summaryrefslogtreecommitdiff
path: root/deps/v8/src/parsing/parser.h
blob: 2bd555e88141b3a06c62258bb6ba42663fd1b3f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PARSING_PARSER_H_
#define V8_PARSING_PARSER_H_

#include <cstddef>

#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast-value-factory.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/base/compiler-specific.h"
#include "src/base/threaded-list.h"
#include "src/common/globals.h"
#include "src/parsing/parser-base.h"
#include "src/parsing/parsing.h"
#include "src/parsing/preparser.h"
#include "src/utils/pointer-with-payload.h"
#include "src/zone/zone-chunk-list.h"

namespace v8 {

class ScriptCompiler;

namespace internal {

class ConsumedPreparseData;
class ParseInfo;
class ParserTarget;
class ParserTargetScope;
class PendingCompilationErrorHandler;
class PreparseData;

// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING

class Parser;


struct ParserFormalParameters : FormalParametersBase {
  struct Parameter : public ZoneObject {
    Parameter(Expression* pattern, Expression* initializer, int position,
              int initializer_end_position, bool is_rest)
        : initializer_and_is_rest(initializer, is_rest),
          pattern(pattern),
          position(position),
          initializer_end_position(initializer_end_position) {}

    PointerWithPayload<Expression, bool, 1> initializer_and_is_rest;

    Expression* pattern;
    Expression* initializer() const {
      return initializer_and_is_rest.GetPointer();
    }
    int position;
    int initializer_end_position;
    inline bool is_rest() const { return initializer_and_is_rest.GetPayload(); }

    Parameter* next_parameter = nullptr;
    bool is_simple() const {
      return pattern->IsVariableProxy() && initializer() == nullptr &&
             !is_rest();
    }

    const AstRawString* name() const {
      DCHECK(is_simple());
      return pattern->AsVariableProxy()->raw_name();
    }

    Parameter** next() { return &next_parameter; }
    Parameter* const* next() const { return &next_parameter; }
  };

  void set_strict_parameter_error(const Scanner::Location& loc,
                                  MessageTemplate message) {
    strict_error_loc = loc;
    strict_error_message = message;
  }

  bool has_duplicate() const { return duplicate_loc.IsValid(); }
  void ValidateDuplicate(Parser* parser) const;
  void ValidateStrictMode(Parser* parser) const;

  explicit ParserFormalParameters(DeclarationScope* scope)
      : FormalParametersBase(scope) {}

  base::ThreadedList<Parameter> params;
  Scanner::Location duplicate_loc = Scanner::Location::invalid();
  Scanner::Location strict_error_loc = Scanner::Location::invalid();
  MessageTemplate strict_error_message = MessageTemplate::kNone;
};

template <>
struct ParserTypes<Parser> {
  using Base = ParserBase<Parser>;
  using Impl = Parser;

  // Return types for traversing functions.
  using Block = v8::internal::Block*;
  using BreakableStatement = v8::internal::BreakableStatement*;
  using ClassLiteralProperty = ClassLiteral::Property*;
  using ClassPropertyList = ZonePtrList<ClassLiteral::Property>*;
  using Expression = v8::internal::Expression*;
  using ExpressionList = ScopedPtrList<v8::internal::Expression>;
  using FormalParameters = ParserFormalParameters;
  using ForStatement = v8::internal::ForStatement*;
  using FunctionLiteral = v8::internal::FunctionLiteral*;
  using Identifier = const AstRawString*;
  using IterationStatement = v8::internal::IterationStatement*;
  using ObjectLiteralProperty = ObjectLiteral::Property*;
  using ObjectPropertyList = ScopedPtrList<v8::internal::ObjectLiteralProperty>;
  using Statement = v8::internal::Statement*;
  using StatementList = ScopedPtrList<v8::internal::Statement>;
  using Suspend = v8::internal::Suspend*;

  // For constructing objects returned by the traversing functions.
  using Factory = AstNodeFactory;

  // Other implementation-specific functions.
  using FuncNameInferrer = v8::internal::FuncNameInferrer;
  using SourceRange = v8::internal::SourceRange;
  using SourceRangeScope = v8::internal::SourceRangeScope;
  using Target = ParserTarget;
  using TargetScope = ParserTargetScope;
};

class V8_EXPORT_PRIVATE Parser : public NON_EXPORTED_BASE(ParserBase<Parser>) {
 public:
  explicit Parser(ParseInfo* info);
  ~Parser() {
    delete reusable_preparser_;
    reusable_preparser_ = nullptr;
  }

  static bool IsPreParser() { return false; }

  void ParseOnBackground(ParseInfo* info);

  // Initializes an empty scope chain for top-level scripts, or scopes which
  // consist of only the native context.
  void InitializeEmptyScopeChain(ParseInfo* info);

  // Deserialize the scope chain prior to parsing in which the script is going
  // to be executed. If the script is a top-level script, or the scope chain
  // consists of only a native context, maybe_outer_scope_info should be an
  // empty handle.
  //
  // This only deserializes the scope chain, but doesn't connect the scopes to
  // their corresponding scope infos. Therefore, looking up variables in the
  // deserialized scopes is not possible.
  void DeserializeScopeChain(Isolate* isolate, ParseInfo* info,
                             MaybeHandle<ScopeInfo> maybe_outer_scope_info,
                             Scope::DeserializationMode mode =
                                 Scope::DeserializationMode::kScopesOnly);

