summaryrefslogtreecommitdiff
path: root/deps/v8/src/parsing/preparser.cc
blob: b28eab2e7510a5257edee48fd8602f16d76e2c39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <cmath>

#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/conversions-inl.h"
#include "src/conversions.h"
#include "src/globals.h"
#include "src/parsing/duplicate-finder.h"
#include "src/parsing/parser-base.h"
#include "src/parsing/preparse-data-format.h"
#include "src/parsing/preparse-data.h"
#include "src/parsing/preparsed-scope-data.h"
#include "src/parsing/preparser.h"
#include "src/unicode.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// The CHECK_OK macro is a convenient macro to enforce error
// handling for functions that may fail (by returning !*ok).
//
// CAUTION: This macro appends extra statements after a call,
// thus it must never be used where only a single statement
// is correct (e.g. an if statement branch w/o braces)!

#define CHECK_OK_VALUE(x) ok); \
  if (!*ok) return x;          \
  ((void)0
#define DUMMY )  // to make indentation work
#undef DUMMY

#define CHECK_OK CHECK_OK_VALUE(Expression::Default())
#define CHECK_OK_VOID CHECK_OK_VALUE(this->Void())

namespace {

PreParserIdentifier GetSymbolHelper(Scanner* scanner) {
  // These symbols require slightly different treatement:
  // - regular keywords (async, await, etc.; treated in 1st switch.)
  // - 'contextual' keywords (and may contain escaped; treated in 2nd switch.)
  // - 'contextual' keywords, but may not be escaped (3rd switch).
  switch (scanner->current_token()) {
    case Token::AWAIT:
      return PreParserIdentifier::Await();
    case Token::ASYNC:
      return PreParserIdentifier::Async();
    default:
      break;
  }
  switch (scanner->current_contextual_token()) {
    case Token::CONSTRUCTOR:
      return PreParserIdentifier::Constructor();
    case Token::NAME:
      return PreParserIdentifier::Name();
    default:
      break;
  }
  if (scanner->literal_contains_escapes()) {
    return PreParserIdentifier::Default();
  }
  switch (scanner->current_contextual_token()) {
    case Token::EVAL:
      return PreParserIdentifier::Eval();
    case Token::ARGUMENTS:
      return PreParserIdentifier::Arguments();
    default:
      break;
  }
  return PreParserIdentifier::Default();
}

}  // unnamed namespace

PreParserIdentifier PreParser::GetSymbol() const {
  PreParserIdentifier symbol = GetSymbolHelper(scanner());
  if (track_unresolved_variables_) {
    const AstRawString* result = scanner()->CurrentSymbol(ast_value_factory());
    DCHECK_NOT_NULL(result);
    symbol.string_ = result;
  }
  return symbol;
}

PreParser::PreParseResult PreParser::PreParseProgram() {
  DCHECK_NULL(scope_);
  DeclarationScope* scope = NewScriptScope();
#ifdef DEBUG
  scope->set_is_being_lazily_parsed(true);
#endif

  // ModuleDeclarationInstantiation for Source Text Module Records creates a
  // new Module Environment Record whose outer lexical environment record is
  // the global scope.
  if (parsing_module_) scope = NewModuleScope(scope);

  FunctionState top_scope(&function_state_, &scope_, scope);
  original_scope_ = scope_;
  bool ok = true;
  int start_position = scanner()->peek_location().beg_pos;
  PreParserStatementList body;
  ParseStatementList(body, Token::EOS, &ok);
  original_scope_ = nullptr;
  if (stack_overflow()) return kPreParseStackOverflow;
  if (!ok) {
    ReportUnexpectedToken(scanner()->current_token());
  } else if (is_strict(language_mode())) {
    CheckStrictOctalLiteral(start_position, scanner()->location().end_pos, &ok);
  }
  return kPreParseSuccess;
}

PreParser::PreParseResult PreParser::PreParseFunction(
    const AstRawString* function_name, FunctionKind kind,
    FunctionLiteral::FunctionType function_type,
    DeclarationScope* function_scope, bool is_inner_function, bool may_abort,
    int* use_counts, ProducedPreParsedScopeData** produced_preparsed_scope_data,
    int script_id) {
  DCHECK_EQ(FUNCTION_SCOPE, function_scope->scope_type());
  use_counts_ = use_counts;
  DCHECK(!track_unresolved_variables_);
  track_unresolved_variables_ = is_inner_function;
  set_script_id(script_id);
#ifdef DEBUG
  function_scope->set_is_being_lazily_parsed(true);
#endif

