summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/string-inl.h
blob: 083928d2119de586a1effece95479d6e106cc652 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_STRING_INL_H_
#define V8_OBJECTS_STRING_INL_H_

#include "src/objects/string.h"

#include "src/handles/handles-inl.h"
#include "src/heap/factory.h"
#include "src/numbers/conversions-inl.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/name-inl.h"
#include "src/objects/smi-inl.h"
#include "src/objects/string-table-inl.h"
#include "src/strings/string-hasher-inl.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

int String::synchronized_length() const {
  return base::AsAtomic32::Acquire_Load(
      reinterpret_cast<const int32_t*>(FIELD_ADDR(*this, kLengthOffset)));
}

void String::synchronized_set_length(int value) {
  base::AsAtomic32::Release_Store(
      reinterpret_cast<int32_t*>(FIELD_ADDR(*this, kLengthOffset)), value);
}

TQ_OBJECT_CONSTRUCTORS_IMPL(String)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqOneByteString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqTwoByteString)
TQ_OBJECT_CONSTRUCTORS_IMPL(InternalizedString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ConsString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ThinString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SlicedString)
OBJECT_CONSTRUCTORS_IMPL(ExternalString, String)
OBJECT_CONSTRUCTORS_IMPL(ExternalOneByteString, ExternalString)
OBJECT_CONSTRUCTORS_IMPL(ExternalTwoByteString, ExternalString)

CAST_ACCESSOR(ExternalOneByteString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalTwoByteString)

StringShape::StringShape(const String str) : type_(str.map().instance_type()) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

StringShape::StringShape(Map map) : type_(map.instance_type()) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

StringShape::StringShape(InstanceType t) : type_(static_cast<uint32_t>(t)) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

bool StringShape::IsInternalized() {
  DCHECK(valid());
  STATIC_ASSERT(kNotInternalizedTag != 0);
  return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) ==
         (kStringTag | kInternalizedTag);
}

bool StringShape::IsCons() {
  return (type_ & kStringRepresentationMask) == kConsStringTag;
}

bool StringShape::IsThin() {
  return (type_ & kStringRepresentationMask) == kThinStringTag;
}

bool StringShape::IsSliced() {
  return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}

bool StringShape::IsIndirect() {
  return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}

bool StringShape::IsExternal() {
  return (type_ & kStringRepresentationMask) == kExternalStringTag;
}

bool StringShape::IsSequential() {
  return (type_ & kStringRepresentationMask) == kSeqStringTag;
}

StringRepresentationTag StringShape::representation_tag() {
  uint32_t tag = (type_ & kStringRepresentationMask);
  return static_cast<StringRepresentationTag>(tag);
}

uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; }

uint32_t StringShape::full_representation_tag() {
  return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}

STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) ==
              Internals::kFullStringRepresentationMask);

STATIC_ASSERT(static_cast<uint32_t>(kStringEncodingMask) ==
              Internals::kStringEncodingMask);

bool StringShape::IsSequentialOneByte() {
  return full_representation_tag() == (kSeqStringTag | kOneByteStringTag);
}

bool StringShape::IsSequentialTwoByte() {
  return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}

bool StringShape::IsExternalOneByte() {
  return full_representation_tag() == (kExternalStringTag | kOneByteStringTag);
}

STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) ==
              Internals::kExternalOneByteRepresentationTag);

STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag);

bool StringShape::IsExternalTwoByte() {
  return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}

STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) ==
              Internals::kExternalTwoByteRepresentationTag);

STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);

template <typename TDispatcher, typename TResult, typename... TArgs>
inline TResult StringShape::DispatchToSpecificTypeWithoutCast(TArgs&&... args) {
  switch (full_representation_tag()) {
    case kSeqStringTag | kOneByteStringTag:
      return TDispatcher::HandleSeqOneByteString(std::forward<TArgs>(args)...);
    case kSeqStringTag | kTwoByteStringTag:
      return TDispatcher::HandleSeqTwoByteString(std::forward<TArgs>(args)...);
    case kConsStringTag | kOneByteStringTag:
    case kConsStringTag | kTwoByteStringTag:
      return TDispatcher::HandleConsString(std::forward<TArgs>(args)...);
    case kExternalStringTag | kOneByteStringTag:
      return TDispatcher::HandleExternalOneByteString(
          std::forward<TArgs>(args)...);
    case kExternalStringTag | kTwoByteStringTag:
      return TDispatcher::HandleExternalTwoByteString(
          std::forward<TArgs>(args)...);
    case kSlicedStringTag | kOneByteStringTag:
    case kSlicedStringTag | kTwoByteStringTag:
      return TDispatcher::HandleSlicedString(std::forward<TArgs>(args)...);
    case kThinStringTag | kOneByteStringTag:
    case kThinStringTag | kTwoByteStringTag:
      return TDispatcher::HandleThinString(std::forward<TArgs>(args)...);
    default:
      return TDispatcher::HandleInvalidString(std::forward<TArgs>(args)...);
  }
}

// All concrete subclasses of String (leaves of the inheritance tree).
#define STRING_CLASS_TYPES(V) \
  V(SeqOneByteString)         \
  V(SeqTwoByteString)         \
  V(ConsString)               \
  V(ExternalOneByteString)    \
  V(ExternalTwoByteString)    \
  V(SlicedString)             \
  V(ThinString)

template <typename TDispatcher, typename TResult, typename... TArgs>
inline TResult StringShape::DispatchToSpecificType(String str,
                                                   TArgs&&... args) {
  class CastingDispatcher : public AllStatic {
   public:
#define DEFINE_METHOD(Type)                                         \
  static inline TResult Handle##Type(String str, TArgs&&... args) { \
    return TDispatcher::Handle##Type(Type::cast(str),               \
                                     std::forward<TArgs>(args)...); \
  }
    STRING_CLASS_TYPES(DEFINE_METHOD)
#undef DEFINE_METHOD
    static inline TResult HandleInvalidString(String str, TArgs&&... args) {
      return TDispatcher::HandleInvalidString(str,
                                              std::forward<TArgs>(args)...);
    }
  };

  return DispatchToSpecificTypeWithoutCast<CastingDispatcher, TResult>(
      str, std::forward<TArgs>(args)...);
}

DEF_GETTER(String, IsOneByteRepresentation, bool) {
  uint32_t type = map(isolate).instance_type();
  return (type & kStringEncodingMask) == kOneByteStringTag;
}

DEF_GETTER(String, IsTwoByteRepresentation, bool) {
  uint32_t type = map(isolate).instance_type();
  return (type & kStringEncodingMask) == kTwoByteStringTag;
}

// static
bool String::IsOneByteRepresentationUnderneath(String string) {
  while (true) {
    uint32_t type = string.map().instance_type();
    STATIC_ASSERT(kIsIndirectStringTag != 0);
    STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
    DCHECK(string.IsFlat());
    switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
      case kOneByteStringTag:
        return true;
      case kTwoByteStringTag:
        return false;
      default:  // Cons, sliced, thin, strings need to go deeper.
        string = string.GetUnderlying();
    }
  }
}

uc32 FlatStringReader::Get(int index) {
  if (is_one_byte_) {
    return Get<uint8_t>(index);
  } else {
    return Get<uc16>(index);
  }
}

template <typename Char>
Char FlatStringReader::Get(int index) {
  DCHECK_EQ(is_one_byte_, sizeof(Char) == 1);
  DCHECK(0 <= index && index <= length_);
  if (sizeof(Char) == 1) {
    return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]);
  } else {
    return static_cast<Char>(static_cast<const uc16*>(start_)[index]);
  }
}

template <typename Char>
class SequentialStringKey final : public StringTableKey {
 public:
  SequentialStringKey(const Vector<const Char>& chars, uint64_t seed,
                      bool convert = false)
      : SequentialStringKey(StringHasher::HashSequentialString<Char>(
                                chars.begin(), chars.length(), seed),
                            chars, convert) {}