  // Move statistics to Isolate
  void UpdateStatistics(Isolate* isolate, Handle<Script> script);
  void HandleSourceURLComments(Isolate* isolate, Handle<Script> script);

 private:
  friend class ParserBase<Parser>;
  friend struct ParserFormalParameters;
  friend class i::ExpressionScope<ParserTypes<Parser>>;
  friend class i::VariableDeclarationParsingScope<ParserTypes<Parser>>;
  friend class i::ParameterDeclarationParsingScope<ParserTypes<Parser>>;
  friend class i::ArrowHeadParsingScope<ParserTypes<Parser>>;
  friend bool v8::internal::parsing::ParseProgram(
      ParseInfo*, Isolate*, parsing::ReportErrorsAndStatisticsMode stats_mode);
  friend bool v8::internal::parsing::ParseFunction(
      ParseInfo*, Handle<SharedFunctionInfo> shared_info, Isolate*,
      parsing::ReportErrorsAndStatisticsMode stats_mode);

  bool AllowsLazyParsingWithoutUnresolvedVariables() const {
    return scope()->AllowsLazyParsingWithoutUnresolvedVariables(
        original_scope_);
  }

  bool parse_lazily() const { return mode_ == PARSE_LAZILY; }
  enum Mode { PARSE_LAZILY, PARSE_EAGERLY };

  class ParsingModeScope {
   public:
    ParsingModeScope(Parser* parser, Mode mode)
        : parser_(parser), old_mode_(parser->mode_) {
      parser_->mode_ = mode;
    }
    ~ParsingModeScope() { parser_->mode_ = old_mode_; }

   private:
    Parser* parser_;
    Mode old_mode_;
  };

  // Runtime encoding of different completion modes.
  enum CompletionKind {
    kNormalCompletion,
    kThrowCompletion,
    kAbruptCompletion
  };

  Variable* NewTemporary(const AstRawString* name) {
    return scope()->NewTemporary(name);
  }

  void PrepareGeneratorVariables();

  // Returns nullptr if parsing failed.
  FunctionLiteral* ParseProgram(Isolate* isolate, ParseInfo* info);

  FunctionLiteral* ParseFunction(Isolate* isolate, ParseInfo* info,
                                 Handle<SharedFunctionInfo> shared_info);
  FunctionLiteral* DoParseFunction(Isolate* isolate, ParseInfo* info,
                                   const AstRawString* raw_name);

  // Called by ParseProgram after setting up the scanner.
  FunctionLiteral* DoParseProgram(Isolate* isolate, ParseInfo* info);

  // Parse with the script as if the source is implicitly wrapped in a function.
  // We manually construct the AST and scopes for a top-level function and the
  // function wrapper.
  void ParseWrapped(Isolate* isolate, ParseInfo* info,
                    ScopedPtrList<Statement>* body, DeclarationScope* scope,
                    Zone* zone);

  ZonePtrList<const AstRawString>* PrepareWrappedArguments(Isolate* isolate,
                                                           ParseInfo* info,
                                                           Zone* zone);

  PreParser* reusable_preparser() {
    if (reusable_preparser_ == nullptr) {
      reusable_preparser_ = new PreParser(
          &preparser_zone_, &scanner_, stack_limit_, ast_value_factory(),
          pending_error_handler(), runtime_call_stats_, logger_, -1,
          parsing_module_, parsing_on_main_thread_);
#define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name());
      SET_ALLOW(natives);
      SET_ALLOW(harmony_dynamic_import);
      SET_ALLOW(harmony_import_meta);
      SET_ALLOW(harmony_private_methods);
      SET_ALLOW(eval_cache);
#undef SET_ALLOW
      preparse_data_buffer_.reserve(128);
    }
    return reusable_preparser_;
  }

  void ParseModuleItemList(ScopedPtrList<Statement>* body);
  Statement* ParseModuleItem();
  const AstRawString* ParseModuleSpecifier();
  void ParseImportDeclaration();
  Statement* ParseExportDeclaration();
  Statement* ParseExportDefault();
  void ParseExportStar();
  struct ExportClauseData {
    const AstRawString* export_name;
    const AstRawString* local_name;
    Scanner::Location location;
  };
  ZoneChunkList<ExportClauseData>* ParseExportClause(
      Scanner::Location* reserved_loc);
  struct NamedImport : public ZoneObject {
    const AstRawString* import_name;
    const AstRawString* local_name;
    const Scanner::Location location;
    NamedImport(const AstRawString* import_name, const AstRawString* local_name,
                Scanner::Location location)
        : import_name(import_name),
          local_name(local_name),
          location(location) {}
  };
  ZonePtrList<const NamedImport>* ParseNamedImports(int pos);
  Statement* BuildInitializationBlock(DeclarationParsingResult* parsing_result);
  void DeclareLabel(ZonePtrList<const AstRawString>** labels,
                    ZonePtrList<const AstRawString>** own_labels,
                    const AstRawString* label);
  bool ContainsLabel(ZonePtrList<const AstRawString>* labels,
                     const AstRawString* label);
  Expression* RewriteReturn(Expression* return_value, int pos);
  Statement* RewriteSwitchStatement(SwitchStatement* switch_statement,
                                    Scope* scope);
  Block* RewriteCatchPattern(CatchInfo* catch_info);
  void ReportVarRedeclarationIn(const AstRawString* name, Scope* scope);
  Statement* RewriteTryStatement(Block* try_block, Block* catch_block,
                                 const SourceRange& catch_range,
                                 Block* finally_block,
                                 const SourceRange& finally_range,
                                 const CatchInfo& catch_info, int pos);
  void ParseAndRewriteGeneratorFunctionBody(int pos, FunctionKind kind,
                                            ScopedPtrList<Statement>* body);
  void ParseAndRewriteAsyncGeneratorFunctionBody(
      int pos, FunctionKind kind, ScopedPtrList<Statement>* body);
  void DeclareFunctionNameVar(const AstRawString* function_name,
                              FunctionSyntaxKind function_syntax_kind,
                              DeclarationScope* function_scope);

