summaryrefslogtreecommitdiff
path: root/deps/v8/src/parsing/scanner.h
blob: 449aca46ffa64cb2fc9f8df0dddc1745635e2deb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Features shared by parsing and pre-parsing scanners.

#ifndef V8_PARSING_SCANNER_H_
#define V8_PARSING_SCANNER_H_

#include <algorithm>

#include "src/base/logging.h"
#include "src/common/globals.h"
#include "src/execution/message-template.h"
#include "src/parsing/literal-buffer.h"
#include "src/parsing/token.h"
#include "src/strings/char-predicates.h"
#include "src/strings/unicode.h"
#include "src/utils/allocation.h"
#include "src/utils/pointer-with-payload.h"

namespace v8 {
namespace internal {

class AstRawString;
class AstValueFactory;
class ExternalOneByteString;
class ExternalTwoByteString;
class ParserRecorder;
class RuntimeCallStats;
class Zone;

// ---------------------------------------------------------------------
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
// A code unit is a 16 bit value representing either a 16 bit code point
// or one part of a surrogate pair that make a single 21 bit code point.
class Utf16CharacterStream {
 public:
  static const uc32 kEndOfInput = -1;

  virtual ~Utf16CharacterStream() = default;

  V8_INLINE void set_parser_error() {
    buffer_cursor_ = buffer_end_;
    has_parser_error_ = true;
  }
  V8_INLINE void reset_parser_error_flag() { has_parser_error_ = false; }
  V8_INLINE bool has_parser_error() const { return has_parser_error_; }

  inline uc32 Peek() {
    if (V8_LIKELY(buffer_cursor_ < buffer_end_)) {
      return static_cast<uc32>(*buffer_cursor_);
    } else if (ReadBlockChecked()) {
      return static_cast<uc32>(*buffer_cursor_);
    } else {
      return kEndOfInput;
    }
  }

  // Returns and advances past the next UTF-16 code unit in the input
  // stream. If there are no more code units it returns kEndOfInput.
  inline uc32 Advance() {
    uc32 result = Peek();
    buffer_cursor_++;
    return result;
  }

  // Returns and advances past the next UTF-16 code unit in the input stream
  // that meets the checks requirement. If there are no more code units it
  // returns kEndOfInput.
  template <typename FunctionType>
  V8_INLINE uc32 AdvanceUntil(FunctionType check) {
    while (true) {
      auto next_cursor_pos =
          std::find_if(buffer_cursor_, buffer_end_, [&check](uint16_t raw_c0_) {
            uc32 c0_ = static_cast<uc32>(raw_c0_);
            return check(c0_);
          });

      if (next_cursor_pos == buffer_end_) {
        buffer_cursor_ = buffer_end_;
        if (!ReadBlockChecked()) {
          buffer_cursor_++;
          return kEndOfInput;
        }
      } else {
        buffer_cursor_ = next_cursor_pos + 1;
        return static_cast<uc32>(*next_cursor_pos);
      }
    }
  }

  // Go back one by one character in the input stream.
  // This undoes the most recent Advance().
  inline void Back() {
    // The common case - if the previous character is within
    // buffer_start_ .. buffer_end_ will be handles locally.
    // Otherwise, a new block is requested.
    if (V8_LIKELY(buffer_cursor_ > buffer_start_)) {
      buffer_cursor_--;
    } else {
      ReadBlockAt(pos() - 1);
    }
  }

  inline size_t pos() const {
    return buffer_pos_ + (buffer_cursor_ - buffer_start_);
  }

  inline void Seek(size_t pos) {
    if (V8_LIKELY(pos >= buffer_pos_ &&
                  pos < (buffer_pos_ + (buffer_end_ - buffer_start_)))) {
      buffer_cursor_ = buffer_start_ + (pos - buffer_pos_);
    } else {
      ReadBlockAt(pos);
    }
  }

  // Returns true if the stream could access the V8 heap after construction.
  bool can_be_cloned_for_parallel_access() const {
    return can_be_cloned() && !can_access_heap();
  }

  // Returns true if the stream can be cloned with Clone.
  // TODO(rmcilroy): Remove this once ChunkedStreams can be cloned.
  virtual bool can_be_cloned() const = 0;

  // Clones the character stream to enable another independent scanner to access
  // the same underlying stream.
  virtual std::unique_ptr<Utf16CharacterStream> Clone() const = 0;

