summaryrefslogtreecommitdiff
path: root/deps/v8/src/pattern-rewriter.cc
blob: 6969cf214ed70034fce8f58a737724ab4b600700 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/ast.h"
#include "src/messages.h"
#include "src/parser.h"

namespace v8 {

namespace internal {


void Parser::PatternRewriter::DeclareAndInitializeVariables(
    Block* block, const DeclarationDescriptor* declaration_descriptor,
    const DeclarationParsingResult::Declaration* declaration,
    ZoneList<const AstRawString*>* names, bool* ok) {
  PatternRewriter rewriter;

  rewriter.pattern_ = declaration->pattern;
  rewriter.initializer_position_ = declaration->initializer_position;
  rewriter.block_ = block;
  rewriter.descriptor_ = declaration_descriptor;
  rewriter.names_ = names;
  rewriter.ok_ = ok;

  rewriter.RecurseIntoSubpattern(rewriter.pattern_, declaration->initializer);
}


void Parser::PatternRewriter::VisitVariableProxy(VariableProxy* pattern) {
  Expression* value = current_value_;
  descriptor_->scope->RemoveUnresolved(pattern->AsVariableProxy());

  // Declare variable.
  // Note that we *always* must treat the initial value via a separate init
  // assignment for variables and constants because the value must be assigned
  // when the variable is encountered in the source. But the variable/constant
  // is declared (and set to 'undefined') upon entering the function within
  // which the variable or constant is declared. Only function variables have
  // an initial value in the declaration (because they are initialized upon
  // entering the function).
  //
  // If we have a legacy const declaration, in an inner scope, the proxy
  // is always bound to the declared variable (independent of possibly
  // surrounding 'with' statements).
  // For let/const declarations in harmony mode, we can also immediately
  // pre-resolve the proxy because it resides in the same scope as the
  // declaration.
  Parser* parser = descriptor_->parser;
  const AstRawString* name = pattern->raw_name();
  VariableProxy* proxy = parser->NewUnresolved(name, descriptor_->mode);
  Declaration* declaration = factory()->NewVariableDeclaration(
      proxy, descriptor_->mode, descriptor_->scope,
      descriptor_->declaration_pos);
  Variable* var = parser->Declare(declaration, descriptor_->declaration_kind,
                                  descriptor_->mode != VAR, ok_);
  if (!*ok_) return;
  DCHECK_NOT_NULL(var);
  DCHECK(!proxy->is_resolved() || proxy->var() == var);
  var->set_initializer_position(initializer_position_);

  DCHECK(initializer_position_ != RelocInfo::kNoPosition);

  if (descriptor_->declaration_scope->num_var_or_const() >
      kMaxNumFunctionLocals) {
    parser->ReportMessage(MessageTemplate::kTooManyVariables);
    *ok_ = false;
    return;
  }
  if (names_) {
    names_->Add(name, zone());
  }

  // Initialize variables if needed. A
  // declaration of the form:
  //
  //    var v = x;
  //
  // is syntactic sugar for:
  //
  //    var v; v = x;
  //
  // In particular, we need to re-lookup 'v' (in scope_, not
  // declaration_scope) as it may be a different 'v' than the 'v' in the
  // declaration (e.g., if we are inside a 'with' statement or 'catch'
  // block).
  //
  // However, note that const declarations are different! A const
  // declaration of the form:
  //
  //   const c = x;
  //
  // is *not* syntactic sugar for:
  //
  //   const c; c = x;
  //
  // The "variable" c initialized to x is the same as the declared
  // one - there is no re-lookup (see the last parameter of the
  // Declare() call above).
  Scope* initialization_scope = descriptor_->is_const
                                    ? descriptor_->declaration_scope
                                    : descriptor_->scope;