  Statement* DeclareFunction(const AstRawString* variable_name,
                             FunctionLiteral* function, VariableMode mode,
                             VariableKind kind, int beg_pos, int end_pos,
                             ZonePtrList<const AstRawString>* names);
  Variable* CreateSyntheticContextVariable(const AstRawString* synthetic_name);
  Variable* CreatePrivateNameVariable(ClassScope* scope, VariableMode mode,
                                      const AstRawString* name);
  FunctionLiteral* CreateInitializerFunction(
      const char* name, DeclarationScope* scope,
      ZonePtrList<ClassLiteral::Property>* fields);

  bool IdentifierEquals(const AstRawString* identifier,
                        const AstRawString* other) {
    return identifier == other;
  }

  Statement* DeclareClass(const AstRawString* variable_name, Expression* value,
                          ZonePtrList<const AstRawString>* names,
                          int class_token_pos, int end_pos);
  void DeclareClassVariable(const AstRawString* name, ClassInfo* class_info,
                            int class_token_pos);
  void DeclareClassBrandVariable(ClassScope* scope, ClassInfo* class_info,
                                 int class_token_pos);
  void DeclarePrivateClassMember(ClassScope* scope,
                                 const AstRawString* property_name,
                                 ClassLiteralProperty* property,
                                 ClassLiteralProperty::Kind kind,
                                 bool is_static, ClassInfo* class_info);
  void DeclarePublicClassMethod(const AstRawString* class_name,
                                ClassLiteralProperty* property,
                                bool is_constructor, ClassInfo* class_info);
  void DeclarePublicClassField(ClassScope* scope,
                               ClassLiteralProperty* property, bool is_static,
                               bool is_computed_name, ClassInfo* class_info);
  void DeclareClassProperty(ClassScope* scope, const AstRawString* class_name,
                            ClassLiteralProperty* property, bool is_constructor,
                            ClassInfo* class_info);
  void DeclareClassField(ClassScope* scope, ClassLiteralProperty* property,
                         const AstRawString* property_name, bool is_static,
                         bool is_computed_name, bool is_private,
                         ClassInfo* class_info);
  Expression* RewriteClassLiteral(ClassScope* block_scope,
                                  const AstRawString* name,
                                  ClassInfo* class_info, int pos, int end_pos);
  Statement* DeclareNative(const AstRawString* name, int pos);

  Block* IgnoreCompletion(Statement* statement);

  Scope* NewHiddenCatchScope();

  bool HasCheckedSyntax() {
    return scope()->GetDeclarationScope()->has_checked_syntax();
  }

  // PatternRewriter and associated methods defined in pattern-rewriter.cc.
  friend class PatternRewriter;
  void InitializeVariables(
      ScopedPtrList<Statement>* statements, VariableKind kind,
      const DeclarationParsingResult::Declaration* declaration);

  Block* RewriteForVarInLegacy(const ForInfo& for_info);
  void DesugarBindingInForEachStatement(ForInfo* for_info, Block** body_block,
                                        Expression** each_variable);
  Block* CreateForEachStatementTDZ(Block* init_block, const ForInfo& for_info);

  Statement* DesugarLexicalBindingsInForStatement(
      ForStatement* loop, Statement* init, Expression* cond, Statement* next,
      Statement* body, Scope* inner_scope, const ForInfo& for_info);

  FunctionLiteral* ParseFunctionLiteral(
      const AstRawString* name, Scanner::Location function_name_location,
      FunctionNameValidity function_name_validity, FunctionKind kind,
      int function_token_position, FunctionSyntaxKind type,
      LanguageMode language_mode,
      ZonePtrList<const AstRawString>* arguments_for_wrapped_function);

  ObjectLiteral* InitializeObjectLiteral(ObjectLiteral* object_literal) {
    object_literal->CalculateEmitStore(main_zone());
    return object_literal;
  }

  // Insert initializer statements for var-bindings shadowing parameter bindings
  // from a non-simple parameter list.
  void InsertShadowingVarBindingInitializers(Block* block);

  // Implement sloppy block-scoped functions, ES2015 Annex B 3.3
  void InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope);

  void DeclareUnboundVariable(const AstRawString* name, VariableMode mode,
                              InitializationFlag init, int pos);
  V8_WARN_UNUSED_RESULT
  VariableProxy* DeclareBoundVariable(const AstRawString* name,
                                      VariableMode mode, int pos);
  void DeclareAndBindVariable(VariableProxy* proxy, VariableKind kind,
                              VariableMode mode, Scope* declaration_scope,
                              bool* was_added, int initializer_position);
  V8_WARN_UNUSED_RESULT
  Variable* DeclareVariable(const AstRawString* name, VariableKind kind,
                            VariableMode mode, InitializationFlag init,
                            Scope* declaration_scope, bool* was_added,
                            int begin, int end = kNoSourcePosition);
  void Declare(Declaration* declaration, const AstRawString* name,
               VariableKind kind, VariableMode mode, InitializationFlag init,
               Scope* declaration_scope, bool* was_added, int var_begin_pos,
               int var_end_pos = kNoSourcePosition);

  bool TargetStackContainsLabel(const AstRawString* label);
  BreakableStatement* LookupBreakTarget(const AstRawString* label);
  IterationStatement* LookupContinueTarget(const AstRawString* label);