  // Returns true if the stream could access the V8 heap after construction.
  virtual bool can_access_heap() const = 0;

  RuntimeCallStats* runtime_call_stats() const { return runtime_call_stats_; }
  void set_runtime_call_stats(RuntimeCallStats* runtime_call_stats) {
    runtime_call_stats_ = runtime_call_stats;
  }

 protected:
  Utf16CharacterStream(const uint16_t* buffer_start,
                       const uint16_t* buffer_cursor,
                       const uint16_t* buffer_end, size_t buffer_pos)
      : buffer_start_(buffer_start),
        buffer_cursor_(buffer_cursor),
        buffer_end_(buffer_end),
        buffer_pos_(buffer_pos) {}
  Utf16CharacterStream() : Utf16CharacterStream(nullptr, nullptr, nullptr, 0) {}

  bool ReadBlockChecked() {
    size_t position = pos();
    USE(position);
    bool success = !has_parser_error() && ReadBlock();

    // Post-conditions: 1, We should always be at the right position.
    //                  2, Cursor should be inside the buffer.
    //                  3, We should have more characters available iff success.
    DCHECK_EQ(pos(), position);
    DCHECK_LE(buffer_cursor_, buffer_end_);
    DCHECK_LE(buffer_start_, buffer_cursor_);
    DCHECK_EQ(success, buffer_cursor_ < buffer_end_);
    return success;
  }

  void ReadBlockAt(size_t new_pos) {
    // The callers of this method (Back/Back2/Seek) should handle the easy
    // case (seeking within the current buffer), and we should only get here
    // if we actually require new data.
    // (This is really an efficiency check, not a correctness invariant.)
    DCHECK(new_pos < buffer_pos_ ||
           new_pos >= buffer_pos_ + (buffer_end_ - buffer_start_));

    // Change pos() to point to new_pos.
    buffer_pos_ = new_pos;
    buffer_cursor_ = buffer_start_;
    DCHECK_EQ(pos(), new_pos);
    ReadBlockChecked();
  }

  // Read more data, and update buffer_*_ to point to it.
  // Returns true if more data was available.
  //
  // ReadBlock() may modify any of the buffer_*_ members, but must sure that
  // the result of pos() remains unaffected.
  //
  // Examples:
  // - a stream could either fill a separate buffer. Then buffer_start_ and
  //   buffer_cursor_ would point to the beginning of the buffer, and
  //   buffer_pos would be the old pos().
  // - a stream with existing buffer chunks would set buffer_start_ and
  //   buffer_end_ to cover the full chunk, and then buffer_cursor_ would
  //   point into the middle of the buffer, while buffer_pos_ would describe
  //   the start of the buffer.
  virtual bool ReadBlock() = 0;

  const uint16_t* buffer_start_;
  const uint16_t* buffer_cursor_;
  const uint16_t* buffer_end_;
  size_t buffer_pos_;
  RuntimeCallStats* runtime_call_stats_;
  bool has_parser_error_ = false;
};

// ----------------------------------------------------------------------------
// JavaScript Scanner.

class V8_EXPORT_PRIVATE Scanner {
 public:
  // Scoped helper for a re-settable bookmark.
  class V8_EXPORT_PRIVATE BookmarkScope {
   public:
    explicit BookmarkScope(Scanner* scanner)
        : scanner_(scanner),
          bookmark_(kNoBookmark),
          had_parser_error_(scanner->has_parser_error()) {
      DCHECK_NOT_NULL(scanner_);
    }
    ~BookmarkScope() = default;

    void Set(size_t bookmark);
    void Apply();
    bool HasBeenSet() const;
    bool HasBeenApplied() const;

   private:
    static const size_t kNoBookmark;
    static const size_t kBookmarkWasApplied;

    Scanner* scanner_;
    size_t bookmark_;
    bool had_parser_error_;

    DISALLOW_COPY_AND_ASSIGN(BookmarkScope);
  };

  // Sets the Scanner into an error state to stop further scanning and terminate
  // the parsing by only returning ILLEGAL tokens after that.
  V8_INLINE void set_parser_error() {
    if (!has_parser_error()) {
      c0_ = kEndOfInput;
      source_->set_parser_error();
      for (TokenDesc& desc : token_storage_) desc.token = Token::ILLEGAL;
    }
  }
  V8_INLINE void reset_parser_error_flag() {
    source_->reset_parser_error_flag();
  }
  V8_INLINE bool has_parser_error() const {
    return source_->has_parser_error();
  }