  SequentialStringKey(int hash, const Vector<const Char>& chars,
                      bool convert = false)
      : StringTableKey(hash, chars.length()),
        chars_(chars),
        convert_(convert) {}

  bool IsMatch(String s) override {
    DisallowHeapAllocation no_gc;
    if (s.IsOneByteRepresentation()) {
      const uint8_t* chars = s.GetChars<uint8_t>(no_gc);
      return CompareChars(chars, chars_.begin(), chars_.length()) == 0;
    }
    const uint16_t* chars = s.GetChars<uint16_t>(no_gc);
    return CompareChars(chars, chars_.begin(), chars_.length()) == 0;
  }

  Handle<String> AsHandle(Isolate* isolate) override {
    if (sizeof(Char) == 1) {
      return isolate->factory()->NewOneByteInternalizedString(
          Vector<const uint8_t>::cast(chars_), hash_field());
    }
    return isolate->factory()->NewTwoByteInternalizedString(
        Vector<const uint16_t>::cast(chars_), hash_field());
  }

 private:
  Vector<const Char> chars_;
  bool convert_;
};

using OneByteStringKey = SequentialStringKey<uint8_t>;
using TwoByteStringKey = SequentialStringKey<uint16_t>;

template <typename SeqString>
class SeqSubStringKey final : public StringTableKey {
 public:
  using Char = typename SeqString::Char;
// VS 2017 on official builds gives this spurious warning:
// warning C4789: buffer 'key' of size 16 bytes will be overrun; 4 bytes will
// be written starting at offset 16
// https://bugs.chromium.org/p/v8/issues/detail?id=6068
#if defined(V8_CC_MSVC)
#pragma warning(push)
#pragma warning(disable : 4789)
#endif
  SeqSubStringKey(Isolate* isolate, Handle<SeqString> string, int from, int len,
                  bool convert = false)
      : StringTableKey(0, len),
        string_(string),
        from_(from),
        convert_(convert) {
    // We have to set the hash later.
    DisallowHeapAllocation no_gc;
    uint32_t hash = StringHasher::HashSequentialString(
        string->GetChars(no_gc) + from, len, HashSeed(isolate));
    set_hash_field(hash);

    DCHECK_LE(0, length());
    DCHECK_LE(from_ + length(), string_->length());
    DCHECK_EQ(string_->IsSeqOneByteString(), sizeof(Char) == 1);
    DCHECK_EQ(string_->IsSeqTwoByteString(), sizeof(Char) == 2);
  }
#if defined(V8_CC_MSVC)
#pragma warning(pop)
#endif

  bool IsMatch(String string) override {
    DisallowHeapAllocation no_gc;
    if (string.IsOneByteRepresentation()) {
      const uint8_t* data = string.GetChars<uint8_t>(no_gc);
      return CompareChars(string_->GetChars(no_gc) + from_, data, length()) ==
             0;
    }
    const uint16_t* data = string.GetChars<uint16_t>(no_gc);
    return CompareChars(string_->GetChars(no_gc) + from_, data, length()) == 0;
  }

  Handle<String> AsHandle(Isolate* isolate) override {
    if (sizeof(Char) == 1 || (sizeof(Char) == 2 && convert_)) {
      Handle<SeqOneByteString> result =
          isolate->factory()->AllocateRawOneByteInternalizedString(
              length(), hash_field());
      DisallowHeapAllocation no_gc;
      CopyChars(result->GetChars(no_gc), string_->GetChars(no_gc) + from_,
                length());
      return result;
    }
    Handle<SeqTwoByteString> result =
        isolate->factory()->AllocateRawTwoByteInternalizedString(length(),
                                                                 hash_field());
    DisallowHeapAllocation no_gc;
    CopyChars(result->GetChars(no_gc), string_->GetChars(no_gc) + from_,
              length());
    return result;
  }