  // Factory methods.
  FunctionLiteral* DefaultConstructor(const AstRawString* name, bool call_super,
                                      int pos, int end_pos);

  // Skip over a lazy function, either using cached data if we have it, or
  // by parsing the function with PreParser. Consumes the ending }.
  // In case the preparser detects an error it cannot identify, it resets the
  // scanner- and preparser state to the initial one, before PreParsing the
  // function.
  // SkipFunction returns true if it correctly parsed the function, including
  // cases where we detect an error. It returns false, if we needed to stop
  // parsing or could not identify an error correctly, meaning the caller needs
  // to fully reparse. In this case it resets the scanner and preparser state.
  bool SkipFunction(const AstRawString* function_name, FunctionKind kind,
                    FunctionSyntaxKind function_syntax_kind,
                    DeclarationScope* function_scope, int* num_parameters,
                    int* function_length,
                    ProducedPreparseData** produced_preparsed_scope_data);

  Block* BuildParameterInitializationBlock(
      const ParserFormalParameters& parameters);
  Block* BuildRejectPromiseOnException(Block* block);

  void ParseFunction(
      ScopedPtrList<Statement>* body, const AstRawString* function_name,
      int pos, FunctionKind kind, FunctionSyntaxKind function_syntax_kind,
      DeclarationScope* function_scope, int* num_parameters,
      int* function_length, bool* has_duplicate_parameters,
      int* expected_property_count, int* suspend_count,
      ZonePtrList<const AstRawString>* arguments_for_wrapped_function);

  void ThrowPendingError(Isolate* isolate, Handle<Script> script);

  class TemplateLiteral : public ZoneObject {
   public:
    TemplateLiteral(Zone* zone, int pos)
        : cooked_(8, zone), raw_(8, zone), expressions_(8, zone), pos_(pos) {}

    const ZonePtrList<const AstRawString>* cooked() const { return &cooked_; }
    const ZonePtrList<const AstRawString>* raw() const { return &raw_; }
    const ZonePtrList<Expression>* expressions() const { return &expressions_; }
    int position() const { return pos_; }

    void AddTemplateSpan(const AstRawString* cooked, const AstRawString* raw,
                         int end, Zone* zone) {
      DCHECK_NOT_NULL(raw);
      cooked_.Add(cooked, zone);
      raw_.Add(raw, zone);
    }

    void AddExpression(Expression* expression, Zone* zone) {
      expressions_.Add(expression, zone);
    }

   private:
    ZonePtrList<const AstRawString> cooked_;
    ZonePtrList<const AstRawString> raw_;
    ZonePtrList<Expression> expressions_;
    int pos_;
  };

  using TemplateLiteralState = TemplateLiteral*;

  TemplateLiteralState OpenTemplateLiteral(int pos);
  // "should_cook" means that the span can be "cooked": in tagged template
  // literals, both the raw and "cooked" representations are available to user
  // code ("cooked" meaning that escape sequences are converted to their
  // interpreted values). Invalid escape sequences cause the cooked span
  // to be represented by undefined, instead of being a syntax error.
  // "tail" indicates that this span is the last in the literal.
  void AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
                       bool tail);
  void AddTemplateExpression(TemplateLiteralState* state,
                             Expression* expression);
  Expression* CloseTemplateLiteral(TemplateLiteralState* state, int start,
                                   Expression* tag);

  ArrayLiteral* ArrayLiteralFromListWithSpread(
      const ScopedPtrList<Expression>& list);
  Expression* SpreadCall(Expression* function,
                         const ScopedPtrList<Expression>& args, int pos,
                         Call::PossiblyEval is_possibly_eval,
                         bool optional_chain);
  Expression* SpreadCallNew(Expression* function,
                            const ScopedPtrList<Expression>& args, int pos);
  Expression* RewriteSuperCall(Expression* call_expression);

  void SetLanguageMode(Scope* scope, LanguageMode mode);
  void SetAsmModule();

  Expression* RewriteSpreads(ArrayLiteral* lit);

  Expression* BuildInitialYield(int pos, FunctionKind kind);
  Assignment* BuildCreateJSGeneratorObject(int pos, FunctionKind kind);

  // Generic AST generator for throwing errors from compiled code.
  Expression* NewThrowError(Runtime::FunctionId function_id,
                            MessageTemplate message, const AstRawString* arg,
                            int pos);

  Statement* CheckCallable(Variable* var, Expression* error, int pos);

  void RewriteAsyncFunctionBody(ScopedPtrList<Statement>* body, Block* block,
                                Expression* return_value);

  void AddArrowFunctionFormalParameters(ParserFormalParameters* parameters,
                                        Expression* params, int end_pos);
  void SetFunctionName(Expression* value, const AstRawString* name,
                       const AstRawString* prefix = nullptr);