  // Representation of an interval of source positions.
  struct Location {
    Location(int b, int e) : beg_pos(b), end_pos(e) { }
    Location() : beg_pos(0), end_pos(0) { }

    int length() const { return end_pos - beg_pos; }
    bool IsValid() const { return IsInRange(beg_pos, 0, end_pos); }

    static Location invalid() { return Location(-1, 0); }

    int beg_pos;
    int end_pos;
  };

  // -1 is outside of the range of any real source code.
  static const int kNoOctalLocation = -1;
  static const uc32 kEndOfInput = Utf16CharacterStream::kEndOfInput;

  explicit Scanner(Utf16CharacterStream* source, bool is_module);

  void Initialize();

  // Returns the next token and advances input.
  Token::Value Next();
  // Returns the token following peek()
  Token::Value PeekAhead();
  // Returns the current token again.
  Token::Value current_token() const { return current().token; }

  // Returns the location information for the current token
  // (the token last returned by Next()).
  const Location& location() const { return current().location; }

  // This error is specifically an invalid hex or unicode escape sequence.
  bool has_error() const { return scanner_error_ != MessageTemplate::kNone; }
  MessageTemplate error() const { return scanner_error_; }
  const Location& error_location() const { return scanner_error_location_; }

  bool has_invalid_template_escape() const {
    return current().invalid_template_escape_message != MessageTemplate::kNone;
  }
  MessageTemplate invalid_template_escape_message() const {
    DCHECK(has_invalid_template_escape());
    return current().invalid_template_escape_message;
  }

  void clear_invalid_template_escape_message() {
    DCHECK(has_invalid_template_escape());
    current_->invalid_template_escape_message = MessageTemplate::kNone;
  }

  Location invalid_template_escape_location() const {
    DCHECK(has_invalid_template_escape());
    return current().invalid_template_escape_location;
  }

  // Similar functions for the upcoming token.

  // One token look-ahead (past the token returned by Next()).
  Token::Value peek() const { return next().token; }

  const Location& peek_location() const { return next().location; }

  bool literal_contains_escapes() const {
    return LiteralContainsEscapes(current());
  }

  bool next_literal_contains_escapes() const {
    return LiteralContainsEscapes(next());
  }

  const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory) const;

  const AstRawString* NextSymbol(AstValueFactory* ast_value_factory) const;
  const AstRawString* CurrentRawSymbol(
      AstValueFactory* ast_value_factory) const;

  double DoubleValue();

  const char* CurrentLiteralAsCString(Zone* zone) const;

  inline bool CurrentMatches(Token::Value token) const {
    DCHECK(Token::IsKeyword(token));
    return current().token == token;
  }

  template <size_t N>
  bool NextLiteralExactlyEquals(const char (&s)[N]) {
    DCHECK(next().CanAccessLiteral());
    // The length of the token is used to make sure the literal equals without
    // taking escape sequences (e.g., "use \x73trict") or line continuations
    // (e.g., "use \(newline) strict") into account.
    if (!is_next_literal_one_byte()) return false;
    if (peek_location().length() != N + 1) return false;

    Vector<const uint8_t> next = next_literal_one_byte_string();
    const char* chars = reinterpret_cast<const char*>(next.begin());
    return next.length() == N - 1 && strncmp(s, chars, N - 1) == 0;
  }

  template <size_t N>
  bool CurrentLiteralEquals(const char (&s)[N]) {
    DCHECK(current().CanAccessLiteral());
    if (!is_literal_one_byte()) return false;

    Vector<const uint8_t> current = literal_one_byte_string();
    const char* chars = reinterpret_cast<const char*>(current.begin());
    return current.length() == N - 1 && strncmp(s, chars, N - 1) == 0;
  }

  // Returns the location of the last seen octal literal.
  Location octal_position() const { return octal_pos_; }
  void clear_octal_position() {
    octal_pos_ = Location::invalid();
    octal_message_ = MessageTemplate::kNone;
  }
  MessageTemplate octal_message() const { return octal_message_; }

  // Returns the value of the last smi that was scanned.
  uint32_t smi_value() const { return current().smi_value_; }

  // Seek forward to the given position.  This operation does not
  // work in general, for instance when there are pushed back
  // characters, but works for seeking forward until simple delimiter
  // tokens, which is what it is used for.
  void SeekForward(int pos);