 private:
  Handle<typename CharTraits<Char>::String> string_;
  int from_;
  bool convert_;
};

using SeqOneByteSubStringKey = SeqSubStringKey<SeqOneByteString>;
using SeqTwoByteSubStringKey = SeqSubStringKey<SeqTwoByteString>;

bool String::Equals(String other) {
  if (other == *this) return true;
  if (this->IsInternalizedString() && other.IsInternalizedString()) {
    return false;
  }
  return SlowEquals(other);
}

bool String::Equals(Isolate* isolate, Handle<String> one, Handle<String> two) {
  if (one.is_identical_to(two)) return true;
  if (one->IsInternalizedString() && two->IsInternalizedString()) {
    return false;
  }
  return SlowEquals(isolate, one, two);
}

template <typename Char>
const Char* String::GetChars(const DisallowHeapAllocation& no_gc) {
  return StringShape(*this).IsExternal()
             ? CharTraits<Char>::ExternalString::cast(*this).GetChars()
             : CharTraits<Char>::String::cast(*this).GetChars(no_gc);
}

Handle<String> String::Flatten(Isolate* isolate, Handle<String> string,
                               AllocationType allocation) {
  if (string->IsConsString()) {
    Handle<ConsString> cons = Handle<ConsString>::cast(string);
    if (cons->IsFlat()) {
      string = handle(cons->first(), isolate);
    } else {
      return SlowFlatten(isolate, cons, allocation);
    }
  }
  if (string->IsThinString()) {
    string = handle(Handle<ThinString>::cast(string)->actual(), isolate);
    DCHECK(!string->IsConsString());
  }
  return string;
}

uint16_t String::Get(int index) {
  DCHECK(index >= 0 && index < length());

  class StringGetDispatcher : public AllStatic {
   public:
#define DEFINE_METHOD(Type)                                  \
  static inline uint16_t Handle##Type(Type str, int index) { \
    return str.Get(index);                                   \
  }
    STRING_CLASS_TYPES(DEFINE_METHOD)
#undef DEFINE_METHOD
    static inline uint16_t HandleInvalidString(String str, int index) {
      UNREACHABLE();
    }
  };

  return StringShape(*this)
      .DispatchToSpecificType<StringGetDispatcher, uint16_t>(*this, index);
}

void String::Set(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  DCHECK(StringShape(*this).IsSequential());

  return this->IsOneByteRepresentation()
             ? SeqOneByteString::cast(*this).SeqOneByteStringSet(index, value)
             : SeqTwoByteString::cast(*this).SeqTwoByteStringSet(index, value);
}

bool String::IsFlat() {
  if (!StringShape(*this).IsCons()) return true;
  return ConsString::cast(*this).second().length() == 0;
}

String String::GetUnderlying() {
  // Giving direct access to underlying string only makes sense if the
  // wrapping string is already flattened.
  DCHECK(this->IsFlat());
  DCHECK(StringShape(*this).IsIndirect());
  STATIC_ASSERT(static_cast<int>(ConsString::kFirstOffset) ==
                static_cast<int>(SlicedString::kParentOffset));
  STATIC_ASSERT(static_cast<int>(ConsString::kFirstOffset) ==
                static_cast<int>(ThinString::kActualOffset));
  const int kUnderlyingOffset = SlicedString::kParentOffset;
  return TaggedField<String, kUnderlyingOffset>::load(*this);
}

template <class Visitor>
ConsString String::VisitFlat(Visitor* visitor, String string,
                             const int offset) {
  DisallowHeapAllocation no_gc;
  int slice_offset = offset;
  const int length = string.length();
  DCHECK(offset <= length);
  while (true) {
    int32_t type = string.map().instance_type();
    switch (type & (kStringRepresentationMask | kStringEncodingMask)) {
      case kSeqStringTag | kOneByteStringTag:
        visitor->VisitOneByteString(
            SeqOneByteString::cast(string).GetChars(no_gc) + slice_offset,
            length - offset);
        return ConsString();