  // Helper functions for recursive descent.
  V8_INLINE bool IsEval(const AstRawString* identifier) const {
    return identifier == ast_value_factory()->eval_string();
  }

  V8_INLINE bool IsAsync(const AstRawString* identifier) const {
    return identifier == ast_value_factory()->async_string();
  }

  V8_INLINE bool IsArguments(const AstRawString* identifier) const {
    return identifier == ast_value_factory()->arguments_string();
  }

  V8_INLINE bool IsEvalOrArguments(const AstRawString* identifier) const {
    return IsEval(identifier) || IsArguments(identifier);
  }

  // Returns true if the expression is of type "this.foo".
  V8_INLINE static bool IsThisProperty(Expression* expression) {
    DCHECK_NOT_NULL(expression);
    Property* property = expression->AsProperty();
    return property != nullptr && property->obj()->IsThisExpression();
  }

  // Returns true if the expression is of type "obj.#foo".
  V8_INLINE static bool IsPrivateReference(Expression* expression) {
    DCHECK_NOT_NULL(expression);
    Property* property = expression->AsProperty();
    return property != nullptr && property->IsPrivateReference();
  }

  // This returns true if the expression is an indentifier (wrapped
  // inside a variable proxy).  We exclude the case of 'this', which
  // has been converted to a variable proxy.
  V8_INLINE static bool IsIdentifier(Expression* expression) {
    VariableProxy* operand = expression->AsVariableProxy();
    return operand != nullptr && !operand->is_new_target();
  }

  V8_INLINE static const AstRawString* AsIdentifier(Expression* expression) {
    DCHECK(IsIdentifier(expression));
    return expression->AsVariableProxy()->raw_name();
  }

  V8_INLINE VariableProxy* AsIdentifierExpression(Expression* expression) {
    return expression->AsVariableProxy();
  }

  V8_INLINE bool IsConstructor(const AstRawString* identifier) const {
    return identifier == ast_value_factory()->constructor_string();
  }

  V8_INLINE bool IsName(const AstRawString* identifier) const {
    return identifier == ast_value_factory()->name_string();
  }

  V8_INLINE static bool IsBoilerplateProperty(
      ObjectLiteral::Property* property) {
    return !property->IsPrototype();
  }

  V8_INLINE bool IsNative(Expression* expr) const {
    DCHECK_NOT_NULL(expr);
    return expr->IsVariableProxy() &&
           expr->AsVariableProxy()->raw_name() ==
               ast_value_factory()->native_string();
  }

  V8_INLINE static bool IsArrayIndex(const AstRawString* string,
                                     uint32_t* index) {
    return string->AsArrayIndex(index);
  }

  // Returns true if the statement is an expression statement containing
  // a single string literal.  If a second argument is given, the literal
  // is also compared with it and the result is true only if they are equal.
  V8_INLINE bool IsStringLiteral(Statement* statement,
                                 const AstRawString* arg = nullptr) const {
    ExpressionStatement* e_stat = statement->AsExpressionStatement();
    if (e_stat == nullptr) return false;
    Literal* literal = e_stat->expression()->AsLiteral();
    if (literal == nullptr || !literal->IsString()) return false;
    return arg == nullptr || literal->AsRawString() == arg;
  }

  V8_INLINE void GetDefaultStrings(const AstRawString** default_string,
                                   const AstRawString** dot_default_string) {
    *default_string = ast_value_factory()->default_string();
    *dot_default_string = ast_value_factory()->dot_default_string();
  }

  // Functions for encapsulating the differences between parsing and preparsing;
  // operations interleaved with the recursive descent.
  V8_INLINE void PushLiteralName(const AstRawString* id) {
    fni_.PushLiteralName(id);
  }

  V8_INLINE void PushVariableName(const AstRawString* id) {
    fni_.PushVariableName(id);
  }

  V8_INLINE void PushPropertyName(Expression* expression) {
    if (expression->IsPropertyName()) {
      fni_.PushLiteralName(expression->AsLiteral()->AsRawPropertyName());
    } else {
      fni_.PushLiteralName(ast_value_factory()->computed_string());
    }
  }

  V8_INLINE void PushEnclosingName(const AstRawString* name) {
    fni_.PushEnclosingName(name);
  }

  V8_INLINE void AddFunctionForNameInference(FunctionLiteral* func_to_infer) {
    fni_.AddFunction(func_to_infer);
  }

  V8_INLINE void InferFunctionName() { fni_.Infer(); }

  // If we assign a function literal to a property we pretenure the
  // literal so it can be added as a constant function property.
  V8_INLINE static void CheckAssigningFunctionLiteralToProperty(
      Expression* left, Expression* right) {
    DCHECK_NOT_NULL(left);
    if (left->IsProperty() && right->IsFunctionLiteral()) {
      right->AsFunctionLiteral()->set_pretenure();
    }
  }

  // A shortcut for performing a ToString operation
  V8_INLINE Expression* ToString(Expression* expr) {
    if (expr->IsStringLiteral()) return expr;
    ScopedPtrList<Expression> args(pointer_buffer());
    args.Add(expr);
    return factory()->NewCallRuntime(Runtime::kInlineToStringRT, args,
                                     expr->position());
  }

  // Returns true if we have a binary expression between two numeric
  // literals. In that case, *x will be changed to an expression which is the
  // computed value.
  bool ShortcutNumericLiteralBinaryExpression(Expression** x, Expression* y,
                                              Token::Value op, int pos);

