) : scope_(scope) {
        scope->with_nesting_count_++;
      }

      ~InsideWith() { scope_->with_nesting_count_--; }

     private:
      Scope* scope_;
      DISALLOW_COPY_AND_ASSIGN(InsideWith);
    };

   private:
    Scope** const variable_;
    Scope* const prev_;
    const ScopeType type_;
    int materialized_literal_count_;
    int expected_properties_;
    int with_nesting_count_;
    i::LanguageMode language_mode_;
    bool is_generator_;
  };

  // Report syntax error
  void ReportUnexpectedToken(i::Token::Value token);
  void ReportMessageAt(i::Scanner::Location location,
                       const char* type,
                       const char* name_opt) {
    log_->LogMessage(location.beg_pos, location.end_pos, type, name_opt);
  }
  void ReportMessageAt(int start_pos,
                       int end_pos,
                       const char* type,
                       const char* name_opt) {
    log_->LogMessage(start_pos, end_pos, type, name_opt);
  }

  void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok);

  // All ParseXXX functions take as the last argument an *ok parameter
  // which is set to false if parsing failed; it is unchanged otherwise.
  // By making the 'exception handling' explicit, we are forced to check
  // for failure at the call sites.
  Statement ParseSourceElement(bool* ok);
  SourceElements ParseSourceElements(int end_token, bool* ok);
  Statement ParseStatement(bool* ok);
  Statement ParseFunctionDeclaration(bool* ok);
  Statement ParseBlock(bool* ok);
  Statement ParseVariableStatement(VariableDeclarationContext var_context,
                                   bool* ok);
  Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
                                      VariableDeclarationProperties* decl_props,
                                      int* num_decl,
                                      bool* ok);
  Statement ParseExpressionOrLabelledStatement(bool* ok);
  Statement ParseIfStatement(bool* ok);
  Statement ParseContinueStatement(bool* ok);
  Statement ParseBreakStatement(bool* ok);
  Statement ParseReturnStatement(bool* ok);
  Statement ParseWithStatement(bool* ok);
  Statement ParseSwitchStatement(bool* ok);
  Statement ParseDoWhileStatement(bool* ok);
  Statement ParseWhileStatement(bool* ok);
  Statement ParseForStatement(bool* ok);
  Statement ParseThrowStatement(bool* ok);
  Statement ParseTryStatement(bool* ok);
  Statement ParseDebuggerStatement(bool* ok);

  Expression ParseExpression(bool accept_IN, bool* ok);
  Expression ParseAssignmentExpression(bool accept_IN, bool* ok);
  Expression ParseYieldExpression(bool* ok);
  Expression ParseConditionalExpression(bool accept_IN, bool* ok);
  Expression ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
  Expression ParseUnaryExpression(bool* ok);
  Expression ParsePostfixExpression(bool* ok);
  Expression ParseLeftHandSideExpression(bool* ok);
  Expression ParseNewExpression(bool* ok);
  Expression ParseMemberExpression(bool* ok);
  Expression ParseMemberWithNewPrefixesExpression(unsigned new_count, bool* ok);
  Expression ParsePrimaryExpression(bool* ok);
  Expression ParseArrayLiteral(bool* ok);
  Expression ParseObjectLiteral(bool* ok);
  Expression ParseRegExpLiteral(bool seen_equal, bool* ok);
  Expression ParseV8Intrinsic(bool* ok);

  Arguments ParseArguments(bool* ok);
  Expression ParseFunctionLiteral(bool is_generator, bool* ok);
  void ParseLazyFunctionLiteralBody(bool* ok);

  Identifier ParseIdentifier(bool* ok);
  Identifier ParseIdentifierName(bool* ok);
  Identifier ParseIdentifierNameOrGetOrSet(bool* is_get,
                                           bool* is_set,
                                           bool* ok);

  // Logs the currently parsed literal as a symbol in the preparser data.
  void LogSymbol();
  // Log the currently parsed identifier.
  Identifier GetIdentifierSymbol();
  // Log the currently parsed string literal.
  Expression GetStringSymbol();

  i::Token::Value peek() {
    if (stack_overflow_) return i::Token::ILLEGAL;
    return scanner_->peek();
  }

  i::Token::Value Next() {
    if (stack_overflow_) return i::Token::ILLEGAL;
    {
      int marker;
      if (reinterpret_cast<uintptr_t>(&marker) < stack_limit_) {
        // Further calls to peek/Next will return illegal token.
        // The current one will still be returned. It might already
        // have been seen using peek.
        stack_overflow_ = true;
      }
    }
    return scanner_->Next();
  }

  bool peek_any_identifier();

  void set_language_mode(i::LanguageMode language_mode) {
    scope_->set_language_mode(language_mode);
  }

  bool is_classic_mode() {
    return scope_->language_mode() == i::CLASSIC_MODE;
  }

  bool is_extended_mode() {
    return scope_->language_mode() == i::EXTENDED_MODE;
  }

  i::LanguageMode language_mode() { return scope_->language_mode(); }

  void Consume(i::Token::Value token) { Next(); }

  void Expect(i::Token::Value token, bool* ok) {
    if (Next() != token) {
      *ok = false;
    }
  }

  bool Check(i::Token::Value token) {
    i::Token::Value next = peek();
    if (next == token) {
      Consume(next);
      return true;
    }
    return false;
  }
  void ExpectSemicolon(bool* ok);

  bool CheckInOrOf(bool accept_OF);

  static int Precedence(i::Token::Value tok, bool accept_IN);

  void SetStrictModeViolation(i::Scanner::Location,
                              const char* type,
                              bool* ok);

  void CheckDelayedStrictModeViolation(int beg_pos, int end_pos, bool* ok);

  void StrictModeIdentifierViolation(i::Scanner::Location,
                                     const char* eval_args_type,
                                     Identifier identifier,
                                     bool* ok);

  i::Scanner* scanner_;
  i::ParserRecorder* log_;
  Scope* scope_;
  uintptr_t stack_limit_;
  i::Scanner::Location strict_mode_violation_location_;
  const char* strict_mode_violation_type_;
  bool stack_overflow_;
  bool allow_lazy_;
  bool allow_natives_syntax_;
  bool allow_generators_;
  bool allow_for_of_;
  bool parenthesized_function_;
};
} }  // v8::preparser

#endif  // V8_PREPARSER_H