      case kSeqStringTag | kTwoByteStringTag:
        visitor->VisitTwoByteString(
            SeqTwoByteString::cast(string).GetChars(no_gc) + slice_offset,
            length - offset);
        return ConsString();

      case kExternalStringTag | kOneByteStringTag:
        visitor->VisitOneByteString(
            ExternalOneByteString::cast(string).GetChars() + slice_offset,
            length - offset);
        return ConsString();

      case kExternalStringTag | kTwoByteStringTag:
        visitor->VisitTwoByteString(
            ExternalTwoByteString::cast(string).GetChars() + slice_offset,
            length - offset);
        return ConsString();

      case kSlicedStringTag | kOneByteStringTag:
      case kSlicedStringTag | kTwoByteStringTag: {
        SlicedString slicedString = SlicedString::cast(string);
        slice_offset += slicedString.offset();
        string = slicedString.parent();
        continue;
      }

      case kConsStringTag | kOneByteStringTag:
      case kConsStringTag | kTwoByteStringTag:
        return ConsString::cast(string);

      case kThinStringTag | kOneByteStringTag:
      case kThinStringTag | kTwoByteStringTag:
        string = ThinString::cast(string).actual();
        continue;

      default:
        UNREACHABLE();
    }
  }
}

template <>
inline Vector<const uint8_t> String::GetCharVector(
    const DisallowHeapAllocation& no_gc) {
  String::FlatContent flat = GetFlatContent(no_gc);
  DCHECK(flat.IsOneByte());
  return flat.ToOneByteVector();
}

template <>
inline Vector<const uc16> String::GetCharVector(
    const DisallowHeapAllocation& no_gc) {
  String::FlatContent flat = GetFlatContent(no_gc);
  DCHECK(flat.IsTwoByte());
  return flat.ToUC16Vector();
}

uint32_t String::ToValidIndex(Object number) {
  uint32_t index = PositiveNumberToUint32(number);
  uint32_t length_value = static_cast<uint32_t>(length());
  if (index > length_value) return length_value;
  return index;
}

uint8_t SeqOneByteString::Get(int index) {
  DCHECK(index >= 0 && index < length());
  return ReadField<byte>(kHeaderSize + index * kCharSize);
}

void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode);
  WriteField<byte>(kHeaderSize + index * kCharSize, static_cast<byte>(value));
}

Address SeqOneByteString::GetCharsAddress() {
  return FIELD_ADDR(*this, kHeaderSize);
}

uint8_t* SeqOneByteString::GetChars(const DisallowHeapAllocation& no_gc) {
  USE(no_gc);
  return reinterpret_cast<uint8_t*>(GetCharsAddress());
}

Address SeqTwoByteString::GetCharsAddress() {
  return FIELD_ADDR(*this, kHeaderSize);
}

uc16* SeqTwoByteString::GetChars(const DisallowHeapAllocation& no_gc) {
  USE(no_gc);
  return reinterpret_cast<uc16*>(FIELD_ADDR(*this, kHeaderSize));
}

uint16_t SeqTwoByteString::Get(int index) {
  DCHECK(index >= 0 && index < length());
  return ReadField<uint16_t>(kHeaderSize + index * kShortSize);
}

void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  WriteField<uint16_t>(kHeaderSize + index * kShortSize, value);
}

int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
  return SizeFor(length());
}

int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) {
  return SizeFor(length());
}

void SlicedString::set_parent(String parent, WriteBarrierMode mode) {
  DCHECK(parent.IsSeqString() || parent.IsExternalString());
  TorqueGeneratedSlicedString<SlicedString, Super>::set_parent(parent, mode);
}

TQ_SMI_ACCESSORS(SlicedString, offset)