  // Start collecting data for a new function which might contain skippable
  // functions.
  std::unique_ptr<ProducedPreParsedScopeData::DataGatheringScope>
      produced_preparsed_scope_data_scope;
  if (FLAG_preparser_scope_analysis && !IsArrowFunction(kind)) {
    track_unresolved_variables_ = true;
    produced_preparsed_scope_data_scope.reset(
        new ProducedPreParsedScopeData::DataGatheringScope(function_scope,
                                                           this));
  }

  // In the preparser, we use the function literal ids to count how many
  // FunctionLiterals were encountered. The PreParser doesn't actually persist
  // FunctionLiterals, so there IDs don't matter.
  ResetFunctionLiteralId();

  // The caller passes the function_scope which is not yet inserted into the
  // scope stack. All scopes above the function_scope are ignored by the
  // PreParser.
  DCHECK_NULL(function_state_);
  DCHECK_NULL(scope_);
  FunctionState function_state(&function_state_, &scope_, function_scope);
  // This indirection is needed so that we can use the CHECK_OK macros.
  bool ok_holder = true;
  bool* ok = &ok_holder;

  PreParserFormalParameters formals(function_scope);
  DuplicateFinder duplicate_finder;
  std::unique_ptr<ExpressionClassifier> formals_classifier;

  // Parse non-arrow function parameters. For arrow functions, the parameters
  // have already been parsed.
  if (!IsArrowFunction(kind)) {
    formals_classifier.reset(new ExpressionClassifier(this, &duplicate_finder));
    // We return kPreParseSuccess in failure cases too - errors are retrieved
    // separately by Parser::SkipLazyFunctionBody.
    ParseFormalParameterList(&formals, CHECK_OK_VALUE(kPreParseSuccess));
    Expect(Token::RPAREN, CHECK_OK_VALUE(kPreParseSuccess));
    int formals_end_position = scanner()->location().end_pos;

    CheckArityRestrictions(
        formals.arity, kind, formals.has_rest, function_scope->start_position(),
        formals_end_position, CHECK_OK_VALUE(kPreParseSuccess));
  }

  Expect(Token::LBRACE, CHECK_OK_VALUE(kPreParseSuccess));
  DeclarationScope* inner_scope = function_scope;
  LazyParsingResult result;

  if (!formals.is_simple) {
    inner_scope = NewVarblockScope();
    inner_scope->set_start_position(scanner()->location().beg_pos);
  }

  {
    BlockState block_state(&scope_, inner_scope);
    result = ParseStatementListAndLogFunction(&formals, may_abort, ok);
  }

  if (!formals.is_simple) {
    BuildParameterInitializationBlock(formals, ok);

    if (is_sloppy(inner_scope->language_mode())) {
      inner_scope->HoistSloppyBlockFunctions(nullptr);
    }

    SetLanguageMode(function_scope, inner_scope->language_mode());
    inner_scope->set_end_position(scanner()->peek_location().end_pos);
    inner_scope->FinalizeBlockScope();
  } else {
    if (is_sloppy(function_scope->language_mode())) {
      function_scope->HoistSloppyBlockFunctions(nullptr);
    }
  }

  if (!IsArrowFunction(kind) && track_unresolved_variables_ &&
      result == kLazyParsingComplete) {
    // Declare arguments after parsing the function since lexical 'arguments'
    // masks the arguments object. Declare arguments before declaring the
    // function var since the arguments object masks 'function arguments'.
    function_scope->DeclareArguments(ast_value_factory());

    DeclareFunctionNameVar(function_name, function_type, function_scope);
  }

  use_counts_ = nullptr;
  track_unresolved_variables_ = false;

  if (result == kLazyParsingAborted) {
    return kPreParseAbort;
  } else if (stack_overflow()) {
    return kPreParseStackOverflow;
  } else if (!*ok) {
    DCHECK(pending_error_handler()->has_pending_error());
  } else {
    DCHECK_EQ(Token::RBRACE, scanner()->peek());

    if (!IsArrowFunction(kind)) {
      // Validate parameter names. We can do this only after parsing the
      // function, since the function can declare itself strict.
      const bool allow_duplicate_parameters =
          is_sloppy(function_scope->language_mode()) && formals.is_simple &&
          !IsConciseMethod(kind);
      ValidateFormalParameters(function_scope->language_mode(),
                               allow_duplicate_parameters,
                               CHECK_OK_VALUE(kPreParseSuccess));

      *produced_preparsed_scope_data = produced_preparsed_scope_data_;
    }

    if (is_strict(function_scope->language_mode())) {
      int end_pos = scanner()->location().end_pos;
      CheckStrictOctalLiteral(function_scope->start_position(), end_pos, ok);
    }
  }
  return kPreParseSuccess;
}


// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparser-data.h for the data.

// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.

PreParser::Expression PreParser::ParseFunctionLiteral(
    Identifier function_name, Scanner::Location function_name_location,
    FunctionNameValidity function_name_validity, FunctionKind kind,
    int function_token_pos, FunctionLiteral::FunctionType function_type,
    LanguageMode language_mode,
    ZoneList<const AstRawString*>* arguments_for_wrapped_function, bool* ok) {
  // Wrapped functions are not parsed in the preparser.
  DCHECK_NULL(arguments_for_wrapped_function);
  DCHECK_NE(FunctionLiteral::kWrapped, function_type);
  // Function ::
  //   '(' FormalParameterList? ')' '{' FunctionBody '}'
  const RuntimeCallCounterId counters[2][2] = {
      {RuntimeCallCounterId::kPreParseBackgroundNoVariableResolution,
       RuntimeCallCounterId::kPreParseNoVariableResolution},
      {RuntimeCallCounterId::kPreParseBackgroundWithVariableResolution,
       RuntimeCallCounterId::kPreParseWithVariableResolution}};
  RuntimeCallTimerScope runtime_timer(
      runtime_call_stats_,
      counters[track_unresolved_variables_][parsing_on_main_thread_]);

  base::ElapsedTimer timer;
  if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();

  DeclarationScope* function_scope = NewFunctionScope(kind);
  function_scope->SetLanguageMode(language_mode);

  // Start collecting data for a new function which might contain skippable
  // functions.
  std::unique_ptr<ProducedPreParsedScopeData::DataGatheringScope>
      produced_preparsed_scope_data_scope;
  if (!function_state_->next_function_is_likely_called() &&
      produced_preparsed_scope_data_ != nullptr) {
    DCHECK(FLAG_preparser_scope_analysis);
    DCHECK(track_unresolved_variables_);
    produced_preparsed_scope_data_scope.reset(
        new ProducedPreParsedScopeData::DataGatheringScope(function_scope,
                                                           this));
  }

  FunctionState function_state(&function_state_, &scope_, function_scope);
  DuplicateFinder duplicate_finder;
  ExpressionClassifier formals_classifier(this, &duplicate_finder);
  int func_id = GetNextFunctionLiteralId();

  Expect(Token::LPAREN, CHECK_OK);
  int start_position = scanner()->location().beg_pos;
  function_scope->set_start_position(start_position);
  PreParserFormalParameters formals(function_scope);
  ParseFormalParameterList(&formals, CHECK_OK);
  Expect(Token::RPAREN, CHECK_OK);
  int formals_end_position = scanner()->location().end_pos;

  CheckArityRestrictions(formals.arity, kind, formals.has_rest, start_position,
                         formals_end_position, CHECK_OK);

  Expect(Token::LBRACE, CHECK_OK);

  // Parse function body.
  PreParserStatementList body;
  int pos = function_token_pos == kNoSourcePosition ? peek_position()
                                                    : function_token_pos;
  ParseFunctionBody(body, function_name, pos, formals, kind, function_type,
                    CHECK_OK);

  // Parsing the body may change the language mode in our scope.
  language_mode = function_scope->language_mode();

  if (is_sloppy(language_mode)) {
    function_scope->HoistSloppyBlockFunctions(nullptr);
  }

  // Validate name and parameter names. We can do this only after parsing the
  // function, since the function can declare itself strict.
  CheckFunctionName(language_mode, function_name, function_name_validity,
                    function_name_location, CHECK_OK);
  const bool allow_duplicate_parameters =
      is_sloppy(language_mode) && formals.is_simple && !IsConciseMethod(kind);
  ValidateFormalParameters(language_mode, allow_duplicate_parameters, CHECK_OK);

  int end_position = scanner()->location().end_pos;
  if (is_strict(language_mode)) {
    CheckStrictOctalLiteral(start_position, end_position, CHECK_OK);
  }

