summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/js-array-buffer-inl.h
blob: b1f3ed4ce23f9339d18387ea4bcb60b1ed593f43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_
#define V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_

#include "src/objects/js-array-buffer.h"

#include "src/heap/heap-write-barrier-inl.h"
#include "src/objects-inl.h"
#include "src/objects/js-objects-inl.h"
#include "src/wasm/wasm-engine.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

OBJECT_CONSTRUCTORS_IMPL(JSArrayBuffer, JSObject)
OBJECT_CONSTRUCTORS_IMPL(JSArrayBufferView, JSObject)
OBJECT_CONSTRUCTORS_IMPL(JSTypedArray, JSArrayBufferView)
OBJECT_CONSTRUCTORS_IMPL(JSDataView, JSArrayBufferView)

CAST_ACCESSOR(JSArrayBuffer)
CAST_ACCESSOR(JSArrayBufferView)
CAST_ACCESSOR(JSTypedArray)
CAST_ACCESSOR(JSDataView)

size_t JSArrayBuffer::byte_length() const {
  return READ_UINTPTR_FIELD(*this, kByteLengthOffset);
}

void JSArrayBuffer::set_byte_length(size_t value) {
  WRITE_UINTPTR_FIELD(*this, kByteLengthOffset, value);
}

void* JSArrayBuffer::backing_store() const {
  intptr_t ptr = READ_INTPTR_FIELD(*this, kBackingStoreOffset);
  return reinterpret_cast<void*>(ptr);
}

void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) {
  intptr_t ptr = reinterpret_cast<intptr_t>(value);
  WRITE_INTPTR_FIELD(*this, kBackingStoreOffset, ptr);
}

size_t JSArrayBuffer::allocation_length() const {
  if (backing_store() == nullptr) {
    return 0;
  }
  // If this buffer is managed by the WasmMemoryTracker
  if (is_wasm_memory()) {
    const auto* data =
        GetIsolate()->wasm_engine()->memory_tracker()->FindAllocationData(
            backing_store());
    DCHECK_NOT_NULL(data);
    return data->allocation_length;
  }
  return byte_length();
}

void* JSArrayBuffer::allocation_base() const {
  if (backing_store() == nullptr) {
    return nullptr;
  }
  // If this buffer is managed by the WasmMemoryTracker
  if (is_wasm_memory()) {
    const auto* data =
        GetIsolate()->wasm_engine()->memory_tracker()->FindAllocationData(
            backing_store());
    DCHECK_NOT_NULL(data);
    return data->allocation_base;
  }
  return backing_store();
}

bool JSArrayBuffer::is_wasm_memory() const {
  bool const is_wasm_memory = IsWasmMemoryBit::decode(bit_field());
  DCHECK_EQ(is_wasm_memory,
            GetIsolate()->wasm_engine()->memory_tracker()->IsWasmMemory(
                backing_store()));
  return is_wasm_memory;
}

void JSArrayBuffer::set_is_wasm_memory(bool is_wasm_memory) {
  set_bit_field(IsWasmMemoryBit::update(bit_field(), is_wasm_memory));
}

void JSArrayBuffer::clear_padding() {
  if (FIELD_SIZE(kOptionalPaddingOffset) != 0) {
    DCHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset));
    memset(reinterpret_cast<void*>(address() + kOptionalPaddingOffset), 0,
           FIELD_SIZE(kOptionalPaddingOffset));
  }
}

void JSArrayBuffer::set_bit_field(uint32_t bits) {
  WRITE_UINT32_FIELD(*this, kBitFieldOffset, bits);
}

uint32_t JSArrayBuffer::bit_field() const {
  return READ_UINT32_FIELD(*this, kBitFieldOffset);
}

// |bit_field| fields.
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_external,
                    JSArrayBuffer::IsExternalBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_detachable,
                    JSArrayBuffer::IsDetachableBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, was_detached,
                    JSArrayBuffer::WasDetachedBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_shared,
                    JSArrayBuffer::IsSharedBit)
BIT_FIELD_ACCESSORS(JSArrayBuffer, bit_field, is_growable,
                    JSArrayBuffer::IsGrowableBit)

size_t JSArrayBufferView::byte_offset() const {
  return READ_UINTPTR_FIELD(*this, kByteOffsetOffset);
}

void JSArrayBufferView::set_byte_offset(size_t value) {
  WRITE_UINTPTR_FIELD(*this, kByteOffsetOffset, value);
}

size_t JSArrayBufferView::byte_length() const {
  return READ_UINTPTR_FIELD(*this, kByteLengthOffset);
}

void JSArrayBufferView::set_byte_length(size_t value) {
  WRITE_UINTPTR_FIELD(*this, kByteLengthOffset, value);
}

ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset)

bool JSArrayBufferView::WasDetached() const {
  return JSArrayBuffer::cast(buffer())->was_detached();
}

Object JSTypedArray::length() const { return READ_FIELD(*this, kLengthOffset); }

size_t JSTypedArray::length_value() const {
  double val = length()->Number();
  DCHECK_LE(val, kMaxSafeInteger);   // 2^53-1
  DCHECK_GE(val, -kMaxSafeInteger);  // -2^53+1
  DCHECK_LE(val, std::numeric_limits<size_t>::max());
  DCHECK_GE(val, std::numeric_limits<size_t>::min());
  return static_cast<size_t>(val);
}

void JSTypedArray::set_length(Object value, WriteBarrierMode mode) {
  WRITE_FIELD(*this, kLengthOffset, value);
  CONDITIONAL_WRITE_BARRIER(*this, kLengthOffset, value, mode);
}

bool JSTypedArray::is_on_heap() const {
  DisallowHeapAllocation no_gc;
  // Checking that buffer()->backing_store() is not nullptr is not sufficient;
  // it will be nullptr when byte_length is 0 as well.
  FixedTypedArrayBase fta = FixedTypedArrayBase::cast(elements());
  return fta->base_pointer()->ptr() == fta.ptr();
}

// static
MaybeHandle<JSTypedArray> JSTypedArray::Validate(Isolate* isolate,
                                                 Handle<Object> receiver,
                                                 const char* method_name) {
  if (V8_UNLIKELY(!receiver->IsJSTypedArray())) {
    const MessageTemplate message = MessageTemplate::kNotTypedArray;
    THROW_NEW_ERROR(isolate, NewTypeError(message), JSTypedArray);
  }

  Handle<JSTypedArray> array = Handle<JSTypedArray>::cast(receiver);
  if (V8_UNLIKELY(array->WasDetached())) {
    const MessageTemplate message = MessageTemplate::kDetachedOperation;
    Handle<String> operation =
        isolate->factory()->NewStringFromAsciiChecked(method_name);
    THROW_NEW_ERROR(isolate, NewTypeError(message, operation), JSTypedArray);
  }

  // spec describes to return `buffer`, but it may disrupt current
  // implementations, and it's much useful to return array for now.
  return array;
}

#ifdef VERIFY_HEAP
ACCESSORS(JSTypedArray, raw_length, Object, kLengthOffset)
#endif

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_JS_ARRAY_BUFFER_INL_H_