Object ConsString::unchecked_first() {
  return TaggedField<Object, kFirstOffset>::load(*this);
}

Object ConsString::unchecked_second() {
  return RELAXED_READ_FIELD(*this, kSecondOffset);
}

DEF_GETTER(ThinString, unchecked_actual, HeapObject) {
  return TaggedField<HeapObject, kActualOffset>::load(isolate, *this);
}

bool ExternalString::is_uncached() const {
  InstanceType type = map().instance_type();
  return (type & kUncachedExternalStringMask) == kUncachedExternalStringTag;
}

Address ExternalString::resource_as_address() {
  return ReadField<Address>(kResourceOffset);
}

void ExternalString::set_address_as_resource(Address address) {
  WriteField<Address>(kResourceOffset, address);
  if (IsExternalOneByteString()) {
    ExternalOneByteString::cast(*this).update_data_cache();
  } else {
    ExternalTwoByteString::cast(*this).update_data_cache();
  }
}

uint32_t ExternalString::resource_as_uint32() {
  return static_cast<uint32_t>(ReadField<Address>(kResourceOffset));
}

void ExternalString::set_uint32_as_resource(uint32_t value) {
  WriteField<Address>(kResourceOffset, value);
  if (is_uncached()) return;
  WriteField<Address>(kResourceDataOffset, kNullAddress);
}

void ExternalString::DisposeResource() {
  v8::String::ExternalStringResourceBase* resource =
      reinterpret_cast<v8::String::ExternalStringResourceBase*>(
          ReadField<Address>(ExternalString::kResourceOffset));

  // Dispose of the C++ object if it has not already been disposed.
  if (resource != nullptr) {
    resource->Dispose();
    WriteField<Address>(ExternalString::kResourceOffset, kNullAddress);
  }
}

const ExternalOneByteString::Resource* ExternalOneByteString::resource() {
  return reinterpret_cast<Resource*>(ReadField<Address>(kResourceOffset));
}

void ExternalOneByteString::update_data_cache() {
  if (is_uncached()) return;
  WriteField<Address>(kResourceDataOffset,
                      reinterpret_cast<Address>(resource()->data()));
}

void ExternalOneByteString::SetResource(
    Isolate* isolate, const ExternalOneByteString::Resource* resource) {
  set_resource(resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length();
  if (new_payload > 0) {
    isolate->heap()->UpdateExternalString(*this, 0, new_payload);
  }
}

void ExternalOneByteString::set_resource(
    const ExternalOneByteString::Resource* resource) {
  WriteField<Address>(kResourceOffset, reinterpret_cast<Address>(resource));
  if (resource != nullptr) update_data_cache();
}

const uint8_t* ExternalOneByteString::GetChars() {
  return reinterpret_cast<const uint8_t*>(resource()->data());
}

uint8_t ExternalOneByteString::Get(int index) {
  DCHECK(index >= 0 && index < length());
  return GetChars()[index];
}

const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
  return reinterpret_cast<Resource*>(ReadField<Address>(kResourceOffset));
}

void ExternalTwoByteString::update_data_cache() {
  if (is_uncached()) return;
  WriteField<Address>(kResourceDataOffset,
                      reinterpret_cast<Address>(resource()->data()));
}

void ExternalTwoByteString::SetResource(
    Isolate* isolate, const ExternalTwoByteString::Resource* resource) {
  set_resource(resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length() * 2;
  if (new_payload > 0) {
    isolate->heap()->UpdateExternalString(*this, 0, new_payload);
  }
}

void ExternalTwoByteString::set_resource(
    const ExternalTwoByteString::Resource* resource) {
  WriteField<Address>(kResourceOffset, reinterpret_cast<Address>(resource));
  if (resource != nullptr) update_data_cache();
}

const uint16_t* ExternalTwoByteString::GetChars() { return resource()->data(); }

uint16_t ExternalTwoByteString::Get(int index) {
  DCHECK(index >= 0 && index < length());
  return GetChars()[index];
}