  if (produced_preparsed_scope_data_scope) {
    produced_preparsed_scope_data_scope->MarkFunctionAsSkippable(
        end_position, GetLastFunctionLiteralId() - func_id);
  }
  if (V8_UNLIKELY(FLAG_log_function_events)) {
    double ms = timer.Elapsed().InMillisecondsF();
    const char* event_name = track_unresolved_variables_
                                 ? "preparse-resolution"
                                 : "preparse-no-resolution";
    // We might not always get a function name here. However, it can be easily
    // reconstructed from the script id and the byte range in the log processor.
    const char* name = "";
    size_t name_byte_length = 0;
    const AstRawString* string = function_name.string_;
    if (string != nullptr) {
      name = reinterpret_cast<const char*>(string->raw_data());
      name_byte_length = string->byte_length();
    }
    logger_->FunctionEvent(
        event_name, nullptr, script_id(), ms, function_scope->start_position(),
        function_scope->end_position(), name, name_byte_length);
  }

  return Expression::Default();
}

PreParser::LazyParsingResult PreParser::ParseStatementListAndLogFunction(
    PreParserFormalParameters* formals, bool may_abort, bool* ok) {
  PreParserStatementList body;
  LazyParsingResult result = ParseStatementList(
      body, Token::RBRACE, may_abort, CHECK_OK_VALUE(kLazyParsingComplete));
  if (result == kLazyParsingAborted) return result;

  // Position right after terminal '}'.
  DCHECK_EQ(Token::RBRACE, scanner()->peek());
  int body_end = scanner()->peek_location().end_pos;
  DCHECK_EQ(this->scope()->is_function_scope(), formals->is_simple);
  log_.LogFunction(body_end, formals->num_parameters(),
                   GetLastFunctionLiteralId());
  return kLazyParsingComplete;
}

PreParserStatement PreParser::BuildParameterInitializationBlock(
    const PreParserFormalParameters& parameters, bool* ok) {
  DCHECK(!parameters.is_simple);
  DCHECK(scope()->is_function_scope());
  if (FLAG_preparser_scope_analysis &&
      scope()->AsDeclarationScope()->calls_sloppy_eval() &&
      produced_preparsed_scope_data_ != nullptr) {
    // We cannot replicate the Scope structure constructed by the Parser,
    // because we've lost information whether each individual parameter was
    // simple or not. Give up trying to produce data to skip inner functions.
    if (produced_preparsed_scope_data_->parent() != nullptr) {
      // Lazy parsing started before the current function; the function which
      // cannot contain skippable functions is the parent function. (Its inner
      // functions cannot either; they are implicitly bailed out.)
      produced_preparsed_scope_data_->parent()->Bailout();
    } else {
      // Lazy parsing started at the current function; it cannot contain
      // skippable functions.
      produced_preparsed_scope_data_->Bailout();
    }
  }

  return PreParserStatement::Default();
}

PreParserExpression PreParser::ExpressionFromIdentifier(
    const PreParserIdentifier& name, int start_position, InferName infer) {
  VariableProxy* proxy = nullptr;
  if (track_unresolved_variables_) {
    DCHECK_NOT_NULL(name.string_);
    proxy = scope()->NewUnresolved(factory()->ast_node_factory(), name.string_,
                                   start_position, NORMAL_VARIABLE);
  }
  return PreParserExpression::FromIdentifier(name, proxy, zone());
}

void PreParser::DeclareAndInitializeVariables(
    PreParserStatement block,
    const DeclarationDescriptor* declaration_descriptor,
    const DeclarationParsingResult::Declaration* declaration,
    ZoneList<const AstRawString*>* names, bool* ok) {
  if (declaration->pattern.variables_ != nullptr) {
    DCHECK(FLAG_lazy_inner_functions);
    DCHECK(track_unresolved_variables_);
    for (auto variable : *(declaration->pattern.variables_)) {
      declaration_descriptor->scope->RemoveUnresolved(variable);
      Variable* var = scope()->DeclareVariableName(
          variable->raw_name(), declaration_descriptor->mode);
      if (FLAG_preparser_scope_analysis) {
        MarkLoopVariableAsAssigned(declaration_descriptor->scope, var,
                                   declaration_descriptor->declaration_kind);
        // This is only necessary if there is an initializer, but we don't have
        // that information here.  Consequently, the preparser sometimes says
        // maybe-assigned where the parser (correctly) says never-assigned.
      }
      if (names) {
        names->Add(variable->raw_name(), zone());
      }
    }
  }
}

#undef CHECK_OK
#undef CHECK_OK_CUSTOM


}  // namespace internal
}  // namespace v8