  // Global variable declarations must be compiled in a specific
  // way. When the script containing the global variable declaration
  // is entered, the global variable must be declared, so that if it
  // doesn't exist (on the global object itself, see ES5 errata) it
  // gets created with an initial undefined value. This is handled
  // by the declarations part of the function representing the
  // top-level global code; see Runtime::DeclareGlobalVariable. If
  // it already exists (in the object or in a prototype), it is
  // *not* touched until the variable declaration statement is
  // executed.
  //
  // Executing the variable declaration statement will always
  // guarantee to give the global object an own property.
  // This way, global variable declarations can shadow
  // properties in the prototype chain, but only after the variable
  // declaration statement has been executed. This is important in
  // browsers where the global object (window) has lots of
  // properties defined in prototype objects.
  if (initialization_scope->is_script_scope() &&
      !IsLexicalVariableMode(descriptor_->mode)) {
    // Compute the arguments for the runtime
    // call.test-parsing/InitializedDeclarationsInStrictForOfError
    ZoneList<Expression*>* arguments =
        new (zone()) ZoneList<Expression*>(3, zone());
    // We have at least 1 parameter.
    arguments->Add(
        factory()->NewStringLiteral(name, descriptor_->declaration_pos),
        zone());
    CallRuntime* initialize;

    if (descriptor_->is_const) {
      arguments->Add(value, zone());
      value = NULL;  // zap the value to avoid the unnecessary assignment

      // Construct the call to Runtime_InitializeConstGlobal
      // and add it to the initialization statement block.
      // Note that the function does different things depending on
      // the number of arguments (1 or 2).
      initialize = factory()->NewCallRuntime(
          ast_value_factory()->initialize_const_global_string(),
          Runtime::FunctionForId(Runtime::kInitializeConstGlobal), arguments,
          descriptor_->initialization_pos);
    } else {
      // Add language mode.
      // We may want to pass singleton to avoid Literal allocations.
      LanguageMode language_mode = initialization_scope->language_mode();
      arguments->Add(factory()->NewNumberLiteral(language_mode,
                                                 descriptor_->declaration_pos),
                     zone());

      // Be careful not to assign a value to the global variable if
      // we're in a with. The initialization value should not
      // necessarily be stored in the global object in that case,
      // which is why we need to generate a separate assignment node.
      if (value != NULL && !inside_with()) {
        arguments->Add(value, zone());
        value = NULL;  // zap the value to avoid the unnecessary assignment
        // Construct the call to Runtime_InitializeVarGlobal
        // and add it to the initialization statement block.
        initialize = factory()->NewCallRuntime(
            ast_value_factory()->initialize_var_global_string(),
            Runtime::FunctionForId(Runtime::kInitializeVarGlobal), arguments,
            descriptor_->declaration_pos);
      } else {
        initialize = NULL;
      }
    }

    if (initialize != NULL) {
      block_->AddStatement(
          factory()->NewExpressionStatement(initialize, RelocInfo::kNoPosition),
          zone());
    }
  } else if (value != nullptr && (descriptor_->needs_init ||
                                  IsLexicalVariableMode(descriptor_->mode))) {
    // Constant initializations always assign to the declared constant which
    // is always at the function scope level. This is only relevant for
    // dynamically looked-up variables and constants (the
    // start context for constant lookups is always the function context,
    // while it is the top context for var declared variables). Sigh...
    // For 'let' and 'const' declared variables in harmony mode the
    // initialization also always assigns to the declared variable.
    DCHECK_NOT_NULL(proxy);
    DCHECK_NOT_NULL(proxy->var());
    DCHECK_NOT_NULL(value);
    Assignment* assignment = factory()->NewAssignment(
        descriptor_->init_op, proxy, value, descriptor_->initialization_pos);
    block_->AddStatement(
        factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition),
        zone());
    value = NULL;
  }

  // Add an assignment node to the initialization statement block if we still
  // have a pending initialization value.
  if (value != NULL) {
    DCHECK(descriptor_->mode == VAR);
    // 'var' initializations are simply assignments (with all the consequences
    // if they are inside a 'with' statement - they may change a 'with' object
    // property).
    VariableProxy* proxy = initialization_scope->NewUnresolved(factory(), name);
    Assignment* assignment = factory()->NewAssignment(
        descriptor_->init_op, proxy, value, descriptor_->initialization_pos);
    block_->AddStatement(
        factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition),
        zone());
  }
}