const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
    unsigned start) {
  return GetChars() + start;
}

int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; }

void ConsStringIterator::PushLeft(ConsString string) {
  frames_[depth_++ & kDepthMask] = string;
}

void ConsStringIterator::PushRight(ConsString string) {
  // Inplace update.
  frames_[(depth_ - 1) & kDepthMask] = string;
}

void ConsStringIterator::AdjustMaximumDepth() {
  if (depth_ > maximum_depth_) maximum_depth_ = depth_;
}

void ConsStringIterator::Pop() {
  DCHECK_GT(depth_, 0);
  DCHECK(depth_ <= maximum_depth_);
  depth_--;
}

uint16_t StringCharacterStream::GetNext() {
  DCHECK(buffer8_ != nullptr && end_ != nullptr);
  // Advance cursor if needed.
  if (buffer8_ == end_) HasMore();
  DCHECK(buffer8_ < end_);
  return is_one_byte_ ? *buffer8_++ : *buffer16_++;
}

StringCharacterStream::StringCharacterStream(String string, int offset)
    : is_one_byte_(false) {
  Reset(string, offset);
}

void StringCharacterStream::Reset(String string, int offset) {
  buffer8_ = nullptr;
  end_ = nullptr;
  ConsString cons_string = String::VisitFlat(this, string, offset);
  iter_.Reset(cons_string, offset);
  if (!cons_string.is_null()) {
    string = iter_.Next(&offset);
    if (!string.is_null()) String::VisitFlat(this, string, offset);
  }
}

bool StringCharacterStream::HasMore() {
  if (buffer8_ != end_) return true;
  int offset;
  String string = iter_.Next(&offset);
  DCHECK_EQ(offset, 0);
  if (string.is_null()) return false;
  String::VisitFlat(this, string);
  DCHECK(buffer8_ != end_);
  return true;
}

void StringCharacterStream::VisitOneByteString(const uint8_t* chars,
                                               int length) {
  is_one_byte_ = true;
  buffer8_ = chars;
  end_ = chars + length;
}

void StringCharacterStream::VisitTwoByteString(const uint16_t* chars,
                                               int length) {
  is_one_byte_ = false;
  buffer16_ = chars;
  end_ = reinterpret_cast<const uint8_t*>(chars + length);
}

bool String::AsArrayIndex(uint32_t* index) {
  uint32_t field = hash_field();
  if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
    return false;
  }
  return SlowAsArrayIndex(index);
}

SubStringRange::SubStringRange(String string,
                               const DisallowHeapAllocation& no_gc, int first,
                               int length)
    : string_(string),
      first_(first),
      length_(length == -1 ? string.length() : length),
      no_gc_(no_gc) {}

class SubStringRange::iterator final {
 public:
  using iterator_category = std::forward_iterator_tag;
  using difference_type = int;
  using value_type = uc16;
  using pointer = uc16*;
  using reference = uc16&;

  iterator(const iterator& other) = default;

  uc16 operator*() { return content_.Get(offset_); }
  bool operator==(const iterator& other) const {
    return content_.UsesSameString(other.content_) && offset_ == other.offset_;
  }
  bool operator!=(const iterator& other) const {
    return !content_.UsesSameString(other.content_) || offset_ != other.offset_;
  }
  iterator& operator++() {
    ++offset_;
    return *this;
  }
  iterator operator++(int);

 private:
  friend class String;
  friend class SubStringRange;
  iterator(String from, int offset, const DisallowHeapAllocation& no_gc)
      : content_(from.GetFlatContent(no_gc)), offset_(offset) {}
  String::FlatContent content_;
  int offset_;
};

SubStringRange::iterator SubStringRange::begin() {
  return SubStringRange::iterator(string_, first_, no_gc_);
}

SubStringRange::iterator SubStringRange::end() {
  return SubStringRange::iterator(string_, first_ + length_, no_gc_);
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_STRING_INL_H_