  // Returns true if there was a line terminator before the peek'ed token,
  // possibly inside a multi-line comment.
  bool HasLineTerminatorBeforeNext() const {
    return next().after_line_terminator;
  }

  bool HasLineTerminatorAfterNext() {
    Token::Value ensure_next_next = PeekAhead();
    USE(ensure_next_next);
    return next_next().after_line_terminator;
  }

  // Scans the input as a regular expression pattern, next token must be /(=).
  // Returns true if a pattern is scanned.
  bool ScanRegExpPattern();
  // Scans the input as regular expression flags. Returns the flags on success.
  Maybe<RegExp::Flags> ScanRegExpFlags();

  // Scans the input as a template literal
  Token::Value ScanTemplateContinuation() {
    DCHECK_EQ(next().token, Token::RBRACE);
    DCHECK_EQ(source_pos() - 1, next().location.beg_pos);
    return ScanTemplateSpan();
  }

  Handle<String> SourceUrl(Isolate* isolate) const;
  Handle<String> SourceMappingUrl(Isolate* isolate) const;

  bool FoundHtmlComment() const { return found_html_comment_; }

  bool allow_harmony_numeric_separator() const {
    return allow_harmony_numeric_separator_;
  }
  void set_allow_harmony_numeric_separator(bool allow) {
    allow_harmony_numeric_separator_ = allow;
  }

  const Utf16CharacterStream* stream() const { return source_; }

  // If the next characters in the stream are "#!", the line is skipped.
  void SkipHashBang();

 private:
  // Scoped helper for saving & restoring scanner error state.
  // This is used for tagged template literals, in which normally forbidden
  // escape sequences are allowed.
  class ErrorState;

  // The current and look-ahead token.
  struct TokenDesc {
    Location location = {0, 0};
    LiteralBuffer literal_chars;
    LiteralBuffer raw_literal_chars;
    Token::Value token = Token::UNINITIALIZED;
    MessageTemplate invalid_template_escape_message = MessageTemplate::kNone;
    Location invalid_template_escape_location;
    uint32_t smi_value_ = 0;
    bool after_line_terminator = false;

#ifdef DEBUG
    bool CanAccessLiteral() const {
      return token == Token::PRIVATE_NAME || token == Token::ILLEGAL ||
             token == Token::UNINITIALIZED || token == Token::REGEXP_LITERAL ||
             IsInRange(token, Token::NUMBER, Token::STRING) ||
             Token::IsAnyIdentifier(token) || Token::IsKeyword(token) ||
             IsInRange(token, Token::TEMPLATE_SPAN, Token::TEMPLATE_TAIL);
    }
    bool CanAccessRawLiteral() const {
      return token == Token::ILLEGAL || token == Token::UNINITIALIZED ||
             IsInRange(token, Token::TEMPLATE_SPAN, Token::TEMPLATE_TAIL);
    }
#endif  // DEBUG
  };

  enum NumberKind {
    IMPLICIT_OCTAL,
    BINARY,
    OCTAL,
    HEX,
    DECIMAL,
    DECIMAL_WITH_LEADING_ZERO
  };

  inline bool IsValidBigIntKind(NumberKind kind) {
    return IsInRange(kind, BINARY, DECIMAL);
  }

  inline bool IsDecimalNumberKind(NumberKind kind) {
    return IsInRange(kind, DECIMAL, DECIMAL_WITH_LEADING_ZERO);
  }

  static const int kCharacterLookaheadBufferSize = 1;
  static const int kMaxAscii = 127;

  // Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
  template <bool capture_raw>
  uc32 ScanOctalEscape(uc32 c, int length);

  // Call this after setting source_ to the input.
  void Init() {
    // Set c0_ (one character ahead)
    STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
    Advance();

    current_ = &token_storage_[0];
    next_ = &token_storage_[1];
    next_next_ = &token_storage_[2];

    found_html_comment_ = false;
    scanner_error_ = MessageTemplate::kNone;
  }

  void ReportScannerError(const Location& location, MessageTemplate error) {
    if (has_error()) return;
    scanner_error_ = error;
    scanner_error_location_ = location;
  }

  void ReportScannerError(int pos, MessageTemplate error) {
    if (has_error()) return;
    scanner_error_ = error;
    scanner_error_location_ = Location(pos, pos + 1);
  }