  // Returns true if we have a binary operation between a binary/n-ary
  // expression (with the same operation) and a value, which can be collapsed
  // into a single n-ary expression. In that case, *x will be changed to an
  // n-ary expression.
  bool CollapseNaryExpression(Expression** x, Expression* y, Token::Value op,
                              int pos, const SourceRange& range);

  // Returns a UnaryExpression or, in one of the following cases, a Literal.
  // ! <literal> -> true / false
  // + <Number literal> -> <Number literal>
  // - <Number literal> -> <Number literal with value negated>
  // ~ <literal> -> true / false
  Expression* BuildUnaryExpression(Expression* expression, Token::Value op,
                                   int pos);

  // Generate AST node that throws a ReferenceError with the given type.
  V8_INLINE Expression* NewThrowReferenceError(MessageTemplate message,
                                               int pos) {
    return NewThrowError(Runtime::kNewReferenceError, message,
                         ast_value_factory()->empty_string(), pos);
  }

  // Generate AST node that throws a SyntaxError with the given
  // type. The first argument may be null (in the handle sense) in
  // which case no arguments are passed to the constructor.
  V8_INLINE Expression* NewThrowSyntaxError(MessageTemplate message,
                                            const AstRawString* arg, int pos) {
    return NewThrowError(Runtime::kNewSyntaxError, message, arg, pos);
  }

  // Generate AST node that throws a TypeError with the given
  // type. Both arguments must be non-null (in the handle sense).
  V8_INLINE Expression* NewThrowTypeError(MessageTemplate message,
                                          const AstRawString* arg, int pos) {
    return NewThrowError(Runtime::kNewTypeError, message, arg, pos);
  }

  // Reporting errors.
  void ReportMessageAt(Scanner::Location source_location,
                       MessageTemplate message, const char* arg = nullptr) {
    pending_error_handler()->ReportMessageAt(
        source_location.beg_pos, source_location.end_pos, message, arg);
    scanner_.set_parser_error();
  }

  // Dummy implementation. The parser should never have a unidentifiable
  // error.
  V8_INLINE void ReportUnidentifiableError() { UNREACHABLE(); }

  void ReportMessageAt(Scanner::Location source_location,
                       MessageTemplate message, const AstRawString* arg) {
    pending_error_handler()->ReportMessageAt(
        source_location.beg_pos, source_location.end_pos, message, arg);
    scanner_.set_parser_error();
  }

  const AstRawString* GetRawNameFromIdentifier(const AstRawString* arg) {
    return arg;
  }

  void ReportUnexpectedTokenAt(
      Scanner::Location location, Token::Value token,
      MessageTemplate message = MessageTemplate::kUnexpectedToken);

  // "null" return type creators.
  V8_INLINE static std::nullptr_t NullIdentifier() { return nullptr; }
  V8_INLINE static std::nullptr_t NullExpression() { return nullptr; }
  V8_INLINE static std::nullptr_t NullLiteralProperty() { return nullptr; }
  V8_INLINE static ZonePtrList<Expression>* NullExpressionList() {
    return nullptr;
  }
  V8_INLINE static ZonePtrList<Statement>* NullStatementList() {
    return nullptr;
  }
  V8_INLINE static std::nullptr_t NullStatement() { return nullptr; }
  V8_INLINE static std::nullptr_t NullBlock() { return nullptr; }
  Expression* FailureExpression() { return factory()->FailureExpression(); }

  template <typename T>
  V8_INLINE static bool IsNull(T subject) {
    return subject == nullptr;
  }

  // Non-null empty string.
  V8_INLINE const AstRawString* EmptyIdentifierString() const {
    return ast_value_factory()->empty_string();
  }

  // Producing data during the recursive descent.
  V8_INLINE const AstRawString* GetSymbol() const {
    const AstRawString* result = scanner()->CurrentSymbol(ast_value_factory());
    DCHECK_NOT_NULL(result);
    return result;
  }

  V8_INLINE const AstRawString* GetIdentifier() const { return GetSymbol(); }

  V8_INLINE const AstRawString* GetNextSymbol() const {
    return scanner()->NextSymbol(ast_value_factory());
  }

  V8_INLINE const AstRawString* GetNumberAsSymbol() const {
    double double_value = scanner()->DoubleValue();
    char array[100];
    const char* string = DoubleToCString(double_value, ArrayVector(array));
    return ast_value_factory()->GetOneByteString(string);
  }

  class ThisExpression* ThisExpression() {
    UseThis();
    return factory()->ThisExpression();
  }

  Expression* NewSuperPropertyReference(int pos);
  Expression* NewSuperCallReference(int pos);
  Expression* NewTargetExpression(int pos);
  Expression* ImportMetaExpression(int pos);

  Expression* ExpressionFromLiteral(Token::Value token, int pos);

  V8_INLINE VariableProxy* ExpressionFromPrivateName(ClassScope* class_scope,
                                                     const AstRawString* name,
                                                     int start_position) {
    VariableProxy* proxy = factory()->ast_node_factory()->NewVariableProxy(
        name, NORMAL_VARIABLE, start_position);
    class_scope->AddUnresolvedPrivateName(proxy);
    return proxy;
  }

  V8_INLINE VariableProxy* ExpressionFromIdentifier(
      const AstRawString* name, int start_position,
      InferName infer = InferName::kYes) {
    if (infer == InferName::kYes) {
      fni_.PushVariableName(name);
    }
    return expression_scope()->NewVariable(name, start_position);
  }