Variable* Parser::PatternRewriter::CreateTempVar(Expression* value) {
  auto temp_scope = descriptor_->parser->scope_->DeclarationScope();
  auto temp = temp_scope->NewTemporary(ast_value_factory()->empty_string());
  if (value != nullptr) {
    auto assignment = factory()->NewAssignment(
        Token::ASSIGN, factory()->NewVariableProxy(temp), value,
        RelocInfo::kNoPosition);

    block_->AddStatement(
        factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition),
        zone());
  }
  return temp;
}


void Parser::PatternRewriter::VisitObjectLiteral(ObjectLiteral* pattern) {
  auto temp = CreateTempVar(current_value_);

  block_->AddStatement(descriptor_->parser->BuildAssertIsCoercible(temp),
                       zone());

  for (ObjectLiteralProperty* property : *pattern->properties()) {
    RecurseIntoSubpattern(
        property->value(),
        factory()->NewProperty(factory()->NewVariableProxy(temp),
                               property->key(), RelocInfo::kNoPosition));
  }
}


void Parser::PatternRewriter::VisitArrayLiteral(ArrayLiteral* node) {
  auto iterator = CreateTempVar(
      descriptor_->parser->GetIterator(current_value_, factory()));
  auto done = CreateTempVar(
      factory()->NewBooleanLiteral(false, RelocInfo::kNoPosition));
  auto result = CreateTempVar();
  auto v = CreateTempVar();

  Spread* spread = nullptr;
  for (Expression* value : *node->values()) {
    if (value->IsSpread()) {
      spread = value->AsSpread();
      break;
    }

    // if (!done) {
    //   result = IteratorNext(iterator);
    //   v = (done = result.done) ? undefined : result.value;
    // }
    auto next_block =
        factory()->NewBlock(nullptr, 2, true, RelocInfo::kNoPosition);
    next_block->AddStatement(factory()->NewExpressionStatement(
                                 descriptor_->parser->BuildIteratorNextResult(
                                     factory()->NewVariableProxy(iterator),
                                     result, RelocInfo::kNoPosition),
                                 RelocInfo::kNoPosition),
                             zone());

    auto assign_to_done = factory()->NewAssignment(
        Token::ASSIGN, factory()->NewVariableProxy(done),
        factory()->NewProperty(
            factory()->NewVariableProxy(result),
            factory()->NewStringLiteral(ast_value_factory()->done_string(),
                                        RelocInfo::kNoPosition),
            RelocInfo::kNoPosition),
        RelocInfo::kNoPosition);
    auto next_value = factory()->NewConditional(
        assign_to_done, factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
        factory()->NewProperty(
            factory()->NewVariableProxy(result),
            factory()->NewStringLiteral(ast_value_factory()->value_string(),
                                        RelocInfo::kNoPosition),
            RelocInfo::kNoPosition),
        RelocInfo::kNoPosition);
    next_block->AddStatement(
        factory()->NewExpressionStatement(
            factory()->NewAssignment(Token::ASSIGN,
                                     factory()->NewVariableProxy(v), next_value,
                                     RelocInfo::kNoPosition),
            RelocInfo::kNoPosition),
        zone());

    auto if_statement = factory()->NewIfStatement(
        factory()->NewUnaryOperation(Token::NOT,
                                     factory()->NewVariableProxy(done),
                                     RelocInfo::kNoPosition),
        next_block, factory()->NewEmptyStatement(RelocInfo::kNoPosition),
        RelocInfo::kNoPosition);
    block_->AddStatement(if_statement, zone());

    if (!(value->IsLiteral() && value->AsLiteral()->raw_value()->IsTheHole())) {
      RecurseIntoSubpattern(value, factory()->NewVariableProxy(v));
    }
  }

  if (spread != nullptr) {
    // array = [];
    // if (!done) $concatIterableToArray(array, iterator);
    auto empty_exprs = new (zone()) ZoneList<Expression*>(0, zone());
    auto array = CreateTempVar(factory()->NewArrayLiteral(
        empty_exprs,
        // Reuse pattern's literal index - it is unused since there is no
        // actual literal allocated.
        node->literal_index(), is_strong(descriptor_->parser->language_mode()),
        RelocInfo::kNoPosition));

    auto arguments = new (zone()) ZoneList<Expression*>(2, zone());
    arguments->Add(factory()->NewVariableProxy(array), zone());
    arguments->Add(factory()->NewVariableProxy(iterator), zone());
    auto spread_into_array_call = factory()->NewCallRuntime(
        ast_value_factory()->concat_iterable_to_array_string(), nullptr,
        arguments, RelocInfo::kNoPosition);