  // Seek to the next_ token at the given position.
  void SeekNext(size_t position);

  V8_INLINE void AddLiteralChar(uc32 c) { next().literal_chars.AddChar(c); }

  V8_INLINE void AddLiteralChar(char c) { next().literal_chars.AddChar(c); }

  V8_INLINE void AddRawLiteralChar(uc32 c) {
    next().raw_literal_chars.AddChar(c);
  }

  V8_INLINE void AddLiteralCharAdvance() {
    AddLiteralChar(c0_);
    Advance();
  }

  // Low-level scanning support.
  template <bool capture_raw = false>
  void Advance() {
    if (capture_raw) {
      AddRawLiteralChar(c0_);
    }
    c0_ = source_->Advance();
  }

  template <typename FunctionType>
  V8_INLINE void AdvanceUntil(FunctionType check) {
    c0_ = source_->AdvanceUntil(check);
  }

  bool CombineSurrogatePair() {
    DCHECK(!unibrow::Utf16::IsLeadSurrogate(kEndOfInput));
    if (unibrow::Utf16::IsLeadSurrogate(c0_)) {
      uc32 c1 = source_->Advance();
      DCHECK(!unibrow::Utf16::IsTrailSurrogate(kEndOfInput));
      if (unibrow::Utf16::IsTrailSurrogate(c1)) {
        c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1);
        return true;
      }
      source_->Back();
    }
    return false;
  }

  void PushBack(uc32 ch) {
    DCHECK_LE(c0_, static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode));
    source_->Back();
    c0_ = ch;
  }

  uc32 Peek() const { return source_->Peek(); }

  inline Token::Value Select(Token::Value tok) {
    Advance();
    return tok;
  }

  inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
    Advance();
    if (c0_ == next) {
      Advance();
      return then;
    } else {
      return else_;
    }
  }
  // Returns the literal string, if any, for the current token (the
  // token last returned by Next()). The string is 0-terminated.
  // Literal strings are collected for identifiers, strings, numbers as well
  // as for template literals. For template literals we also collect the raw
  // form.
  // These functions only give the correct result if the literal was scanned
  // when a LiteralScope object is alive.
  //
  // Current usage of these functions is unfortunately a little undisciplined,
  // and is_literal_one_byte() + is_literal_one_byte_string() is also
  // requested for tokens that do not have a literal. Hence, we treat any
  // token as a one-byte literal. E.g. Token::FUNCTION pretends to have a
  // literal "function".
  Vector<const uint8_t> literal_one_byte_string() const {
    DCHECK(current().CanAccessLiteral() || Token::IsKeyword(current().token));
    return current().literal_chars.one_byte_literal();
  }
  Vector<const uint16_t> literal_two_byte_string() const {
    DCHECK(current().CanAccessLiteral() || Token::IsKeyword(current().token));
    return current().literal_chars.two_byte_literal();
  }
  bool is_literal_one_byte() const {
    DCHECK(current().CanAccessLiteral() || Token::IsKeyword(current().token));
    return current().literal_chars.is_one_byte();
  }
  // Returns the literal string for the next token (the token that
  // would be returned if Next() were called).
  Vector<const uint8_t> next_literal_one_byte_string() const {
    DCHECK(next().CanAccessLiteral());
    return next().literal_chars.one_byte_literal();
  }
  Vector<const uint16_t> next_literal_two_byte_string() const {
    DCHECK(next().CanAccessLiteral());
    return next().literal_chars.two_byte_literal();
  }
  bool is_next_literal_one_byte() const {
    DCHECK(next().CanAccessLiteral());
    return next().literal_chars.is_one_byte();
  }
  Vector<const uint8_t> raw_literal_one_byte_string() const {
    DCHECK(current().CanAccessRawLiteral());
    return current().raw_literal_chars.one_byte_literal();
  }
  Vector<const uint16_t> raw_literal_two_byte_string() const {
    DCHECK(current().CanAccessRawLiteral());
    return current().raw_literal_chars.two_byte_literal();
  }
  bool is_raw_literal_one_byte() const {
    DCHECK(current().CanAccessRawLiteral());
    return current().raw_literal_chars.is_one_byte();
  }

  template <bool capture_raw, bool unicode = false>
  uc32 ScanHexNumber(int expected_length);
  // Scan a number of any length but not bigger than max_value. For example, the
  // number can be 000000001, so it's very long in characters but its value is
  // small.
  template <bool capture_raw>
  uc32 ScanUnlimitedLengthHexNumber(int max_value, int beg_pos);