  V8_INLINE void DeclareIdentifier(const AstRawString* name,
                                   int start_position) {
    expression_scope()->Declare(name, start_position);
  }

  V8_INLINE Variable* DeclareCatchVariableName(Scope* scope,
                                               const AstRawString* name) {
    return scope->DeclareCatchVariableName(name);
  }

  V8_INLINE ZonePtrList<Expression>* NewExpressionList(int size) const {
    return new (zone()) ZonePtrList<Expression>(size, zone());
  }
  V8_INLINE ZonePtrList<ObjectLiteral::Property>* NewObjectPropertyList(
      int size) const {
    return new (zone()) ZonePtrList<ObjectLiteral::Property>(size, zone());
  }
  V8_INLINE ZonePtrList<ClassLiteral::Property>* NewClassPropertyList(
      int size) const {
    return new (zone()) ZonePtrList<ClassLiteral::Property>(size, zone());
  }
  V8_INLINE ZonePtrList<Statement>* NewStatementList(int size) const {
    return new (zone()) ZonePtrList<Statement>(size, zone());
  }

  Expression* NewV8Intrinsic(const AstRawString* name,
                             const ScopedPtrList<Expression>& args, int pos);

  V8_INLINE Statement* NewThrowStatement(Expression* exception, int pos) {
    return factory()->NewExpressionStatement(
        factory()->NewThrow(exception, pos), pos);
  }

  V8_INLINE void AddFormalParameter(ParserFormalParameters* parameters,
                                    Expression* pattern,
                                    Expression* initializer,
                                    int initializer_end_position,
                                    bool is_rest) {
    parameters->UpdateArityAndFunctionLength(initializer != nullptr, is_rest);
    auto parameter = new (parameters->scope->zone())
        ParserFormalParameters::Parameter(pattern, initializer,
                                          scanner()->location().beg_pos,
                                          initializer_end_position, is_rest);

    parameters->params.Add(parameter);
  }

  V8_INLINE void DeclareFormalParameters(ParserFormalParameters* parameters) {
    bool is_simple = parameters->is_simple;
    DeclarationScope* scope = parameters->scope;
    if (!is_simple) scope->MakeParametersNonSimple();
    for (auto parameter : parameters->params) {
      bool is_optional = parameter->initializer() != nullptr;
      // If the parameter list is simple, declare the parameters normally with
      // their names. If the parameter list is not simple, declare a temporary
      // for each parameter - the corresponding named variable is declared by
      // BuildParamerterInitializationBlock.
      scope->DeclareParameter(
          is_simple ? parameter->name() : ast_value_factory()->empty_string(),
          is_simple ? VariableMode::kVar : VariableMode::kTemporary,
          is_optional, parameter->is_rest(), ast_value_factory(),
          parameter->position);
    }
  }

  void DeclareArrowFunctionFormalParameters(
      ParserFormalParameters* parameters, Expression* params,
      const Scanner::Location& params_loc);

  Expression* ExpressionListToExpression(const ScopedPtrList<Expression>& args);

  void SetFunctionNameFromPropertyName(LiteralProperty* property,
                                       const AstRawString* name,
                                       const AstRawString* prefix = nullptr);
  void SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
                                       const AstRawString* name,
                                       const AstRawString* prefix = nullptr);

  void SetFunctionNameFromIdentifierRef(Expression* value,
                                        Expression* identifier);

  V8_INLINE void CountUsage(v8::Isolate::UseCounterFeature feature) {
    ++use_counts_[feature];
  }

  // Returns true iff we're parsing the first function literal during
  // CreateDynamicFunction().
  V8_INLINE bool ParsingDynamicFunctionDeclaration() const {
    return parameters_end_pos_ != kNoSourcePosition;
  }

  V8_INLINE void ConvertBinaryToNaryOperationSourceRange(
      BinaryOperation* binary_op, NaryOperation* nary_op) {
    if (source_range_map_ == nullptr) return;
    DCHECK_NULL(source_range_map_->Find(nary_op));

    BinaryOperationSourceRanges* ranges =
        static_cast<BinaryOperationSourceRanges*>(
            source_range_map_->Find(binary_op));
    if (ranges == nullptr) return;

    SourceRange range = ranges->GetRange(SourceRangeKind::kRight);
    source_range_map_->Insert(
        nary_op, new (zone()) NaryOperationSourceRanges(zone(), range));
  }

  V8_INLINE void AppendNaryOperationSourceRange(NaryOperation* node,
                                                const SourceRange& range) {
    if (source_range_map_ == nullptr) return;
    NaryOperationSourceRanges* ranges =
        static_cast<NaryOperationSourceRanges*>(source_range_map_->Find(node));
    if (ranges == nullptr) return;

    ranges->AddRange(range);
    DCHECK_EQ(node->subsequent_length(), ranges->RangeCount());
  }

  V8_INLINE void RecordBlockSourceRange(Block* node,
                                        int32_t continuation_position) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node, new (zone()) BlockSourceRanges(continuation_position));
  }

  V8_INLINE void RecordCaseClauseSourceRange(CaseClause* node,
                                             const SourceRange& body_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(node,
                              new (zone()) CaseClauseSourceRanges(body_range));
  }

  V8_INLINE void RecordConditionalSourceRange(Expression* node,
                                              const SourceRange& then_range,
                                              const SourceRange& else_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node->AsConditional(),
        new (zone()) ConditionalSourceRanges(then_range, else_range));
  }