    auto if_statement = factory()->NewIfStatement(
        factory()->NewUnaryOperation(Token::NOT,
                                     factory()->NewVariableProxy(done),
                                     RelocInfo::kNoPosition),
        factory()->NewExpressionStatement(spread_into_array_call,
                                          RelocInfo::kNoPosition),
        factory()->NewEmptyStatement(RelocInfo::kNoPosition),
        RelocInfo::kNoPosition);
    block_->AddStatement(if_statement, zone());


    RecurseIntoSubpattern(spread->expression(),
                          factory()->NewVariableProxy(array));
  }
}


void Parser::PatternRewriter::VisitAssignment(Assignment* node) {
  // let {<pattern> = <init>} = <value>
  //   becomes
  // temp = <value>;
  // <pattern> = temp === undefined ? <init> : temp;
  DCHECK(node->op() == Token::ASSIGN);
  auto temp = CreateTempVar(current_value_);
  Expression* is_undefined = factory()->NewCompareOperation(
      Token::EQ_STRICT, factory()->NewVariableProxy(temp),
      factory()->NewUndefinedLiteral(RelocInfo::kNoPosition),
      RelocInfo::kNoPosition);
  Expression* value = factory()->NewConditional(
      is_undefined, node->value(), factory()->NewVariableProxy(temp),
      RelocInfo::kNoPosition);
  RecurseIntoSubpattern(node->target(), value);
}


void Parser::PatternRewriter::VisitSpread(Spread* node) {
  // TODO(dslomov): implement.
}


// =============== UNREACHABLE =============================

void Parser::PatternRewriter::Visit(AstNode* node) { UNREACHABLE(); }

#define NOT_A_PATTERN(Node)                                        \
  void Parser::PatternRewriter::Visit##Node(v8::internal::Node*) { \
    UNREACHABLE();                                                 \
  }

NOT_A_PATTERN(BinaryOperation)
NOT_A_PATTERN(Block)
NOT_A_PATTERN(BreakStatement)
NOT_A_PATTERN(Call)
NOT_A_PATTERN(CallNew)
NOT_A_PATTERN(CallRuntime)
NOT_A_PATTERN(CaseClause)
NOT_A_PATTERN(ClassLiteral)
NOT_A_PATTERN(CompareOperation)
NOT_A_PATTERN(Conditional)
NOT_A_PATTERN(ContinueStatement)
NOT_A_PATTERN(CountOperation)
NOT_A_PATTERN(DebuggerStatement)
NOT_A_PATTERN(DoWhileStatement)
NOT_A_PATTERN(EmptyStatement)
NOT_A_PATTERN(ExportDeclaration)
NOT_A_PATTERN(ExpressionStatement)
NOT_A_PATTERN(ForInStatement)
NOT_A_PATTERN(ForOfStatement)
NOT_A_PATTERN(ForStatement)
NOT_A_PATTERN(FunctionDeclaration)
NOT_A_PATTERN(FunctionLiteral)
NOT_A_PATTERN(IfStatement)
NOT_A_PATTERN(ImportDeclaration)
NOT_A_PATTERN(Literal)
NOT_A_PATTERN(NativeFunctionLiteral)
NOT_A_PATTERN(Property)
NOT_A_PATTERN(RegExpLiteral)
NOT_A_PATTERN(ReturnStatement)
NOT_A_PATTERN(SuperPropertyReference)
NOT_A_PATTERN(SuperCallReference)
NOT_A_PATTERN(SwitchStatement)
NOT_A_PATTERN(ThisFunction)
NOT_A_PATTERN(Throw)
NOT_A_PATTERN(TryCatchStatement)
NOT_A_PATTERN(TryFinallyStatement)
NOT_A_PATTERN(UnaryOperation)
NOT_A_PATTERN(VariableDeclaration)
NOT_A_PATTERN(WhileStatement)
NOT_A_PATTERN(WithStatement)
NOT_A_PATTERN(Yield)

#undef NOT_A_PATTERN
}  // namespace internal
}  // namespace v8