  // Scans a single JavaScript token.
  V8_INLINE Token::Value ScanSingleToken();
  V8_INLINE void Scan();
  // Performance hack: pass through a pre-calculated "next()" value to avoid
  // having to re-calculate it in Scan. You'd think the compiler would be able
  // to hoist the next() calculation out of the inlined Scan method, but seems
  // that pointer aliasing analysis fails show that this is safe.
  V8_INLINE void Scan(TokenDesc* next_desc);

  V8_INLINE Token::Value SkipWhiteSpace();
  Token::Value SkipSingleHTMLComment();
  Token::Value SkipSingleLineComment();
  Token::Value SkipSourceURLComment();
  void TryToParseSourceURLComment();
  Token::Value SkipMultiLineComment();
  // Scans a possible HTML comment -- begins with '<!'.
  Token::Value ScanHtmlComment();

  bool ScanDigitsWithNumericSeparators(bool (*predicate)(uc32 ch),
                                       bool is_check_first_digit);
  bool ScanDecimalDigits();
  // Optimized function to scan decimal number as Smi.
  bool ScanDecimalAsSmi(uint64_t* value);
  bool ScanDecimalAsSmiWithNumericSeparators(uint64_t* value);
  bool ScanHexDigits();
  bool ScanBinaryDigits();
  bool ScanSignedInteger();
  bool ScanOctalDigits();
  bool ScanImplicitOctalDigits(int start_pos, NumberKind* kind);

  Token::Value ScanNumber(bool seen_period);
  V8_INLINE Token::Value ScanIdentifierOrKeyword();
  V8_INLINE Token::Value ScanIdentifierOrKeywordInner();
  Token::Value ScanIdentifierOrKeywordInnerSlow(bool escaped,
                                                bool can_be_keyword);

  Token::Value ScanString();
  Token::Value ScanPrivateName();

  // Scans an escape-sequence which is part of a string and adds the
  // decoded character to the current literal. Returns true if a pattern
  // is scanned.
  template <bool capture_raw>
  bool ScanEscape();

  // Decodes a Unicode escape-sequence which is part of an identifier.
  // If the escape sequence cannot be decoded the result is kBadChar.
  uc32 ScanIdentifierUnicodeEscape();
  // Helper for the above functions.
  template <bool capture_raw>
  uc32 ScanUnicodeEscape();

  Token::Value ScanTemplateSpan();

  // Return the current source position.
  int source_pos() {
    return static_cast<int>(source_->pos()) - kCharacterLookaheadBufferSize;
  }

  static bool LiteralContainsEscapes(const TokenDesc& token) {
    Location location = token.location;
    int source_length = (location.end_pos - location.beg_pos);
    if (token.token == Token::STRING) {
      // Subtract delimiters.
      source_length -= 2;
    }
    return token.literal_chars.length() != source_length;
  }

#ifdef DEBUG
  void SanityCheckTokenDesc(const TokenDesc&) const;
#endif

  TokenDesc& next() { return *next_; }

  const TokenDesc& current() const { return *current_; }
  const TokenDesc& next() const { return *next_; }
  const TokenDesc& next_next() const { return *next_next_; }

  TokenDesc* current_;    // desc for current token (as returned by Next())
  TokenDesc* next_;       // desc for next token (one token look-ahead)
  TokenDesc* next_next_;  // desc for the token after next (after PeakAhead())

  // Input stream. Must be initialized to an Utf16CharacterStream.
  Utf16CharacterStream* const source_;

  // One Unicode character look-ahead; c0_ < 0 at the end of the input.
  uc32 c0_;

  TokenDesc token_storage_[3];

  // Whether this scanner encountered an HTML comment.
  bool found_html_comment_;

  // Harmony flags to allow ESNext features.
  bool allow_harmony_numeric_separator_;

  const bool is_module_;

  // Values parsed from magic comments.
  LiteralBuffer source_url_;
  LiteralBuffer source_mapping_url_;

  // Last-seen positions of potentially problematic tokens.
  Location octal_pos_;
  MessageTemplate octal_message_;

  MessageTemplate scanner_error_;
  Location scanner_error_location_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_PARSING_SCANNER_H_