  V8_INLINE void RecordFunctionLiteralSourceRange(FunctionLiteral* node) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(node, new (zone()) FunctionLiteralSourceRanges);
  }

  V8_INLINE void RecordBinaryOperationSourceRange(
      Expression* node, const SourceRange& right_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(node->AsBinaryOperation(),
                              new (zone())
                                  BinaryOperationSourceRanges(right_range));
  }

  V8_INLINE void RecordJumpStatementSourceRange(Statement* node,
                                                int32_t continuation_position) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        static_cast<JumpStatement*>(node),
        new (zone()) JumpStatementSourceRanges(continuation_position));
  }

  V8_INLINE void RecordIfStatementSourceRange(Statement* node,
                                              const SourceRange& then_range,
                                              const SourceRange& else_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node->AsIfStatement(),
        new (zone()) IfStatementSourceRanges(then_range, else_range));
  }

  V8_INLINE void RecordIterationStatementSourceRange(
      IterationStatement* node, const SourceRange& body_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node, new (zone()) IterationStatementSourceRanges(body_range));
  }

  V8_INLINE void RecordSuspendSourceRange(Expression* node,
                                          int32_t continuation_position) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(static_cast<Suspend*>(node),
                              new (zone())
                                  SuspendSourceRanges(continuation_position));
  }

  V8_INLINE void RecordSwitchStatementSourceRange(
      Statement* node, int32_t continuation_position) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node->AsSwitchStatement(),
        new (zone()) SwitchStatementSourceRanges(continuation_position));
  }

  V8_INLINE void RecordThrowSourceRange(Statement* node,
                                        int32_t continuation_position) {
    if (source_range_map_ == nullptr) return;
    ExpressionStatement* expr_stmt = static_cast<ExpressionStatement*>(node);
    Throw* throw_expr = expr_stmt->expression()->AsThrow();
    source_range_map_->Insert(
        throw_expr, new (zone()) ThrowSourceRanges(continuation_position));
  }

  V8_INLINE void RecordTryCatchStatementSourceRange(
      TryCatchStatement* node, const SourceRange& body_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node, new (zone()) TryCatchStatementSourceRanges(body_range));
  }

  V8_INLINE void RecordTryFinallyStatementSourceRange(
      TryFinallyStatement* node, const SourceRange& body_range) {
    if (source_range_map_ == nullptr) return;
    source_range_map_->Insert(
        node, new (zone()) TryFinallyStatementSourceRanges(body_range));
  }

  // Generate the next internal variable name for binding an exported namespace
  // object (used to implement the "export * as" syntax).
  const AstRawString* NextInternalNamespaceExportName();

  ParseInfo* info() const { return info_; }

  std::vector<uint8_t>* preparse_data_buffer() {
    return &preparse_data_buffer_;
  }

  // Parser's private field members.
  friend class PreParserZoneScope;  // Uses reusable_preparser().
  friend class PreparseDataBuilder;  // Uses preparse_data_buffer()

  ParseInfo* info_;
  Scanner scanner_;
  Zone preparser_zone_;
  PreParser* reusable_preparser_;
  Mode mode_;

  SourceRangeMap* source_range_map_ = nullptr;

  friend class ParserTarget;
  friend class ParserTargetScope;
  ParserTarget* target_stack_;  // for break, continue statements

  ScriptCompiler::CompileOptions compile_options_;

  // For NextInternalNamespaceExportName().
  int number_of_named_namespace_exports_ = 0;

  // Other information which will be stored in Parser and moved to Isolate after
  // parsing.
  int use_counts_[v8::Isolate::kUseCounterFeatureCount];
  int total_preparse_skipped_;
  bool allow_lazy_;
  bool temp_zoned_;
  ConsumedPreparseData* consumed_preparse_data_;
  std::vector<uint8_t> preparse_data_buffer_;

  // If not kNoSourcePosition, indicates that the first function literal
  // encountered is a dynamic function, see CreateDynamicFunction(). This field
  // indicates the correct position of the ')' that closes the parameter list.
  // After that ')' is encountered, this field is reset to kNoSourcePosition.
  int parameters_end_pos_;
};

// ----------------------------------------------------------------------------
// Target is a support class to facilitate manipulation of the
// Parser's target_stack_ (the stack of potential 'break' and
// 'continue' statement targets). Upon construction, a new target is
// added; it is removed upon destruction.

class ParserTarget {
 public:
  ParserTarget(ParserBase<Parser>* parser, BreakableStatement* statement)
      : variable_(&parser->impl()->target_stack_),
        statement_(statement),
        previous_(parser->impl()->target_stack_) {
    parser->impl()->target_stack_ = this;
  }

  ~ParserTarget() { *variable_ = previous_; }

  ParserTarget* previous() { return previous_; }
  BreakableStatement* statement() { return statement_; }

 private:
  ParserTarget** variable_;
  BreakableStatement* statement_;
  ParserTarget* previous_;
};

class ParserTargetScope {
 public:
  explicit ParserTargetScope(ParserBase<Parser>* parser)
      : variable_(&parser->impl()->target_stack_),
        previous_(parser->impl()->target_stack_) {
    parser->impl()->target_stack_ = nullptr;
  }

  ~ParserTargetScope() { *variable_ = previous_; }

 private:
  ParserTarget** variable_;
  ParserTarget* previous_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_PARSING_PARSER_H_